
  

  

Abstract—Unfortunately, bike-related accidents are very 

common. Some of these accidents can be deadly. On most 

occasions, these accidents happen due to the lack of a safer 

means of commute, a bike lane. Further, many citizens could 

potentially be cyclists if bike lanes were installed. Driven by the 

idea of improving safety and convenience for cyclists, we 

contribute to a model that estimates the bike-lane demand in 

the city. We argue that the demand for bike lanes increases as 

the number of bike-related accidents increases. Further, the 

demand increases as the number of popular businesses 

increases, since some citizens commute to work and get around 

by bike. Our model estimates the demand for bike lanes using 

accidents and ratings of businesses. Accidents are defined by 

features that represent the severity as well as the cause of the 

accident. Our model uses the Weight of Evidence algorithm to 

determine the significance of the accident features. Further, the 

model uses an algorithm that breaks down roads into equally 

sized sections based on the US addressing standards. The 

estimation of the bike-lane demand is expressed via scores 

assigned to road sections. 

 
Index Terms—Smart city, bike-lane demand, bicyclist safety, 

weight of evidence.  

 

I. INTRODUCTION 

The number of cyclists is on rise. The United States alone 

had 43 million cyclists in 2013. That number increased to 

47.5 million in 2017 [1]. Many people use bike share services, 

which also observed an increased use. Approximately 1 

million people used these services in 2010, which increased 

to 35 million in 2017 [2]. Since many cyclists use roads 

without bike lanes, people have accidents that can injure or 

sometimes be deadly. Of the 35,000 road crashes in 2015, the 

number of cyclist fatalities was 818, which makes up 2.3% of 

the total fatalities [3]. Among these crashes, nearly a third of 

them happened because they were hit by a car [4]. In almost 

all these cases, 39% of bicyclists felt threatened because the 

motorists drove very close to them [4]. 

Similar to how cyclists increased exponentially, the usage 

of motor-based vehicles also increased gradually over time 

[5], [6]. With the increase in the number of cyclists, it would 

be inefficient for cyclists to use regular roads that are 

designed for motorists. Since bike lanes are used strictly by 

cyclists, the probability of a crash with a car would be less. 

Thus, more bike lanes would increase the safety for cyclists. 
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Apart from increasing safety, bike lanes have other 

benefits. More bike lanes motivate people living or working 

nearby to use them. This has a positive impact on their health. 

Increased bike usage also reduces reliance on fossil-fuel 

vehicles, which lowers pollution levels. 

Motivated to improve the safety and convenience for 

cyclists, we propose a model that analyzes accidents and 

businesses in a section of a road and estimates the demand for 

a bike lane. The system computes the estimation by 

considering the safety and convenience for cyclists. Safety is 

determined by features from historical bike-related accident 

data, such as the severity and the type of the accident. 

Convenience for cyclists is determined by the existence of 

highly relevant businesses nearby. Historical bike-related 

accidents are described by several features. Each feature 

involves several attributes and every attribute has different 

levels of impact. These factors are thus weighted according to 

the model. The final estimates depend on the severity factors 

determined by an expert, along with a defined importance 

factor. This factor is obtained by using underlying evidence 

with the help of the Weight of Evidence (WoE) algorithm. 

 

II. RELATED WORK 

The related work can be divided into three sections: safety 

measures for cyclists; scoring models; and estimations of 

bicyclist frequencies. 

A. Safety Measures for Cyclists 

As cities add bike lanes, the number of cyclists increases 

and cycling becomes safer [7], [8]. Many safety measures 

have been taken in the past to protect and increase the safety 

of cyclists in bike lanes. For instance, the Context-Sensitive 

Design is an approach applied while designing bike lanes [9]. 

