

International Journal of Modeling and Optimization, Vol. 9, No. 2, April 2019

82

Abstract—Adaptive systems based on Field-
Programmable Gate Array (FPGA) architectures can benefit
from the high degree of flexibility offered by Dynamic
Partial Reconfiguration (DPR). In DPR, hardware modules
composing an application can be allocated on demand or
depending on a dynamically changing system. However,
founders DPR tools are limited in functionality because it
does not support an automatic place- ment, and require a
manual inputs from the design. Manual placement not allows
an efficient placement. The placement step represents a
critical step in DPR flow on FPGA. It is highly impact
routability, timing and density, hence performance of the
system. In this paper, we present a novel placement
algorithm to address these constraints by offering minimal
fragmentation that minimizes resource utilization and
reduces the total wirelength. The selection of the Partial
Reconfigurable Region (PRR) is based on the shapes, location
and communication with others. The proposed approach has
been experimentally evaluated with a case study.
Experimental results show the effectiveness of the proposed
algorithm in the terms of exploration area and
communication cost.

Index Terms—Placement, FPGA, dynamic partial
reconfigura- tion, wirelength

I. INTRODUCTION

Processors are very powerful at the level of data manage-

ment and control, but they are less efficient at the level of

calculation and processing because of its sequential archi-

tecture [1]. On the other hand, hardware solutions such as

FPGAs have a high computing power because of its parallel

architecture in hardware; they are low-power calculators, but

not performing at the level of management and control of

data. To meet the needs of the market for a powerful system

at both levels and low consumption, the founders decided to

implement a hybrid architecture hardware (HW) / software

(SW) and in particular FPGA / CPU (Central Processins

Unit) [2]. To run an application on a hybrid system, it is

necessary to split the application into several modules.

Each module is a treatment unit. A set of modules are

implemented on the software part (CPU) and others on the

hardware part (FPGA) [3]. Furthermore, to improve

flexibility and performance of system, DPR technique is

used to implement the hardware modules. DPR allows the

modification of certain blocks on the FPGA at run time [4],

[5]. It can improve the efficiency of FPGAs by enabling

different processing functions to share the same hardware

resources and therefore, reduce the use overall resources.

Manuscript received February 24, 2019; revised April 12, 2019.

M. Naouss and M. Hannachi are with the Department of research,

Altran Technologies, Toulouse, France (e-mail:
mohammad.naouss@altran.com, marwa.hannachi@altran.com).

However, this technique leads to high configuration

overhead, defragmentation, and complex allocation

situations of hardware tasks [6]. In addition, founders tools

have evolved to provide successful dynamic partial

reconfiguration flows, but they are limited in functionality.

They need the manual involvement of designer to specify

the shapes and locations of each reconfigurable region.

Consequently, the quality of place- ment affects the system

performance. A bad placement will increase the amount of

unused hardware resources and will increase the latency of

communication between the different shapes, therefore

decreased the performance of the system. The placement

problem is NP-complete [7] because of the number of

parameters and constraints to consider. So, there are exists a

serious need to define an efficient method for an efficient

placement in FPGA design flow.

The main contribution of this paper is the description of

new placement algorithm that to deal with the HW/SW

partitioning problem with DPR. We propose a new

placement algorithm for efficient hardware space exploration

and wirelength utilization. The defined algorithm proposes

to split the FPGA into several regions and then to allocate a

module in a dedicated region that has the shape closest to a

square. The goal is to reduce latency metric inside the region

and reduce the area fragmentation. Then, an extended

version of the algorithm is proposed to improve the wire

length of critical path for delay minimization. In the new

algorithm, each module is mapped within its region in order

to minimize wirelength by taking into account the distance

and number of connection wires between modules. On a case

study, we show that the proposed placement algorithm

allows to significantly reduce the static region fragmentation

and wirelength cost.

The remainder of this paper is as follows. Section II

presents the existing works. Section III formulates the

proposed place- ment algorithm. Section IV describes how

we minimize the wirelength cost. Section V presents the

results obtained on realistic applications. Finally, this paper

is concluded by the Section VI.

II. RELATED WORK

In the early research work, the authors treat in their

algorithms the aspect of static placement in the FPGA

without any regard for its reconfiguration ability [8], [9].

These algorithms are based on the simulated annealing

approach (SA) to find optimal placement solutions. Their

formulations can be applied to heterogeneous FPGAs, but

the resulting floorplan may contain irregular shapes, which

does not conform to the requirements of the reconfigurable

regions. In dynamic reconfigurable system, Tomono et al.

