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 

Abstract. Multi-person tracking in videos is a promising but 

challenging visual task. Recent progress in this field has 

introduced deep convolutional features as appearance models, 

which achieve robust tracking results when coupled with 

proper motion models. However, model failures that often cause 

severe tracking problems have not been well discussed and 

addressed in previous work. In this paper, we propose a 

solution using online detection of such failures and accordingly 

adjusting the coupling between appearance and motion models. 

The strategy is to let the functional models take over when 

certain models face data association ambiguity and 

simultaneously suppress the influence of inappropriate 

observations during the model update. Experimental results 

have proven the benefit of our proposed improvement. 

 

Index Terms. Multiple object tracking, deep neural network, 

online learning, tracking-by-detection, multiple hypothesis 

tracking.  

 

I. INTRODUCTION 

Tracking people in videos is a computer vision task with 

many practical applications (e.g., video surveillance, 

autonomous driving, and human-computer interface). As a 

multi-object tracking (MOT) problem, it has several intrinsic 

challenges compared to generic object tracking tasks. The 

non-rigidity of people requires robust trackers to cope with 

person pose variation. The situation deteriorates when 

tracking a crowd simultaneously. People in the scene often 

interact with each other or with other objects, which incurs 

more occlusions, scene clutter, and complex object 

dynamics. 

Owing to the deep neural networks [1]-[3] widely applied 

in object recognition, multi-object tracking has witnessed 

significant progress under the paradigm of 

“tracking-by-detection.” Objects are detected in each frame 

and are then associated into trajectories through frames, 

during which their appearance and motion information serves 

as important guidance of track inference [4]-[6]. 

On the one hand, appearance models, especially those 

based on deep learning techniques [5], [6], have proven to be 

more robust for not only object detection but also intraclass 

recognition. Either a discriminant convolutional 

representation [5] or the entire classifier [6] is learned to 

identify detected objects. With their help, object 

re-identification after long occlusions becomes reliable. 
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Fig. 1. Example of adjacent similar-looking people in MOT16 benchmark 

[7]. They are difficult for appearance models to distinguish. Once their 

trajectories cross, motion models are more robust for preventing mismatches 

or trajectory merging. 

On the other hand, despite the remarkable growth of 

appearance models, similar looking people may be 

indistinguishable only according to their appearances, even 

by human experts. Motion models are indispensable in 

tracking. An example of a Multiple Object Tracking 

Challenge 2016 (MOT16) [7] is shown in Fig. 1. From the 

simplest neighbor gating [4] to more complex ones like linear 

motion models, linear quadratic estimation with a Kalman 

filter [5] or spatiotemporal relation metric [6], motion models 

help reduce search space for data association and to boost 

object re-identification. 

Given their own shortcomings, the coupling of both types 

of models is important for good tracking. For most 

state-of-the-art tracking algorithms, the coupling is as simple 

as combining all models with pre-chosen coefficients 

controlling their relative weights. An association decision is 

made based on such weak couplings, while after each 

established association, every model is updated nearly 

independently to incorporate new instances. The coupling 

weights are determined offline and remain invariant during 

the entire tracking process. 

Nevertheless, such a strategy has drawbacks. Firstly, when 

a model fails (e.g., an appearance model itself has trouble 

differentiating adjacent similar people in Fig. 1), it should be 

assigned with a lower weight to let the other model or models 

take over the decision making of data association. Secondly, 

during the model update, false positive instances caused by 

the failure of one model could be absorbed into the other 

models. 

Therefore, in this paper, we come up with an online 

appearance-motion coupling approach. The weights of 

models during both decision making and model update 

phases are calculated online, according to their credibility in 

each step. Local apparent ambiguity means entrusting the 

motion model more with the decision making, and vice versa. 

Our main contributions will be detailed in Section III after a 

brief review of the related work. Experimental results that 

prove the effectiveness of our proposed model will be shown 

and discussed in Section IV. The conclusion and perspectives 

will be found at the end of this paper. 
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II. RELATED WORK 

Recent work in multi-person tracking is mostly driven by 

MOT challenges [7] and focuses on tracking-by-detection 

algorithms. The benchmark provides public detection results 

shared by all submitted algorithms. The effectiveness and 

robustness of data association methods are the key points to 

inspect. 

The trend is to combine deep convolutional features with 

well-designed motion models. Kim et al. [5] introduced 

convolutional features as an appearance model into the MHT 

framework and solved the search space explosion problem. 

Discriminant features are employed to efficiently trim the 

hypothesis trees which can experience high combinatoric 

growth when pruned only with the Gaussian estimation 

motion model and unreliable appearance models. Another 

exemplary success is [6]. Tang et al.’s model multi-person 

tracking is an offline lifted multi-cut problem (LMP). Such a 

graph-based tracking algorithm aims to find the optimal cut 

of the quasi-complete multipartite graph that models objects 

in all frames. The cut is based on scores of a motion model 

(spatiotemporal relation metric) and two appearance models, 

including a deep stacked net classifier fusing pre-trained 

human body part detectors. With the help of robust 

appearance-based re-identification methods, the temporal 

scope of the graph cut was significantly enlarged. 