This approach considers all possible “contexts of 

improvement” to improve the safety of cyclists riding in bike 

lanes. The city of Portland, Oregon, implemented blue 

thermoplastic “Yield to Cyclist” signs that improved yielding 

at the most crash-prone spots [10]. Studies also proved that 

the existence of green colored or highly visible bike lanes 

encouraged lower levels of conflict [11]. While similar 

measures are implemented to improve safety for cyclists in 

bike lanes, few measures are taken for cyclists’ safety on 

regular roads. A law from the state of California states that 

the motorists who violate a three-foot space distance from a 

cyclist are subject to a fine [12]. Though these measures help, 

the safest path for a cyclist to ride is on a bike lane. According 

to a survey, 30% of cyclists wanted to have more bike lanes 

installed as they felt safer to ride [4]. Thus, the safety of 

cyclists and their confidence would be maximized if more 

bike lanes are installed. 
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B. Scoring Models 

The scoring model is a weight-aggregating algorithm that is 

used primarily in evaluating the worthiness of credit 

applicants. Bankers look at credit scores of applicants 

assigned by the scoring model to check if the applicant is 

worthy of a loan. These credit scores are calculated 

aggregations of weights that determine the historical 

information of the applicant. The model follows an 

evaluation procedure where different attributes are assigned 

with relevant weights. These weights are aggregated to 

finally form an interpretable score [13]. 

The scoring models implement the WoE algorithm to 

determine the predictive power of each attribute of all 

variables. The predictive power is determined by dividing the 

dataset into events and non-events and applying the 

following formula to all attributes: 

 

𝑊𝑜𝐸 = ln  
% 𝑜𝑓 𝑛𝑜𝑛 − 𝑒𝑣𝑒𝑛𝑡𝑠

% 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
 ∗ 100 

 
(1) 

 

Here, usually, a non-event would be a good customer and 

an event would be a bad customer. Thus, the WoE will be 

positive if the percentage of non-events is a larger number 

and vice versa. This model can be fine-tuned and applied to 

other problems, similar to credit. 

The second author designed an evidence-based 

personalized recommender system to recommend city 

residents to use bikes for transportation, when the historical 

trips of the user show evidence of using bikes in similar 

circumstances. The system used a scoring model that relied 

on the statistical learning of user transportation habits and 

preferences [23]. 

C. Estimation of Bicyclist Frequencies 

There have been multiple procedures to estimate bicyclist 

frequencies. Texas A&M’s Transportation Institute had 

estimated cyclist frequency by using technology such as 

inductance loop detectors fixed on bike paths, infrared 

sensors fixed on small poles, video cameras and video 

processing, and so on [21]. According to Turner’s research, 

bicycle traffic can be roughly estimated using simple 

calculations that depend on local housing and commercial 

units [22]. Though Texas A&M’s results are highly accurate, 

using Turner’s methodologies can result in an approximate 

bicycle traffic estimate without the need of expensive 

equipment. While all these models help in bike traffic 

estimates, none of these approaches indicate the safety levels 

of cyclists or try to improve the safety standards. Further, 

these estimates do not incorporate the accident probabilities 

of cyclists. 

 

III. METHODOLOGY 

Our proposed model uses historical data to estimate the 

need of bike lanes in a city. The model assigns scores to 

sections of roads. The score is a number from 1 to 10, where 1 

means the lowest demand and 10 means the highest demand.  

The scores the model generates rely on two factors: 

severity and importance of the accident. The severity factor is 

a score assigned by an expert to each feature of an accident. A 

government roads department official can be the expert. 

However, we assigned the severity scores based on our 

personal judgment, and these scores can be adjusted by an 

expert in future versions of the model. The severity scores are 

later multiplied with an importance factor. The importance 

factor is estimated using the WoE algorithm, which 

determines how predictive each attribute is in determining 

the final score estimate. 

In the following sections, we introduce the architecture of 

the model and how the individual components manipulate the 

data and return a score. The main components are the 

Geocoder, the Address Sectionizer, the Accident Severity 

module, the Evidence Calculator, and the Score Generator. 

A. System Architecture 

Figure 1 shows the system architecture of the model. The 

entire implementation can be found in Vadakattu et al. [20]. 

The historical accident and business data with latitude and 

longitude are sent to a Geocoder. The Geocoder generates 

standardized addresses for each combination of latitude and 

longitude. The data from the Geocoder are used by the 

Address Sectionizer, which groups the accident locations into 

road sections based on the street numbers. We estimate bike 

lane need to the sections defined by the Address Sectionizer. 