[10] used area matrix to represent 2D Configurable Logic

Block (CLB), and managed by 2D-based array space to

Optimized Placement Approach on Reconfigurable FPGA

Mohammad Naouss and Marwa Hannachi

DOI: 10.7763/IJMO.2019.V9.689

mailto:mohammad.naouss@altran.com
mailto:marwa.hannachi@altran.com
mailto:marwa.hannachi@altran.com

International Journal of Modeling and Optimization, Vol. 9, No. 2, April 2019

83

search the free space in FPGA 2 resource. Recently, Vipin

and Fahmy [11] have introduced a floor planner named:

Columnar kernel tessellation to define the location and the

size of each reconfigurable region. Their approach

characterizes the FPGA in terms of tile: Each tile contains a

number and a type of logical resources. Therefore, the

requirements of the reconfigurable regions are translated in

terms of tile requirements. Reconfigurable regions are

sorted in order of priority based on the type and the number

of tiles required. Floor planning is done by merging adjacent

tiles on the same line to form areas called kernel. A column

verification procedure (coulnmar direction) is performed at

the end of each iteration by moving the region vertically in

order to improve the total wire length (communication cost.

And the best result obtained with respect to an objective

function is then considered as a solution. However, the final

result of the placement results in a large defragmentation of

the remaining part. Rabozzi and al. [12] have shown that the

quality of the solutions obtained can be further improved by

analytic methods based on mixed integer linear

programming technique (MILP. The analytic model is

formulated to represent the characteristics of all

reconfigurable regions in terms of their resource

requirements and the connectivity between them. Since the

MILP-based algorithm has shown that he is able to consider

the global space in his research for finding optimal solution.

Nevertheless the algorithm takes a long time to solve more

complex problems that require multiple reconfigurable

regions. Therefore the search time exponentially increases

with the number of regions to find.

Fig. 1. 4 regions (a) Proposed conditions (b) Without conditions

III. PROPOSED PLACEMENT ALGORITHM

In DPR technique, the size of each module must be

calculated as the number of reconfigurable unit (Ru) used

for the implementation (using the clock region technique).

Ru is a LABs (Logic Array Blocks) for Altera and Frame

for Xilinx. The goal is to avoid sharing the same Ru

between two modules. The FPGA takes a rectangular shape

of X Ru on the x axis and Y Ru on the y axis, so an FPGA

contains X _ Y Ru. The problem of placement can be

announced as follows.

_ Let M = fM1; M2; :::; Mmg is a set of modules to be

placed

_ Let Si is the number of Ru required for each module Mi

_ Let X _Y is the number of Ru on the x axis and the y axis

of FPGA

The placement algorithm consists of finding a set of n

PRR

R = fR1; R2; ::; Rng. Each PRR is defined as a rectangular

shape that is characterized by the following data: Xi _ Yi

Which is the size of the defined region. A. Resource

Requested

A reconfigurable region can accommodate different

recon- figural modules at different times; hence their sizes

should be large enough to allocate the biggest task. This

area (Ri) is defined taking into consideration the maximum

resources needed between the different tasks allocated.

Ri = Max(Sj)

B. Placement Process

This section focuses on the process steps of our

placement strategy. Our algorithm will start with a search of

three different shapes for each region and after, it will select

the most appropriate one.

Finding different shapes: Filling a part of an FPGA with

modules requires defining the rectangular shapes taken by

each module. Each module Mi is described by its size Si,

assuming that each Ru consists of a number of LUTs and

registers, depending on the FPGA used. For each form, we

note UNi the number of unused Ru by Mi and we thus

have: UNi = (Xi Yi) Si, where (Xi Yi) is the size of the

selected module. We arbitrarily calculate three possible

rectangular forms Xi, Yi of minimum values UNi and

whose sizes are equal or higher than Si. In the calculation of

shapes, the algorithm forbidden to have UNi greater than

Xi or Y i. These calculated shapes are therefore as close as

possible to squares to minimize latency of module. We

therefore forbid Xi and Yi to be equal to 1 if Si > 3. Table

I shows the computed shapes for each modules of a case

study as well as the value of UNi.

