
  

  

Abstract—An adaptive fault-tolerant sliding mode control is 

presented in this paper. A regular sliding mode controller is 

designed as the inner loop of the control structure, while in the 

outer loop the desired trajectory components are converted to 

the desired attitude. The problem of identification of the faulty 

subsystems’ dynamics is converted to the mathematical problem 

of determining the unknown coefficients of a Linear-In-

Parameter (LIP) model. Subsequently, an effective observer is 

developed in the paper based on the well-known Online 

Sequential Extreme Learning Machine (OS-ELM) approach in 

order to identify the dynamics of faulty subsystems and 

afterward, a disturbance observer is proposed to estimate the 

effects of external disturbances on the dynamic model. 

Furthermore, the stability of the closed-loop system is analyzed 

based on the Lyapunov theorem. The introduced control 

structure is applied to a quadrotor Unmanned Aerial Vehicle 

(UAV) for tracking a predefined trajectory in the 3D 

environment. The simulation results demonstrate that using the 

proposed control scheme, the air vehicle can follow the desired 

trajectory in the presence of simultaneous actuator faults and 

external disturbances. 

 
Index Terms—Adaptive control, OS-ELM, quadrotor UAV, 

sliding mode control, trajectory tracking.  

 

I. INTRODUCTION 

Sliding Mode Control (SMC) has been used widely in the 

control structure of different nonlinear dynamic systems [1]. 

It is easy to implement and can deal with nonlinear part of 

dynamic systems, satisfactorily. In addition, due to the 

robustness of the SMC, it can be used satisfactorily to 

maintain the closed-loop performance in the presence of 

model uncertainties and external disturbances [2]. 

SMC has been also employed in the structure of Fault-

Tolerant Controls (FTCs), extensively [3], [4]. However, 

using a regular SMC, the closed-loop performance drops 

significantly in the presence of multiple actuator faults and it 

may lead to the closed-loop instability. There are different 

approaches in the literature, which have addressed the design 

of a reliable FTC scheme using the combination of the 

robustness of SMCs with the capabilities of adaptive control 

approaches. A robust backstepping SMC approach has been 

introduced in [5] for a quadrotor UAV in the presence of 

model uncertainties and external disturbances. The control 

structure consists of a regular SMC as the inner loop and the 

backstepping control approach as the outer loop of the closed-

loop system. Also, an adaptive fault estimation block has 

been employed only in the take-off and landing mode in order 
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to avoid the crash. An adaptive fault-tolerant SMC has been 

proposed in [2] for a multi-rotor Unmanned Aerial Vehicle 

(UAV) in the presence of simultaneous actuator faults. Two 

separate control modules have been introduced in the paper, 

which have been developed by combining both the adaptive 

SMC and the control allocation scheme. However, the 

proposed approach suffers from different complexities. 

Authors in [6], have proposed an adaptive fuzzy SMC for a 

quadrotor UAV. The control structure includes a PID control 

for the position tracking and an adaptive SMC with a parallel 

fuzzy system in the attitude control block. 

Almost all of the aforementioned control structures suffer 

from several complexities. This is despite the fact that if we 

are capable of identifying the dynamics of the faulty system, 

then it is possible to redesign the control structure based on 

the newly identified dynamic system, satisfactorily. More 

specifically, in the case of quadrotor UAVs, the system faults 

can be usually modeled using a set of four multiplicative 

gains, which correspond to each rotor. Thus, the problem of 

identifying the faulty system can be converted to the 

mathematical problem of determining the unknown 

coefficients of a Linear-In-Parameter model. 

Online Sequential Extreme Learning Machine (OS-ELM) 

is an iterative identification approach, which has been 

proposed for the first time in [7] for updating the unknown 

parameters of an ELM. An ELM is a neural network with a 

single hidden layer, where only the weights of the output 

layer of the network should be updated in the training process 

and the weights and biases of the hidden layer are chosen as 

constant random numbers. Different variety of OS-ELM 

approach has been introduced in the literature [8], [9]. An 

efficient version of OS-ELM approach called to OS-ELM 

with the forgetting factor has been introduced in [10], which 

can be used satisfactorily for identification of time-variant 

dynamic systems. Also, the sufficient conditions for the 

convergence of the OS-ELM approach to desired 

identification accuracy can found in [7]. 