The Evidence Calculator uses a condition along with a 

tweaked WoE algorithm. The WoE helps estimate the 

feasibility of each attribute. Meanwhile, an expert’s task is to 

identify the attributes of all the features of a bike accident and 

assign severity scores to the Accident Severity module. The 

Geocoder, the Address Sectionizer, the Evidence Calculator, 

and the Accident Severity module send their data to the Score 

Generator, where all the processed data are aggregated to 

obtain a final determined score. The Score Generator 

normalizes the scores on a scale of 1 to 10, where 10 would 

imply that the road highly needs a bike lane and a 0 means a 

bike lane is not needed. 

In the following sections, a more detailed explanation of 

all components is given. 

 

 
Fig. 1. Data flow architecture. 

 

B. Geocoder 

We used two datasets to determine the bike-lane demand 

estimate. For the accident information, we used historical 

accident data from the state of North Carolina [15]. For the 

business information, we used a dataset from Yelp [16]. The 
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address data obtained from both the datasets needed to be 

cleaned, as there were many occurrences that had the same 

street names in different types of formats. For example, there 

were multiple occurrences of Park Place and Park Pl., which 

were the same road with different names. While correcting 

these issues, we also had to merge data from both the datasets 

and make the addresses unique for the same location. We also 

had to find a way to obtain missing addresses. For all of these 

purposes, we used the latitude (lat) and longitude (lon) of 

each accident occurrence and pushed them through an online 

geocoding service called Geocodio [17]. The Geocodio API 

returned a standardized address of a building that is the 

closest to the determined lat–lon pair. This simplified the 

cleaning process and made it easy to obtain the unknown 

addresses. 

The Geocoder effectively returned addresses with address 

numbers and their street names in the format shown in Table I, 

for all the records. 

 
TABLE I: GEOCODER OUTPUT 

Latitude Longitude Dataset Address GC Address Num GC Street 

35.250229 -80.790794 
800 E SUGAR 

CREEK RD 
800 

E SUGAR 

CREEK RD 

35.724439 -77.911416 
GOLDSBORO 

ST 
126 

Goldsboro St 

SW 

34.699022 -77.060245 
TAYLOR 

NOTION RD 
205 

Taylor Notion 

Rd 

36.099123 -80.248214 MARSHAL ST 424 N Marshall St 

34.705645 -79.130441 SR 1513 3171 
Evergreen 

Church Rd 

 

C. Address Sectionizer 

Initially, the dataset had accident occurrences with exact 

lat–lon point values. As the model aims to assign 

recommendations to a small stretch of a road, the accidents 

are needed to be grouped into pieces of road sections. The 

Address Sectionizer groups the accidents into sections of 

roads that are equal in length in terms of street numbers. The 

addresses in the US start with an address number, which is 

followed by the street name. A simple example is shown in 

Fig. 2. 

 

 
Fig. 2. Address standard example. 

 

The address number is a concatenation of two numbers. 

The street number is as shown in the solid rectangle and the 

building number within the street segment is as shown in the 

dotted rectangle. We utilized this naming scheme and used 

the street number part of the address to group our accidents 

into road sections. First, the Address Sectionizer takes the 

address numbers returned by the geocoder and picks their 

minimum and maximum for each street name. The minimum 

address numbers are floored using the floor function [18] to 

obtain the nearest lower bound. The flooring is done by 

obtaining the closest numbers that are smaller than the 

minimum and are multiples of hundreds if the minimum is a 

value in hundreds, multiples of thousands if the minimum is 

in thousands, and so on. Doing this gave us imaginary start 

points of the address numbers with the original street 

numbers untouched. Similarly, the maximum address 

numbers are ceiled to obtain the higher bound using the 

ceiling function [18] to the closest bigger number of the 

maximum. For example, if a minimum of a road is 3421 and 

the maximum is a 6434, the lower bound would be 3000 and 

the upper bound would be 7000. In other words, the starting 

bound would be from the 30th street and the upper bound 

would be the 70th street. After this is done, we split the street 

number bounds into groups of five hundreds, which are our 

defined sections of a single long road. Doing this gave us 

sections of a road that would be five street numbers in length. 

