
  

    

Abstract— For the robot’s dynamic behaviour analyse will be 
necessary to know the positions, velocities, accelerations of all 

robot’s joints. For that firstly will be necessary to know the 

positions and secondary the angular and linear velocities  in all 

robot’s joints. The LabVIEW software from National 

Instruments, USA, assures one easily way to obtain the 

information, in matrix form, about the joint’s positions and 

velocities and compare them with the data acquisition, 

information that could be used in the future, in the assisted 

dynamic behaviour. In the paper was shown some different 

cases of the relative joint’s velocities. The applied method solves 

one small part of the complex problems of the robot’s 

kinematics.  

 
Index Terms—Virtual instrumentation, assisted research, 

6x6 transfer matrix, dual angular and linear velocity vector, 

antisymmetric position vector, dual velocity 6x6 matrix 

equation.  

 

I. INTRODUCTION 

 The velocities analyze in Robotics is one of the most 

important problem of the robot’s kinematics. Without the 

assisted research with the LabVIEW software will not be 

possible to study the kinematic and dynamic behavior.  

 In addition to finding the end-effecter position for given 

joint parameters, in forward and inverse kinematics, the 

robot’s kinematics also includes the analysis of manipulators 

in motion. Not only the final position of the links and joints to 

attain the desired position of the end-effecter, but also the 

velocity, and its variation, of the links and joints of the robots 

while attaining the final position is important for analysis [1]. 

Especially in the last two decades, there are various 

toolbox studies on forward and inverse kinematic analyses 

of serial robots [2]-[12]. Some of these are open source and 

free toolboxes for educational use. Some of them are 

commercial and non-open source, which can be used to 

analyse industrial robots that used. Except these, they do not 

work when the analyse of specially designed robots with a 

high degree of freedom, such as those used for space for 

research purposes, or any serial robot, designed by students 

for educational purposes. 
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 The assisted research was made by using the proper 

virtual LabVIEW instrumentation and the acquisition board 

from National Instruments, USA. The stand that used for the 

research is shown in Fig. 1. 

MATLAB [13] is a powerful environment for linear 

algebra and graphical presentation that is available on a very 

wide range of computer platforms. The core functionality can 

be extended by application specific toolboxes. The Robotics 

Toolbox provides many functions that are required in 

robotics and addresses areas such as kinematics, dynamics, 

and trajectory generation. The Toolbox is useful for 

simulation as well as analyzing results from experiments with 

real robots, and can be a powerful tool for education.  

The paper [14] has demonstrated the principle features of 

the Robotics Toolbox for MATLAB. ”The Toolbox provides 

many of the essential tools necessary for robotic modelling 

and simulation, as well as analyzing experimental results or 

teaching. A key feature is the use of a single matrix to 

completely describe the kinematics and dynamics of any 

serial-link manipulator” [14].  

In the book [15] was proposed one method by using the 

Jacobian matrix after was applying the first derivate function 

of the position. Mathematically, the forward kinematic 

equations define a function between the external coordinates 

and the internal coordinates, the relation between the 

coordinates of the end-effecter and the internal coordinates of 

the joints. The velocity relationships are then determined by 

the Jacobian of this function. This Jacobian matrix is one of 

the most important quantities in the analysis and control of 

robot motion, but impose to use some complex mathematic 

form of the equations.  

 

 
Fig. 1. The experimental stand used in the assisted research. 

 

 In [16]-[20] papers are presented some relations of the 

end-effecter and joints angular and linear velocities 

determined also by using the Jacobian matrix form, not some 

transformation matrix or matrix form like will be used by the 

proposed algorithm. 

 In the book [21], the authors shown the matrix method of 

the velocity in forward and inverse kinematics, but also with 
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determination the Jacobian matrix. It is shown the 

singularity conditions and applicability. 

A. The Velocity Mathematical Matrix Model  

 The matrix form of the positions, velocities, accelerations, 

forces and moments equations assure the easily way for the 

assisted research of the kinematics and dynamics behavior of 

robots. The matrix equations for the positions and velocities 

are: 

 

                      (1) 

            (2) 

         
 
  (3)

 

                     (4)
  

 

(r0
i) is the column matrix vector for absolute position i 

joint versus the zero point; (r0
i-1)- column matrix vector for 

absolute position i-1 joint; [D0 i-1]-quadratic matrix for 

transfer vector from i-1 to base system; 

where: ( )
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v 1,

1, - dual matrix vector for relative velocity between i 

joint and i-1, reduced to i Cartesian system. 