Selection of shapes: In order to map application on the

FPGA, the most appropriate form for each module is

selected. However, this selection depends on the possible

forms of other modules to avoid generating a remaining

region unable to map another module. For the latter, min xy

= min(min(Xi), min(Y i)) is calculated for all the modules.

min XY is the minimum size of the row or column of

a module. The following constraints on min XY therefore

select the form that prevents a module from being

fragmented over several regions [13].

[(L − X “ min xy) ∨ (L − X = 0)]∧

Fig. 2 illustrates the different steps of module mapping

for this case study. The first corresponding module is M6

(SM6=35 Ru) which has the highest Si value. To select the

shape of M6, we calculate minXY for all the remaining

modules (except M6) which is equal to two in this case.

Since the first form 6 6 for M6 keeps free more than 2

columns and 2 lines, then this form is selected. We start by

filling the FPGA from its lower left corner and therefore we

map M6 to this corner, as is shown in Fig. 2.a. We then

follow a direction in the counterclockwise rotation as shown

by the other figures. The next region considered is 6 6. M8

is selected to fill this region because its SM8 value is equal

to the size of this region. We continue on the same path

until we fill all the existing modules. It should be noted that

most of the regions selected for each module belong to the

first column and a little less to the second. This means that

International Journal of Modeling and Optimization, Vol. 9, No. 2, April 2019

84

our approach has selected regions that have shapes very

close to a square or a square.

 [(W − Y “ min xy) ∨ (W − Y = 0)]

IV. MINIMIZING COMMUNICATION COST

In this section, an improved version of placement

algorithm is proposed. The goal of this second version is to

reduce the communication cost by applying specific rules

for mapping tasks and around the paths routing.

TABLE I: DIFFERENT SHAPES FOR EACH MODULE

TABLE II: NUMBER OF RESOURCES FOR EACH MODULE

Fig. 2. Steps of mapping the 9 modules using the proposed approach.

A. Problematic

The reduction of communication costs between reconfig-

urable regions is also an objective to be achieved by the

placement algorithms. The routing resources available in a

reconfigurable architecture are configured to link the

reconfig- urable tasks to each other. During the design phase,

these rout- ing resources are often of fixed density and

quantity. Indeed, more the distance between the two regions

is important, more the routing resources are important to

link the modules that will be allocated in these regions. In

addition, the wirelength inter-module not only affects the

cost of routing paths, but it also increases data

communication latency between tasks and affects system

performance. With regard to all these considerations, it is

necessary to minimize the Wirelength between tasks. In this

context, we propose an improvement on the proposed

placement algorithm. The goal is to find the best location

for each module by minimizing the cost of

communication and respecting the constraint shape and

placement of the initial algorithm.

Fig. 3. Placement algorithm process.

B. Formulations

The total wirelength is measured by applying the most

commonly used method, Half Perimeter Wire Length

(HPWL). HPWL assumes that each pin is in the center of

the area. The wirelength between two regions (WL) is

calculated as the product of the Manhattan distance

between them and the number of wires connecting them.

We start by calculating the centroid of each region.

cxi = xi + wi/2
cyi = yi + hi/2

where (cxi, cyi) represent the (x, y) coordinates of region i

centroid, wi and hi represent respectively the width and

high of region i and xi and yi represent respectively the

leftmost and the lowest positions occupied by region i.

Then, we calculate the Manhattan distance between the

centroids of two regions.

dcx(i1,i2) =

|cxi1 − cxi2|

dcy(i1,n2) =

|cyi1 − cyi2|

where (dcx(i1, i2), dcy (i1, i2)) represent the distances

between the centroids of the regions i1 and i2 on the x and y

axes.

The objective of the algorithm is to minimize the total

communication cost WLT which is equal to the sum of the

interconnection cost between the different zones multiplied

by the numbers of wires connecting them.

.

.

International Journal of Modeling and Optimization, Vol. 9, No. 2, April 2019

85

WLT = bi,i+1 × (dcxi,i+1 + dcyi,i+1) = WL
i=0

With bi,i+1 is the number of wires connecting the regions

i and i + 1.

C. Algorithm Process

In order to add the communication constraints in the algo-

rithm, we need to define some additional parameters:

Mn = (M 1, M 2, ...Mn) is the set of modules to be placed,

with n the number of modules.

Mc is the set of modules that communicate with the

modules already placed.

The first rule is to allocate the first module (Mi) which

is the largest one of Mn, in the lower left position of the

reconfigurable part by choosing the most appropriate

shape.