Motivated by the above discussion, a nonlinear fault-

tolerant control approach is introduced in this paper for a 

quadrotor UAV. A new formulation of the system dynamic 

model is developed in order to convert the identification 

problem of the faulty system to the well-known problem of 

online identification of the ELM parameters. Subsequently, 

an effective disturbance observer is employed to estimate the 

existent external disturbances and finally, an SMC approach 

is designed based on the identified dynamic model of the 
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system. The stability of the closed-loop system is proved 

based on the Lyapunov theorem. It is notable that there is no 

need to employ two separate control blocks for the position 

and attitude control of the system. Indeed, the precise 

trajectory tracking is achieved using an integrated multi-loop 

control structure, where in the outer loop, the desired 

horizontal trajectory components are converted to the desired 

attitude and in the inner loop, the proposed SMC is applied to 

the system in order to control the attitude and the vertical 

position of the air vehicle. Using the proposed approach, the 

quadrotor can satisfactorily follow a predefined trajectory in 

the 3D environment even in the presence of simultaneous 

actuator faults. 

 

II. NONLINEAR DYNAMIC MODEL OF A QUADROTOR UAV 

The position and attitude of the air vehicle with respect to 

the inertial reference frame are denoted respectively, by 𝐫 =
[𝑥 𝑦 𝑧]𝑇  and Φ = [𝜙 𝜃 𝜓]𝑇 , where 𝜙 , 𝜃 , and 𝜓 

represent the roll, pitch, and yaw angle. Accordingly, the 

nonlinear dynamic model of a conventional quadrotor UAV 

(using the small angle approximation) can be formulated as 

follows [11], [12]: 

 

𝑥̈ = −
𝐹

𝑚
(cos𝜓sin𝜃cos𝜙 + sin𝜓sin𝜙) + 𝑑̅1, (1) 

𝑦̈ = −
𝐹

𝑚
(sin𝜓sin𝜃cos𝜙 − cos𝜓sin𝜙) + 𝑑̅2, (2) 

𝑧̈ = −
𝐹

𝑚
(cos𝜃cos𝜙) + 𝑔 + 𝑑̅3, (3) 

𝜙̈ =
1

𝐼𝑥
(𝑢𝜙 + (𝐼𝑦 − 𝐼𝑧)𝜃̇𝜓̇) + 𝑑̅4, (4) 

𝜃̈ =
1

𝐼𝑦
(𝑢𝜃 + (𝐼𝑧 − 𝐼𝑥)𝜙̇𝜓̇) + 𝑑̅5, (5) 

𝜓̈ =
1

𝐼𝑧
(𝑢𝜓 + (𝐼𝑥 − 𝐼𝑦)𝜃̇𝜙̇) + 𝑑̅6, (6) 

 

where 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , 𝑔 , and 𝑑̅𝑖  ( 𝑖 ∈ {1, … ,6} ) represent 

respectively, the diagonal terms of the moments of inertia, the 

gravity acceleration, and the disturbance components which 

include the effects of external disturbances and model 

uncertainties. Further, we have: 

 

[
 
 
 
 
𝐹
𝑢𝜙

𝑢𝜃

𝑢𝜓

]
 
 
 
 

=

(

 
 

1 1 1 1
0 𝑙 0 −𝑙
−𝑙 0 𝑙 0
𝑐 −𝑐 𝑐 −𝑐

)

 
 

[
 
 
 
 
𝑇1

𝑇2

𝑇3

𝑇4

]
 
 
 
 

, (7) 

 

where 𝑙 and 𝑇𝑖  (𝑖 ∈ {1, … ,4}) represent the arm length of the 

quadrotor and the thrust force generated by each rotor, 

respectively. Also, 𝑐 =
𝑘𝐷

𝑘𝑇
, where 𝑘𝐷 and 𝑘𝑇 denote the drag 

factor and the thrust coefficient [13]. 

From (1)-(7), it can be seen that only four independent 

system outputs can be controlled by the system inputs (𝑇𝑖). In 

other words, the quadrotor is an under-actuated system. An 

effective approach to develop a precise trajectory tracking 

control in such cases is to tune the air vehicle’s roll and pitch 

angles based on the horizontal components of the desired 

acceleration of the air vehicle (𝑥̈𝑑𝑒𝑠 and 𝑦̈𝑑𝑒𝑠). More precisely, 

from (1) and (2), we have: 

 

(
𝑥̈
𝑦̈
) = −

𝐹

𝑚
(
cos𝜓 sin𝜓
sin𝜓 −cos𝜓

) (
cos𝜙sin𝜃

sin𝜙
) + (

𝑑̅1

𝑑̅2

). (8) 