 The Address Sectionizer would create floor and ceiling 

values as shown in Table II: 

 
TABLE II: FLOOR AND CEILING OF ADDRESS NUMBERS 

Street Name Min (Street 

Number) 

Max (Street 

Number) 

Floor (Street 

Number) 

Ceil (Street 

Number) 

Abbey Pl 1512 1512 1000 2000 

Albemarle Rd 5137 12901 5000 13000 

Baybrook Ln 9305 9305 9000 10000 

Bradford Dr 219 536 100 1000 

Camp Stewart Rd 3700 5530 3000 6000 

 

The module would group the roads into sections of five 

hundreds, as shown in Table III. These are the sections that 

would be utilized by the score generator to assign the 

estimate scores. Thus, in the following example, a section of 

Camp Stewart Rd. would start from the 30th street and would 

end at the 35th street. 

 
TABLE III: FLOOR AND CEIL OF ADDRESS NUMBERS 

Street Name Start End 

Camp Stewart Rd 3000 3500 

Camp Stewart Rd 3500 4000 

Camp Stewart Rd 4000 4500 

Camp Stewart Rd 4500 5000 

Camp Stewart Rd 5000 5500 

Camp Stewart Rd 5500 6000 

 

D. Accident Severity Module 

From the accident dataset, we selected the nine features 

listed in Table IV that would determine the cause of a specific 

accident. 

 
TABLE IV: FEATURES OF THE ACCIDENT DATASET 

Feature 
Description 

Type Info 

Ambulancer Boolean 
Determines if there was an Ambulance 

assistance after the crash. 

Bikedir Categorical 
Determines if the accident happened 

because of an ongoing vehicle, a facing 

vehicle or none. 

Bikeinjury Categorical Determines the injury levels of the cyclist. 

Drvinjury Categorical Determines the injury levels of the motorist. 

Bikepos Categorical 

Determines the position of the bike during 

the crash. Examples include Bike Lane, 
Travel Lane, etc. 

Crashgrp Categorical 

Shortly describes the reason of the crash. 

Examples include: Motorist overtaking 

Bicyclist, Motorist Right Turn/Merge, etc. 

Crashloc Categorical 

Determines the position of the crash with 

respect to the road intersection. Examples 
include: At an Intersection, 

Non-Intersection, Intersection related, etc. 

Crashtype Categorical 

Describes the reason of the crash in further 
detail. Examples include Motorist 

Overtaking-Undetected Bicyclist, Motorist 
Left Turn-Opposite Direction and so on. 

Development Categorical 
Describes the neighborhood. Examples 

include Residential, Commercial, etc. 

 

All the features, with the exception of the first, are 

categorical. For the purpose of our model, we converted the 

categorical values using a scale from 0 to 5 to indicate the 

severity of the accident. The scale is interpreted as follows: 0 
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means the accident is the least severe or irrelevant for our 

purpose and 5 means deadly. We assigned the scores based 

on our personal judgment. However, ideally, an expert should 

assign the severity values to indicate higher scores to 

attributes that would be causing a severe bike accident on a 

road without bike lanes. Table V shows an example of 

severity scores for the Bikedir feature. 

 
TABLE V: SEVERITY SCORES FOR BIKEDIR 

Bikedir Score 

Facing Traffic 5 

With Traffic 3 

Unkonwn 0 

Not appicable 0 

 

E. Evidence Calculator 

The Evidence calculator evaluates the importance of each 

accident feature based on the predictive power of each 

attribute of every feature. To find the attribute importance, 

we designed the Evidence calculator so that it determines a 

value from 0 to 1 for all attributes, where 0 implies that the 

attribute is not important and 1 is highly important. This 

value is then multiplied by the accident severity scores in the 

Score Generator module. To add validity to our model, we 

wanted to weaken the accident features that were present in 

bike-related accidents that occurred in roads with bike lanes. 

To identify these importance values, we used the following 

formula: 

 

𝑊𝑜𝐸𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ,𝑟𝑎𝑤 = ln 

𝑛𝑜. 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑤 𝑜 𝑏𝑖𝑘𝑒 𝑙𝑎𝑛𝑒
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑤 𝑜 𝑏𝑖𝑘𝑒 𝑙𝑎𝑛𝑒

𝑛𝑜. 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑏𝑖𝑘𝑒 𝑙𝑎𝑛𝑒
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑏𝑖𝑘𝑒 𝑙𝑎𝑛𝑒

  

 

(2) 

 

We utilized the non-events as occurrences of bike 

accidents that happened on a road without bike lanes and the 

events as occurrences that happened in a road with bike lanes. 