After placing the first module (Mi), the algorithm will test

its dependence with the other modules and build the first set

Mc. If Mi wouldn’t communicate with others, the algorithm

will move to place the largest module between the

remaining modules. But, if Mi communicates with other

modules, it will compare the set of modules Mc with the

remaining modules Mn. If there is a module in Mc that is

larger than the remaining modules, it will look for a shape

and a nearest location. If not, it will test the priority between

communication and hardware resources. If the location has

the highest priority, the algorithm will look for the shape and

location of the largest module between the remaining

modules. If communication has the highest priority, it will

look for largest module in Mc a suitable form and at closest

position.

In the next step, the list Mc is updated by adding the

communicating modules with the new module placed and

removing the placed module. Then, the algorithm

determines the largest module from Mc and looks for its

shape and location. These steps are repeated several times

until no placed module communicates with the remaining

modules. In this case, if there are still modules not placed

the search process will start again from the first step until all

the modules will be placed. The proposed algorithm process

is illustrated in Fig. 3.

Fig. 4. Task graph illustrating H264 Codec case study.

V. EXPERIMENTAL RESULTS

This section shows an experimental evaluation of the

place- ment algorithm in the two cases: without and with

communica- tion. The design was implemented on the

Xilinx series 7 FPGA xc7a35tifgg484-1L. This algorithm

has been implemented using C++ in order to make several

tests and to validate its operation.

The considered application is based on a codec H264 and

DCT-2d application. The hardware architecture of the code

developed within the ALTRAN team is mainly composed

of six modules (M1, M2, M3, M4, M5 and M6) connected

between themselves (Fig. 4). The DCT-2d is also composed

of three modules (M7, M8 and M9) connected between

themselves. All this modules will be implemented to

evaluate the impact of their locations on the wire length

cost.

Fig. 5. Placement results in cases (a) without communication (b) with

communication.

In our design, we have nine modules and we have defined

for each one a reconfigurable region. To define the location

and shape of each module, we first need to determine the

number of resources of each reconfigurable region

according to the number of frames. The number of logical

resources per frame depends on the FPGA family. In a series

7 FPGA, a CLB frame is equivalent to 400 LUTs. Table II

illustrates the ressources needed for each module.

For the improved version of the placement algorithm, we

also need to know the number of wires that connect modules

between them. This number will influence the cost of

routing because it will be multiplied by the distance of

routing path. The table III shows the different connections

between modules and the number of wires between them.

Applying the first version of the placement algorithm, we

found the placement of the modules in the following order:

M 2, M 1, M 9, M 5, M 7, M 3, M 8, M 6, M 4. In the case of

a placement with communication, the modules are placed in

the following order: M 2, M 3, M 4, M 1, M 5, M 6, M 7, M 8,

M 9. Fig. 5.a and 5.b respectively illustrate the placement

results in both cases without and with communication.

Comparing the two figures (Fig. 5.a and 5.b), we note that

the two algorithms give better results in the selection of

shapes and location. These results minimize latency and

fragmenta- tion of the remaining area of the static part.

Nevertheless, the interconnection results are not the same.

In the case where the algorithm does not take into account

the communication between the different modules, we

notice that the routing paths are long and not well distributed.

On the other hand, the algo- rithm takes into account the

communication, we notice that the modules which

communicate between them are close and the routing paths

International Journal of Modeling and Optimization, Vol. 9, No. 2, April 2019

86

are short and more optimized. Table III illustrates the overall

communication cost results in both cases. As shown in the

Table III, the communication cost between modules M4 and

M6 is higher in the case with communication than in the

case without communication, because the objective of our

algorithm is to minimize the total cost of communication in

the application. In this case, the modules which have larger

size and more wire number are more critical in their location,

so they have the priority to choose their locations firstly.

The results show that, taking into account the

communication, the routing paths are optimized on the

order of 48%.

TABLE III: INTER-MODULE COMMUNICATION COST

VI. CONCLUSION AND FUTURE WORK

This paper was dedicated to the issues encountered during

the placement step in DPR flow. Among these problems:

shape, location and communication. A new strategy for

place- ment of reconfigurable hardware tasks is proposed.

The main goal of this algorithm is to find optimal shapes

and location for each module to reduce internal latency.

In the remainder of this paper, we have proposed an im-

provement of the placement algorithm taking into account

the inter-communication between the different modules.