  

Thus, the desired values of the roll and pitch angles can be 

determined as follows: 

 

(
cos𝜙𝑑𝑒𝑠sin𝜃𝑑𝑒𝑠

sin𝜙𝑑𝑒𝑠
)

= −
𝑚

𝐹
(
cos𝜓 sin𝜓
sin𝜓 −cos𝜓

) (
𝑥̈𝑑𝑒𝑠 − 𝑑̅1

𝑦̈𝑑𝑒𝑠 − 𝑑̅2

) 

(9) 

 

 

Consequently, in the rest of the paper, the system states are 

considered as 𝐱 = [𝑧 𝜙 𝜃 𝜓]𝑇. Accordingly, the system 

dynamic model can be represented in the affine form as 

follows: 

 

𝐱̈ = 𝐟(𝐱, 𝐱̇) + 𝐁(𝐱, 𝐱̇)𝐮 + 𝐝, 
(10) 

 

where 𝐱𝑛×1, 𝐮𝑚×1, and 𝐝 represent the system state variables, 

the control inputs, and the external disturbances, respectively. 

Here, 𝐟 demonstrates the nonlinear internal dynamics of the 

system, while 𝐁 represents the control gains of the system. 

Also, we have: 

 

𝐮 = [𝑇1 𝑇2 𝑇3 𝑇4]
𝑇 , (11) 

𝐝 = [𝑑̅3 𝑑̅4 𝑑̅5 𝑑̅6]
𝑇 . (12) 

 

In the following section, the Sliding Mode Control (SMC) 

formulation is developed for the introduced dynamic model 

(10). 

 

III. FORMULATION OF THE SLIDING MODE CONTROL 

If the desired states of the system is denoted by 𝐱𝑑𝑒𝑠, then 

the tracking error can be calculated as follows: 

𝐞 = 𝐱 − 𝐱𝑑𝑒𝑠. (13) 

Accordingly, the sliding surface can be formulated as 

follows [14]: 

𝐬 = 𝐞̇ + Λ𝐞, (14) 

where Λ is a diagonal positive definite matrix. The Lyapunov 

function can then be defined as follows: 

𝑉 =
1

2
𝐬𝑇𝐬. (15) 

Consequently, the time derivative of the introduced 

Lyapunov function is obtained as follows:  

𝑉̇ = 𝐬𝑇 𝐬̇ = 𝐬𝑇(𝐞̈ + Λ𝐞̇) = 𝐬𝑇(𝐱̈ − 𝐱̈𝑑𝑒𝑠 + Λ𝐞̇)

= 𝐬𝑇(𝐟(𝐱, 𝐱̇) + 𝐁(𝐱, 𝐱̇)𝐮 + 𝐝 − 𝐱̈𝑑𝑒𝑠 + Λ𝐞̇).
 (16) 

Thus, if we have 𝑛 = 𝑚, then using the following input 

command:  

𝐮𝑐 = 𝐁−1(𝐱̈𝑑𝑒𝑠 − 𝐟(𝐱, 𝐱̇) − 𝐝 − Λ𝐞̇ − 𝐊𝐬), (17) 

we have: 

𝑉̇ = −𝐊𝐬𝑇𝐬. (18) 
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where 𝐊 is a positive definite matrix. Eq. (18) guarantees the 

asymptotical stability of the closed-loop system. 

However, in the presence of actuator faults, determining 

the accurate system dynamics and external disturbances is not 

easy at all. An effective observer is introduced in the 

following section in order to estimate the precise values of the 

system parameters in the presence of internal faults and 

external disturbances. 

 

IV. THE PROPOSED ADAPTIVE SMC APPROACH 

Using (10), the dynamic equation of the 𝑖th system state 

(𝑥𝑖) can be obtained as follows:   

𝑥̈𝑖 = 𝑓𝑖 + 𝐵𝑖𝐮 + 𝑑𝑖 , (19) 

where 𝑓𝑖 and 𝐵𝑖  represent the 𝑖th row of 𝐟 and the 𝑖th row of 

𝐁 , respectively. Also, 𝑑𝑖 = 𝑑̅
𝑖+2 . Considering a 

multiplicative actuator fault, the 𝑗 th rotor thrust can be 

formulated as follows: 