Relation (1) is the matrix form of the position robot’s joints 

equation. The relative position vector is used to define anti 

symmetric position vector to construct the matrix product 

between angular and linear velocities. In this matrix form 

used the transfer matrix T, eq.(4) between the different 

robot’s joints cartesian systems. With this matrix operator 

easily was defined the absolute and relative dual column 

matrix velocities vector, eq.(2) and (3). With matrix eq.(3) 

will be determined the absolute dual velocity vector reduced 

to the base Cartesian system, known the dual absolute 

velocity vector reduced to the current joint, eq.(2). In the 

proper assisted research papers with LabVIEW 

instrumentation [22]-[36] was shown some results that can be 

used by the researchers in the robot design activities in the 

kinematics and dynamics of robots. 

In all assisted research cases with the goals: the design, 

modeling and simulation, was offered some on-line results 

what can be used to choose some optimal values of the 

constructive and functional parameters to obtain one required 

kinematic and dynamic behavior: one short acceleration time 

in concordance with the accepted vibration field, without 

vibration components in the resonance field, minimal 

stationary errors of the space trajectory of the end-effecter, 

one bigger Bode frequency to assure one minimum 

acceleration time, one higher cutting Bode frequency, one 

higher proper and natural frequencies.  

B. The LabVIEW Virtual Instruments 

The Figs.2-5 shown some virtual instruments (VI) used in 

the assisted research of the robot’s velocities. 

 
Fig. 2. Part of the block schema of the VI-s to determine the absolute 

velocities dual vector versus current cartesian system 
 

The base program, Fig.  2, contents some sub VI-s that 

could be used in many other LabVIEW programs. The base 

program used the subVI-s to determine all dual absolute and 

relative vector of velocity, to generate the matrix form 6x6 

for transfer the dual vectors between one Cartesian system to 

one other, the subVI-s to transform the data from the cluster 

to the matrix and the subVI-s to generate the trapezoidal 

characteristics of the relative velocity in all robot’s joints. 

All these subVI-s could be used in many other LabVIEW 

applications. 

C. The Front Panel of the Proper Virtual LabVIEW 

Instrumentation with Input Data  

The front panels contents the input data and the results of 

the simulation. Some part of the front panels from the subVI-s 

are shown in Figs. 3-5. In Fig.3 is shown the front panel to 

generate the dual vector of the angular and linear velocity. 

The input data contents the type of the robot’s module 

(Translation or Rotation), the velocity value in the robot’s 

joint and the axes of the rotation or translation. In fig.4, was 

construct the table of all relatives velocities of the robot by 

declare for each robot’s degree of freedom (DOF), the input 

data similar like in Fig. 3.  

 

 
Fig. 3. The front panel of the VI-s to determine the dual vector of angular 

and linear velocity. 
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The front panel of the Figs. 4-5 shown the table with three 

dimensions with the transfer matrices T, between all 

Cartesian systems. The transfer matrices D are used for the 

transfer of the vector from one system to other with 3x3 

dimensions. The joint’s position vectors in 3D robot’s 

working space and the trapezoidal characteristics of the 

velocities are used to solve the Forward Kinematics (FK) to 

determine the absolute positions, velocities and accelerations 

in the space of all robot’s joints.  

 

 
Fig. 4. Front panel to construct the transfer matrices T between cartesian 

systems.  

 

 
Fig. 5. Front panel of the principal program with the input data for the 

trapezoidal velocities characteristics and the type of each robot’s modules. 

D. The Results of the Assisted Research of the Velocity for 

Some Different Types of Movements 

The theoretical assisted research with the proper 

LabVIEW VI-s was done by using different velocities 

characteristics like: with simultaneously movements of all 

joints, with successive movements or simultaneously and 

successive after the acceleration time, or combine two 

movements to be simultaneously and other successive. Some 

of these results are shown in Figs. 6-10. 

 

 
Fig. 6. The results of the 3D angular and linear absolute velocity 
characteristics with the successive movements: module 2 after 4,29s and 

module 4 after 3.05s. 
 

 
Fig. 7. The results of the 3D angular and linear absolute velocities 

characteristics with simultaneously movements with different cycle times. 

 

 
Fig. 8. The results of the 3D angular and linear absolute velocities 

characteristics with simultaneously movements of 1-2 modules after 15s 

from the origin and with simultaneously movements from the origin time of 
modules 3-4  
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Fig.9. The results of the 3D angular and linear absolute velocities 

characteristics with simultaneously movements from the origin time of 1-3 

modules and with simultaneously movements after 15s from the origin time 

of the modules 2-4. 

 

 
Fig. 10. The results of the 3D angular and linear absolute velocities 

characteristics with successive movements of the 1,2,3,4 modules from the 

origin time. 
  