Thus, a positive WoE means that there are accidents that 

happened on roads without bike lanes, but did not happen on 

roads with bike lanes. On the other hand, a negative WoE 

means that the accident features occurred on both roads with 

and without bike lanes. Hence, we use the negative WoE to 

weaken the influence of that accident feature. Fig. 3 shows 

the counts and WoE for the feature “Crashgrp”: 

 

 
Fig. 3. Raw WoE values for attributes of “Crashgrp.” 

 

The problem with using (2) as our evidence is that it does 

not consider the total count of occurrences of each accident 

feature. This might lead to the same WoE for two features if 

they had the same ratio but differed in their frequencies. For 

example, the WoE would be the same for two features where 

one has 1500 occurrences without a bike lane and 30 

occurrences with a bike lane, and another has 4500 

occurrences without a lane and 90 occurrences with a lane. 

We thought that the second scenario should be given a higher 

weight as that feature has more evidence. Thus, we updated 

the formula in this way: 

 

𝑊𝑜𝐸𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ,𝑡𝑤𝑒𝑎𝑘𝑒𝑑 = 𝑊𝑜𝐸𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ,𝑟𝑎𝑤 ∗  𝑎 + 𝑏  

𝑎 =  𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑛 𝑎 𝑟𝑜𝑎𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑏𝑖𝑘𝑒 𝑙𝑎𝑛𝑒𝑠  
𝑏 = 𝑛𝑜. 𝑜𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑛 𝑎 𝑟𝑜𝑎𝑑 𝑤𝑖𝑡ℎ 𝑏𝑖𝑘𝑒 𝑙𝑎𝑛𝑒𝑠  

(3) 

 

The multiplication of total occurrences will increase the 

value of WoE, making them more significant. By 

implementing the above formula, we converted our values as 

shown in Fig. 4: 

 

 
Fig. 4. Tweaked WoE values for attributes of “Crashgrp.” 

 

The final step is to calculate the importance factor, which 

is simply the normalized result of the WoE score. The value 

of the importance factor is between 0 and 1. We used the 

following formula to calculate the Importance Factor (IF) 

using the min–max terminology [19]. 

 
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 𝐼𝐹 +𝑣𝑒 = 1 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 𝐼𝐹 −𝑣𝑒 = 1 −  
 𝑊𝑜𝐸 

max⁡( 𝑊𝑜𝐸 )
  

 
 

Implementing the above formula to the tweaked WoE of 

“Crashgrp” yields the importance levels of attributes as 

shown in Fig. 5: 

 

 
Fig. 5. Importance factor levels for “Crashgrp”. 

 

Thus, the IF helps in weakening the weights of accident 

features that happened even in the presence of bike lanes. We 

use this factor in the Score Generator to multiply with the 

severity scores determined by the expert. 
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F. Score Generator 

The Score Generator calculates a score representing the 

bike-lane demand for each road section. First, the Score 

Generator combines the severity scores with evidence from 

the evidence calculator by multiplying the IF with the 

severity scores. This yields attribute weights specific for each 

attribute, which are dependent on their severity and evidence. 

 
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 ∗ 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟  (5) 

 

Next, the start and end bounds of the address numbers are 

used from the Address Sectionizer to check with the address 

numbers of the individual accidents data. If the street 

numbers fall in the bounds of a specific street name, the 

attribute weights get added to the feature scores of that road 

section. Doing this for all accident occurrences gives us the 

total scores for individual features of the accidents that 

occurred in a specific section of the road. Furthermore, we 

similarly matched the address numbers of businesses with the 

start and end streets. After finding the matches, we added 

their average ratings to a business rating column. This meant 

that the score would be high if there are multiple businesses 

with a high average rating. We also made sure that there were 

at least a hundred reviewers for each business to be 

considered. The algorithm for the described process is as 

shown below: 

 

Algorithm 1: compute_final_feature_scores 

input: a road section © from the Address Sectionizer, records from the crash dataset 

with attributes replaced with attribute weigh©(C) and list of features (F) 

output: Feature Scores (F) being updated 

1. foreach record in C do: 

2. if C[‘Street_Name’]==R[‘Street_Name’] do: 

3. if R[‘Start_Street_num’]<=C[‘Street_Num’]<=R[‘End_Street_num’] do: 

4. foreach feature in F do: 

5. R[feature]+=C[feature] 

6. end 

 

As described, a similar algorithm is implemented for the 

business rating as well. To obtain a final score for the sections, 

we added the scores of all the features of the section along 

with the business rating. 