𝑇𝑗 = 𝛼𝑗𝑇𝑗𝑐
, (20) 

where 𝑇𝑗𝑐 represents the 𝑗th input command and 0 ≤ 𝛼𝑗 ≤ 1 

is the corresponding fault coefficient. Thus, (19) can be 

reformulated as follows: 

𝑦𝑖 ≔ 𝑥̈𝑖 − 𝑓𝑖 = [1 𝐵𝑖 ⊙ 𝐮𝑐
𝑇] [

𝑑𝑖

𝜶̅
] =: Θ𝑖𝜶, (21) 

where,  

Θ𝑖 = [1 𝐵𝑖 ⊙ 𝐮𝑐
𝑇], (22) 

𝜶̅ = [𝛼1 𝛼2 𝛼3 𝛼4]𝑇 , (23) 

𝜶 = [𝑑𝑖 𝜶̅𝑇]𝑇 , (24) 

𝐮𝑐 = [𝑇1𝑐
𝑇2𝑐

𝑇3𝑐
𝑇4𝑐]

𝑇 , (25) 

and ⊙ is used for the element-wise multiplication. Generally, 

𝜶 is an unknown vector which should be identified. An online 

learning approach has been introduced in [7] for updating the 

unknown coefficient of a neural network called Online 

Sequential Extreme Learning Machine (OS-ELM). The OS-

ELM has been developed based on the Recursive Least 

Square (RLS) optimization. The OS-ELM approach can now 

be applied to the obtained dynamic equation (21). More 

precisely, the unknown vector 𝜶 should be updated in each 

iteration after obtaining a new set of system data as follows 

[15]: 

𝜶𝑘 = 𝜶𝑘−1 + 𝜿𝑘𝜀𝑘 , 
(26) 

𝑃𝑘 = (𝐼 − 𝜿𝑘Θ𝑖𝑘
)
𝑃𝑘−1

𝜆
, (27) 

where, 

𝜀𝑘 = 𝑦𝑖𝑘
− Θ𝑖𝑘

𝜶𝑘−1, (28) 

𝜿𝑘 =
𝑃𝑘−1Θ𝑖𝑘

𝑇

𝜆 + Θ𝑖𝑘
𝑃𝑘−1Θ𝑖𝑘

𝑇 , (29) 

where subscript 𝑘 denotes the 𝑘th time step and 𝐼 represents 

the identity matrix. Also, 0 < 𝜆 ≤ 1 is a constant forgetting 

factor which is used to regulate the adaptation rate of the 

identification algorithm to the newly obtained data. 

The first component of 𝜶  corresponds to the external 

disturbance, while the other components of 𝜶 represent the 

multiplicative fault coefficients of each rotor. Accordingly, 

the unknown fault gains, as well as the disturbance term, can 

be determined iteratively using the aforementioned 

optimization algorithm. 

Notice that the introduced observer (26)-(29) can be 

applied to the dynamic equations of all the four system states 

(𝑧, 𝜙, 𝜃, and 𝜓). Thus, the vector 𝜶̅ can be estimated using 

different ways. This, in turn, leads to more reliable 

identification. Indeed, the fault coefficients of the system 

inputs can be updated in each step using the average of the 

obtained values of 𝜶̅ for all the four dynamic equations of the 

system states. As can be observed in (3)-(7), the dynamic 

equation of 𝜙  includes only the second and fourth control 

inputs, while the dynamic equation of 𝜃 consists of the first 

and third control inputs. On the other hand, the dynamic 

equations of 𝑧  and 𝜓  include all the four control inputs. 

Consequently, there are three different dynamic equation for 

each system input in order to identify the corresponding fault 

coefficient of the system inputs. 

As mentioned earlier, the disturbance term of each 

dynamic equation can be estimated using the introduced 

approach. However, in practice, it is more effective to update 

the disturbance term 𝑑𝑖 at each time step as follows: 

𝑑̂𝑖(𝑘) = 𝑥̈𝑖(𝑘) − 𝑓𝑖(𝑘) − 𝐵𝑖(𝑘)(𝜶̅(𝑘) ⊙ 𝐮𝑐(𝑘)), (30) 

where 𝑑̂𝑖 represents the estimated value of 𝑑𝑖. Accordingly, 

the proposed adaptive SMC approach can be summarized as 

follows: 

Algorithm 1:   

    1.  Set 𝑡 = 𝑘,  

    2.  Calculate the desired roll and pitch angles using (9),  

    3.  Update the fault coefficients using (26)-(29),  

    4.  Estimate the disturbance term 𝑑𝑖 using (30),  

    5.  Calculate the input command using (17),  

    6.  Divide the obtained input command of each rotor to 

the corresponding component of 𝜶̅ and apply the obtained 

vector to the system,  

    7.  Set 𝑡 = 𝑘 + 1 and go to step 1.  

V. SIMULATION RESULTS 

The numerical values of the system parameters are 

taken from [13], which are listed in Table I. 