In the simulation activities, to be assured good results, we 

used the characteristics of relative joint’s velocities  in some 

different cases: simultaneously, successive, successive-  

simultaneously after acceleration time, 

successive-simultaneously after the constant velocity period, 

successive after the deceleration time, simultaneously with 

the same or different velocities values. In all studied cases 

must be shown the maximal variation of the linear and 

angular velocities that could be influence the dynamic 

behavior of the robot in different types of applications. 

 

II. OPTIMIZATION OF THE ROBOT’S KYNEMATICS BY USING 

THE ASSISTED RESEARCH RESULTS 

What must be the movements cases to be obtained some 

optimal results of the velocities variation? The analyze of the 

simulation results assure the answer at this question. 

After the analyze of the simulation’s results could be make 

the following observations: (i) angular velocities are 

minimum in the cases of the movements with simultaneously 

movements from the origin time of 1and 3 modules and with 

simultaneously movements after 15s from the origin time of 

the modules 2 and 4, Fig. 9, successive movements of the 

1,2,3,4 modules from the origin time, Fig. 10, successive 

movements of the 1,3,2,4 modules from the origin time, 

successive movements of the 1,4,2,3 modules from the origin 

time, that determine the minimum of the centrifugal forces, 

the minimum of the Coriolis forces and also the inertial 

moments; (ii) linear velocities are minimum in the fig.9 in the 

same cases of the movements, that determine the minimum of 

the Coriolis forces, the minimum of the dynamic impulse and 

also the minimum of the inertial forces; (iii) the most 

unfavorable case is when the linear or angular velocity vector 

has a multiple cyclic variation after a circle of variation, 

between the minimum and maximum values: for the angular 

velocity of -250grd/s to 250grd/s and -1200mm/s to 

1200mm/s for linear speed; (iv) cyclic variation of the 

angular velocity’s angle between -25 to 25grd, -40 to 40grd, 

-60 to 60grd (Fig. 8) with simultaneously movements with 

different cycle times, simultaneously movements from the 

origin time of 1-2 modules and with simultaneously 

movements after 15s from the origin time of the modules 3-4, 

simultaneously movements of all modules with the same 

characteristics of relative velocity with 150grd/s, successive- 

simultaneously- successive movements after acceleration 

time of all modules with the same characteristics of relative 

velocity with 150grd/s, simultaneously movements with 

different velocities; (v) cyclic variation of the linear 

velocity’s angle between -50 to 50grd, -70 to 70grd, -90 to 

90grd (figs.6,7,9,10) with simultaneously movements of 1 

and 2 modules after 15s from the origin and with 

simultaneously movements from the origin time of modules 3 

and 4, simultaneously movements with different velocities, 

simultaneously movements with different cycle times, 

simultaneously movements of all modules with the same 

characteristics of relative velocity with 150grd/s, successive- 

simultaneously- successive movements after acceleration 

time of all modules with the same characteristics of relative 

velocity with 150grd/s, successive movements after different 

delay of time versus origin time: module 2 after 4.29s, 

module 3 after 3.06s, module 4 after 6.89s, simultaneously 

movements from the origin time of 1 and 2 modules and with 

simultaneously movements after 15s from the origin time of 

the modules 3 and 4, simultaneously movements from the 

origin time of 1-3 modules and with simultaneously 

movements after 15s from the origin time of the modules 2-4, 

successive movements of the 1,4,2,3 modules from the origin 

time, successive- simultaneously movements, successive 

after the constant velocity characteristic with the same 

velocity 150grd/s; (vi) the most favorable case, when the 

variation of the angle of the absolute angular velocity vector 

is minimum, is fig.6, with successive movements of the 

1,2,3,4 modules from the origin time, successive movements 

of the 1,3,2,4 modules from the origin time, successive 

movements of the 1,4,2,3 modules from the origin time, 

successive- simultaneously movements, successive after the 

constant velocity characteristic with the same velocity 

150grd/s.  

After the intersection of the most favorable cases (i), (ii) 

and (vi) result that in the Fig. 10 are shown the best choosing 

of the movements cases in all joints: successive movements, 

or successive movements after the constant velocity value. 
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III. CONCLUSION 

The assisted research proposed by this paper, the proper 

virtual LabVIEW instrumentation for the assisted research of 

the velocity open the way to the optimal assisted research in 

the future of the Kinematics and Dynamics for the different 

type of robots and for different robot’s applications in 

singular, or multi robot application. The analyze of the 

velocities is one of the most important problem that must be 

solved in the robot’s kinematics. Positions, velocities, 

accelerations are the most important components in the 

dynamic behavior equations and by known these will be 

possible to optimal choose the kinematic robot’s parameters. 

The presented matrix equations, the algorithm, the virtual 

instrumentation are generally and they could be applying in 

many other robotic applications. 
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