 

𝑓𝑖𝑛𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 = 𝛴 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑐𝑜𝑟𝑒𝑠 + 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑛𝑔  (6) 

 

Using the above formula would yield our scores on 

undeterminable ranges. Fig. 6 shows a sample of the 

generated scores. 

 

 
Fig. 6. Final aggregated scores sample. 

 

To normalize the scores, we used a range of the scores in 

between 0 and 10, assuming 10 would definitely need a bike 

lane and vice versa. To fit the obtained scores in this range, 

we wanted to determine an upper bound that can be the worst 

possible score for a road section. Any score above this 

determined score would automatically get 10 as the score. 

We thought that attaining a score that is higher than the 

defined upper bound is equally bad as getting the score equal 

to the upper bound, as both scores would definitely need a 

bike lane regardless of their bad scores. We can determine the 

lower bound as a 0 directly, assuming that the road section 

has no accidents and no businesses. 

 
Fig. 7. Section scores histogram. 

By looking at the histogram in Fig. 7, we recognized that 

the scores above 100 are outliers. Thus, we can consider 100 

as our upper bound. With these bounds, we implemented the 

min–max algorithm [19] to obtain a score from 0 to 1. As we 

needed a score from 1 to 10, we simply multiplied this value 

with 10. We also determined that any score that crosses the 

upper bound would be replaced with the upper bound while 

applying the min–max normalization. Thus, the normalized 

scoring formula is as follows: 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 =
𝑛𝑜𝑛_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 −𝑚𝑖𝑛 

𝑚𝑎𝑥 −  𝑚𝑖𝑛
 

 

𝑚𝑎𝑥 = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑖𝑔𝑛𝑜𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 𝑎𝑛𝑑  
𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑜𝑛 − 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 

𝑚𝑖𝑛 = 0,𝑎 𝑟𝑜𝑎𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑛𝑜 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑒𝑠 

  

(7) 

 

Thus, on applying the above formula to the total scores, we 

get the final normalized scores, which determine the need of a 

bike lane to a specific section of the road. 

G. Data-Independent Model 

From the scores generated by the score generator, it is 

possible to generate a statistical model that would be 

independent of the data generated by the Evidence Calculator, 

the Accident Severity module, and the Address Sectionizer 

every time to obtain a score. This would reduce the amount of 

dependency on the data to obtain the finalized scores. The 

model is shown in Fig. 8. 

 
Fig. 8. Data-Independent Model architecture. 
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The complete score data from the score generator are taken 

by the Data-Independent Model Generator, which would 

apply one among the existing statistical models to the data. 

Before doing this, the module converts the scores into classes 

by taking a simple assumption. The assumption would split 

the scores into four equally divided classes. As the scores 

range from 0 through 10, the classification can be done as 

follows: scores from 0 to 2.5 do not need a bike lane at all, 2.5 

to 5 might not need a bike lane, 5 to 7.5 might need a bike 

lane, and 7.5 to 10 would definitely need a bike lane. By 

making our data classifiable, we can fit classification models 

to our data. By looking at the existing data, we assumed 

Naïve Bayes, Logistic Regression, Support Vector Classifier, 

and Random Forests to be good fits. We trained all the above 

models and obtained accuracy scores, as shown in Fig. 9: 

 

 
Fig. 9. Accuracy scores of statistical models. 

 

By looking at the accuracy scores, it can be understood that 

Support Vector Classifier and Random Forests work best for 

this scenario. Thus, the Data-Independent Model can be 

either of two models. Thus, when the user gives different 

attributes of a road section as inputs, he/she can expect a class 

output instead of a score that would directly recommend a 

bike lane. 

 

IV. RESULTS AND EVALUATION 

A. Performance of the Estimates 

To estimate the score’s performance, we visualized them 

along with the counts of accidents and businesses. Figure 10 

shows the graph with non-normalized scores. The same 

conclusions can be drawn from Fig. 11, a plot with 

normalized scores. 