 
TABLE I: NUMERICAL VALUES OF THE QUADROTOR PARAMETERS 

Parameter   Description   Value  

𝑚   Mass   0.58 kg  

𝑙   Arm length   0.25 m  

(𝐼𝑥, 𝐼𝑦, 𝐼𝑧)   Moments of inertia  (0.01,0.01,0.02)𝑘𝑔.𝑚2 

𝑘𝐷   Drag factor   2.82e−7  

𝑘𝑇   Thrust coefficient   1.5e−5  

 

It should be noted that the desired value of the yaw angle 

and its time derivatives are assumed zero in the current study. 

Also, to simplify the control structure, it is assumed that 

𝜙̇𝑑𝑒𝑠 = 𝜙̈𝑑𝑒𝑠 = 0  and 𝜃̇𝑑𝑒𝑠 = 𝜃̈𝑑𝑒𝑠 = 0  in the entire 

simulation time. On the other hand, to provide a more 

effective trajectory tracking, the desired values of 𝑥̈ and 𝑦̈ in 

(9) are substituted by  

𝑥̈𝑑𝑒𝑠 ← 𝑥̈𝑑𝑒𝑠 − 𝑘1𝑥(𝑥 − 𝑥𝑑𝑒𝑠) − 𝑘2𝑥(𝑥̇ − 𝑥̇𝑑𝑒𝑠), 
(31) 

𝑦̈𝑑𝑒𝑠 ← 𝑦̈𝑑𝑒𝑠 − 𝑘1𝑦(𝑦 − 𝑦𝑑𝑒𝑠) − 𝑘2𝑦(𝑦̇ − 𝑦̇𝑑𝑒𝑠), (32) 
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Fig. 1. The desired trajectory and the real trajectory in the case of nominal 

flight condition. 

where 𝑘1𝑥, 𝑘2𝑥, 𝑘1𝑦, 𝑘2𝑦 are some positive constants. Here, 

the numerical values of the control parameters are chosen as: 

𝑘1𝑥 = 𝑘1𝑦 = 2  and 𝑘2𝑥 = 𝑘2𝑦 = 3 . Further, we have 𝐊 =

𝑑𝑖𝑎𝑔([1,20,20,20]), and Λ = 𝑑𝑖𝑎𝑔([1,50,50,50]). Also, the 

sampling time of the simulations is chosen as 𝑇𝑠 = 10𝑚𝑠 and 

the desired trajectory of the system is defined as follows: 

𝑥𝑑𝑒𝑠(𝑡) = sin (
2𝜋

5
𝑡 +

𝜋

4
), (33) 

𝑦𝑑𝑒𝑠(𝑡) = sin (
2𝜋

5
𝑡 + 𝜋), (34) 

𝑧𝑑𝑒𝑠(𝑡) = 2sin (
2𝜋

5
𝑡). (35) 

Further, the upper bound of the thrust force and the upper 

bound of the change rate of the thrust force for each rotor are 

set to be 4𝑁  and 40
𝑁

𝑠
, respectively. To evaluate the 

performance of the proposed control structure, three different 

scenarios are studied in the following subsections. 

 

 

Fig. 2. The desired trajectory and the real trajectory in the presence of a 

single fault and external disturbances. 

 

 
Fig. 3. The system position and attitude in the presence of a single fault and external disturbances. 

 

A. No Fault / No Disturbance 

In the first scenario, the performance of the closed-loop 

system is evaluated in the nominal flight condition. The 

desired trajectory, as well as the real trajectory of the system, 

is shown in Fig. 1. As seen in the figure, the quadrotor can 

satisfactorily follow the desired trajectory. Indeed, there is no 

significant difference between the performance of a regular 

SMC and the proposed adaptive control approach, in this 

scenario. 

B. Single Fault + External Disturbance 

In the second scenario, a single fault and some external 

disturbances are considered in the system dynamic model. 