Indeed, the goal of this part was to optimize the routing

resources while seeking an ideal shape and location for each

module. A real application developed within the Altran

team is imple- mented to evaluate our placement algorithm.

With the increasing design complexity, modern FPGAs

have a heterogeneous architecture with distributed I/O,

DSPs (Digital Signal Processor) and BlockRAMs (Block

Memory). In the future, we will be looking at more

emerging challenges for FPGA placement on

heterogeneous architectures.

REFERENCES

[1] S. Asano, T. Maruyama, and Y. Yamaguchi, “Perfor- mance

comparison of fpga, gpu and cpu in image processing,” in Proc.

International Conference on Field Programmable Logic and
Applications, 2009.

[2] Y. Ma, J. L. Liu, C. Zhang, and W. Luk, “Hw/sw partitioning for

region-based dynamic partial reconfigurable fpgas,” in Proc. 2014

32nd IEEE International Conference on Computer Design, 2014.

[3] R. Cordone, F. Redaelli, M. A. Redaelli, M. D. Santambrogio, and D.

Sciuto, “Partitioning and scheduling of task graphs on partially

dynamically reconfigurable fpgas,” IEEE Transactions on Computer-
aided Design of Integrated Circuits and Systems, vol. 28, no. 5, pp.

662–675, 2009.

[4] W. Lie and F. Y. Wu, “Dynamic partial reconfiguration in fpgas,” in
Proc. IITA 2009. Third International Symposium on Intelligent

Information Technology Application, vol. 2, pp. 445–448, 2009.

[5] R. H Patel and K. A. Norman, “Partially reconfigurable pro-
grammable logic device,” 2000.

[6] A. A. E. Farag, H. M. E. Boghdadi, and S. I. Shaheen, “Improving

utilization of reconfigurable resources using two-dimensional
compaction,” The Journal of Supercomputing, vol. 42, no. 2, pp. 235–

250, 2007.

[7] H. R. Lewis, “Computers and intractability a guide to the theory of
NP-completeness,” 1983.

[8] L. Cheng and M. D. F. Wong, “Floorplan design for multimillion

gate fpgas,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 12, pp. 2795–2805, 2006.

[9] Y. Feng and D. P. Mehta, “Heterogeneous floorplanning for fpgas,” in

Proc. 5th International Conference on Embedded Systems and
Design, 2006.

[10] M. Tomono, M. Nakanishi, S. Yamashita, K. Naka-jima, and K.

Watanabe, “A new approach to online fpga placement,” in Proc. 2006
40th Annual Conference on Information Sciences and Systems, 2006.

[11] K. Vipin and S. A. Fahmy, “Architecture-aware reconfiguration-

centric floorplanning for partial reconfiguration,” in Proc.
International Symposium on Applied Reconfigurable Computing, pp.

13–25, 2012.

[12] M. Rabozzi, J. Lillis, and M. D. Santambrogio, “Floorplan- ning for
partially-reconfigurable fpga systems via mixed-integer linear

programming,” in Proc. 2014 IEEE 22nd Annual International

Symposium on Field-Programmable Custom Computing Machines
(FCCM).

[13] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Reducing the

contention experienced by real-time core-to-i/o flows over a tilera-

like network on chip,” in Proc. 2016 28th Euromicro Conference on

Real-Time Systems, pp. 86–96, 2016.

Mohammad Naouss was born in Lebanon on
September 1, 1989. He received the B.S. degree
in industrial engineer and maintenance from Lebanese
university, Saida, Lebanon, in 2010, and the B.E. degree
in electrical and electronics engineering from ISEN
Graduate School of Engineering, Brest, France, in
2013. Then, He had a Ph.D on embedded
electronics at IMS laboratory, Bordeaux, France,

in 2016. Naouss’s fields of interest include the modeling and the
simulation of the aging mechanisms of electronic Devices especially
FPGA and their effects on circuits reliability. The architecture of a System
On a Programmable Chip which combines between the processors and the
FPGA system is the one of his interesting fields on this day.

Marwa Hannachi received her degree in
electrical en- gingering and her masters in electrical
engineering, electron- ics from the National
School of Engineering of Monastir (ENIM),
Tunisia, respectively, in 2012 and 2013. Then, she
had a Ph.D on embedded electronics at IJIL
laboratory, Nancy, France, in 2017.

Her current researches interests include
reconfigurable architectures and the architecture of a System On a
Programmable Chip which combines between the processors and the
FPGA system.