On observation, we can determine that the total counts of 

accidents and businesses are definitely responsible for the 

generated score. Moreover, it is understandable that more 

accidents in a section lead to a higher score. The fluctuations 

can be related to the attribute scores, evidence, and the 

businesses ratings of every accident. 

 

 
Fig. 10. Non-normalized scores vs. accident and business count. 

 
Fig. 11. Normalized scores vs accident and business count. 

B. Visualized Estimates 

For a better understanding of our results, we visualized the 

estimates of one road on a street map based on a coloring 

scheme. Similar to how we split the scores for the 

Data-Independent Model, we categorized the scores from 0 to 

2.5 as green, 2.5 to 5 as yellow, 5 to 7.5 as orange, and 7.5 to 

10 as red. The scores visualized for a few road sections of 

“Beatties Ford Rd” are as shown in Fig. 12: 

 

 
Fig. 12. Visualized estimates of Beatties Ford Rd. 

 

By looking at the visualization, it is evident that the ends of 

our road section need not have a bike lane, but the sections in 

between the ending sections are suggested to have bike lanes 

to improve safety standards for cyclists. 

C. Why This Model? 

Instead of estimating the bike-lane demand using scores 

and determined weights, it is also possible to estimate the 

demand directly, using statistical predicting algorithms. To 

achieve this, the expert must observe all the accident 

occurrences in a few road sections and must assign the need 

for bike lanes to these road sections. These few road sections 

can be given as a training set to a predicting algorithm of our 

choice. Though this is possible, there are several problems 

that might affect the efficiency of the model. Some of them 

are as listed: 

1) The dataset of the model is too small to be reliant on 

predicting algorithms. If these few accidents are used to 

train the model, there might be possibilities of overfitting 

on the less amount of data that we have. Our model uses 
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the WoE algorithm to determine the strength of the 

prediction, which has less scope of overfitting when 

compared to statistical models. 

2) Almost all statistical models are not easy to understand. 

Comparatively, our model proposes simple aggregations 

along with an evidence calculating algorithm that can be 

easily understandable. 

3) The predicting algorithms identify the patterns and 

weigh the results, which cannot be easily determinable. 

Our model determines this importance using the IF, 

which could easily determine what specific attribute is 

more responsible in determining the final estimate. The 

IF is easier to understand than recognizing the patterns in 

a statistical model. 

4) Though both approaches need the help of an expert, it 

would be difficult for the expert to estimate the bike-lane 

need on his own completely for a few road sections, 

which is to be given as a training set to a predicting 

algorithm. Comparatively, our model requires simple 

severity scores on a scale of 0 to 5 for all the attributes, 

where 5 is the most severe. 

5) There have been instances of applications that involved 

complex machine learning strategies to find 

creditworthiness, a problem that is similar in many ways 

to estimating the bike-lane demand. The results showed 

very low accuracy increments compared to simpler 

scoring models and as these models are not easily 

understandable, they have a negative impact on 

interpretability [14]. Alternatively, the scoring model 

approach used by our algorithm has high interpretability 

and is simpler to execute. 

Thus, our model works better in several ways to estimate 

the need of a bike lane and is easier to understand. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a model to estimate the 

bike-lane demand, a data-driven model that can potentially 

help city officials in determining the demand of a bike lane 

based on its various features. Based on historical accident 

data, a specific section of a road is assigned a score based on 

accident features that are most responsible for the occurrence 

of a bike-related accident. Also, cyclist traffic and their 

convenience are estimated using business data, imagining of 

more businesses leading to more bike traffic. Along with the 

scores being based on intuition, the computed algorithms 

weaken the scores of those accident features that correlated 

less with bike-related accidents. This evidence is extracted by 

comparing the occurrences of accidents that happened with 

the existence of a bike lane and those that happened without 

their existence. This is done by utilizing a tweaked WoE 

formula. In the future, we plan to fit neural network models 

and evaluate the implementation accuracy of the 

Data-Independent Model. We also plan to increase the 

number of features, such as surrounding households, 

demographic information, etc., that can improve the 

estimates. We also look forward to using datasets from other 

parts of the world and modify the model to make it location 

independent. We are planning to develop a simple application 

that would display the estimates based on the input location, 

making it easier for the users to use the model. 
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