More specifically, it is assumed that 𝛼3 = 0.5  from 

beginning the flight. Also, some external disturbances are 

applied to the air vehicle as follows: 

𝑑1(𝑡) = 0.2sin (
2𝜋

10
𝑡 +

𝜋

4
), (36) 

𝑑3(𝑡) = 0.2sin (
2𝜋

10
𝑡) + 𝑤𝑔(𝑡), (37) 

where 𝑤𝑔(𝑡) is a white noise signal with the power of −20 

dBW. In the current study, we use only the dynamic equation 
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of 𝜃  to identify the fault coefficients of the first and third 

rotors. Again, the desired trajectory of the system and the real 

trajectory are illustrated in Fig. 2. 

 

 
Fig. 4. The estimated values of the first and third fault coefficients in the 

presence of a single fault and external disturbances. 

 

 
Fig. 5. The estimated values of the first and third fault coefficients in the 

presence of multiple faults and external disturbances. 

 

 
Fig. 6. The desired trajectory and the real trajectory in the presence of 

multiple faults and external disturbances. 

 

 
Fig. 8. The applied inputs to the system in the presence of multiple faults 

and external disturbances. 

 

Also, the system position and attitude with respect to time 

are shown in Fig. 3. Further, the estimated values of the first 

and third fault coefficients are demonstrated in Fig. 4. 
 

 
Fig. 7. The system position and attitude in the presence of multiple faults and external disturbances. 

 

As seen, the introduced observer can satisfactorily identify 

the fault coefficient of the third rotor and consequently, the 

air vehicle can suitably follow the desired trajectory. It is 

notable that the forgetting factor 𝜆  is chosen as 1  in the 

current study. Several simulations have been performed in 

order to evaluate the closed-loop performance in the presence 

of sudden rotor faults during the flight simulation (not from 

beginning the flight). It has been observed that the 

assumption of 𝜆 = 1  in the control structure leads to 

acceptable trajectory tracking even if the accuracy of the 

estimated fault coefficients (𝛼𝑖) is not as well as that of the 

aforementioned scenario. Also, the use of the smaller 

forgetting factor leads to better adaptation, but it may result 

in less robustness to the actuator faults. 

A. Multiple faults + External Disturbance 

Finally, in the third scenario, two different faults are 
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considered in the dynamic model of the quadrotor. More 

specifically, it is assumed that 𝛼1 = 0.8 and 𝛼3 = 0.5 from 

beginning the flight. Also, the introduced external 

disturbances in the previous scenario are also applied to the 

system. The estimated values of the fault coefficients are 

demonstrated in Fig. 5. As seen in the figure, the introduced 

observer can identify both of the fault coefficients, 

satisfactorily even in the presence of external disturbances. 

In addition, the desired trajectory of the system, as well as 

the real trajectory, is illustrated in Fig. 6. To demonstrate the 

high capability of the proposed control approach in 

comparison with the regular SMC, the quadrotor trajectory 

using the regular SMC is also shown in Fig. 6. As can be 

observed in the figure, the proposed adaptive SMC approach 

leads to quite better performance compared to the 

conventional SMC and the quadrotor UAV using the 

proposed control approach can satisfactorily follow the 

desired trajectory even in the presence of multiple rotor faults 

and external disturbances. 

Also, the system position, the system attitude, and their 

desired values are shown in Fig. 7, which shows the 

acceptable performance of the proposed control approach 

even in the presence of multiple rotor faults and external 

disturbances. Further, the applied inputs to the system, in this 

scenario, are shown in Fig. 8. As seen, all the input commands 

are within the permissible range. 

Finally, the Mean Square tracking Error (MSE) of all the 

aforementioned scenarios are listed in Table II. 

 
TABLE II: NUMERICAL VALUES OF THE QUADROTOR PARAMETERS 

Scenario   MSE  

1  0.002  

2  0.015  

3  0.022  

VI. CONCLUSION 

A novel adaptive sliding mode control was proposed in this 

research. An OSELM-based observer was introduced in order 

to identify the faulty subsystems of a quadrotor UAV. 

Subsequently, a disturbance observer was proposed to 

compensate for the effects of external disturbances on the 

closed-loop performance. It was shown that the proposed 

observer can satisfactorily estimate the fault coefficients even 

in the simultaneous presence of multiple rotor faults and 

external disturbances. As seen in the results, the proposed 

adaptive SMC approach improved the fault-tolerant 

capability of the regular sliding mode controller, significantly. 

Accordingly, the closed-loop system using the proposed 

adaptive SMC can acceptably follow a desired trajectory (in 

the 3D environment) in the presence of multiple rotor faults 

and external disturbances.  
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