However, both state-of-the-art algorithms did not take 

temporary failures of their appearance models into 

consideration. This paper argues the benefit of an online 

coupling of appearance and motion models and demonstrates 

the improvement after applying this strategy on MHT 

framework. 

In this paper, we keep the original motion model in MHT, 

i.e., linear quadratic estimation with a Kalman filter, while 

adopting a deep Siamese network [8] as the appearance 

model. As a metric learning approach, the network extracts 

feature vectors of a pair of observations via the same deep 

convolutional backbone net. Features of the two branches are 

compared with each other under a Cosine Similarity metric 

[9]. The structure of the network will be briefly revisited in 

Section IV. 

 

III. ONLINE MODEL COUPLING 

The collaboration and interference of appearance and 

motion models mainly happens in two phases: data 

association relies on the combination of the models for 

making a track decision, after which all the models need to be 

accordingly updated. Our online coupling affects both phases, 

which are reported respectively in the following two 

subsections. The discussion is based on the MHT framework 

[5] yet can be readily extended to other algorithms.  

Under the tracking-by-detection schema, tracking is done 

via linking newly detected objects (sometimes intermediate 

tracklets) with established track hypotheses in each frame. In 

the form of either graphcut [6] or tree growth [5], data 

association requires an association score S  related to the 

possibility of a detection candidate belonging to a track 

hypothesis. The score S  is often the output of a combination 

of appearance and motion models which are based on one 

single [6] or a bag of previous observations [4][5] in the 

hypothesis. Most tracking algorithms use the weighted sum 

of the scores, with the weights as pre-defined constants. We 

adapted the denotation from MHT [5]: 

 mot mot app appS w S w S 
,
  (1) 

where /mot appS  and /mot appw  denote the output scores and 

their regularization weights of the motion and appearance 

models, respectively. 

The decision making described in Eq. (1) focuses 

explicitly on whether a candidate observation o  fits into a 

track hypothesis t . Nonetheless, data association is an 

injective problem from hypotheses { }iT t  to observations 

{ }jO o : not only confirmed the track has a single 

observation (nor none) in each frame, but also an observation 

can be assigned to no more than one track. The latter part, or 

the observation’s inverse selection of the hypothesis, was 

constantly ignored by the tracking algorithms. It was often 

implicitly achieved through concurrences among hypotheses 

whenever an observation has more than one plausible 

assignment: we define the feasible assignments of 

observation o  as a subset of T : 

 { | ( , ) & ( , ) }o i mot i mot app i appT t S t o S t o   
,
  (2) 

where mot  and app  are the trimming thresholds of the 

motion and appearance models, respectively. Ambiguity 

emerges when 1oT  , with oT  denoting the cardinality of 

the set. After the concurrence of suitable hypotheses, local 

mismatches (or ID switches) often come out (see Fig. 2 as an 

illustration). 

 

 

Fig. 2. Illustration of hypotheses concurrences. This happens when black and 

red trackers have comparable scores (often caused by an appearance model 

failure facing similar looking objects) for the same observation. The 

hypothesis-observation assignment can be unstable, which results in local 

mismatches and false positive trajectory parts. (In both Fig. 2 and 3, GT 
stands for groundtruth, TP for True Positive, FP for False Positive and Occ. 

for Occlusion.) 

 

Hence, we introduce the concept of model credibility to 

assess if a model is reliable at a certain stage. Here, we 

propose an online method to determine the credibility of the 

appearance model of ot T : 
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Fig. 3. Influence of noisy observations during the update of the model. 

Partially occluded observations (illustrated by overlapping bounding boxes) 
may cause inconsistency of the object appearance when given the same 

weight as benign instances (weight vector w ). This may lead to invalid 

appearance models and finally track fragments or even trajectory merging 

(see dotted red lines). We force online noise pruning based on similarity 

scores, to minimize or eliminate the influence of outlier observations (the 

lower model with 'w ). 

We suggest the scores ( , )appS t o  should be normalized to 

keep their exponentiations comparable. Credibility 

0 1appc   describes how confident the appearance-based 

data association is. With the credibility, we define a variable 

coefficient c  for model coupling: 

 min( , )app cc c 
,
  (4) 

in which 0 1c   is a threshold (e.g., 0.9c   ) to 

prevent the motion information from total disappearance in 

our new coupling function as shown below: 

 ' (1 ) mot mot app appS c w S c w S       (5) 

It is designed to encourage one-hot appearance-based 

correspondence, which implies no noticeable ambiguity. The 

more evenly matched concurrences among the hypotheses 

exist, the more unreliable their appearance models are. Upon 

the failure of the appearance model, the motion model will 

step in for further arbitration. 

The coefficient is calculated online using the hypotheses in 

the current frame and their appearance models. An online 

coupling based on the credibility of motion models may also 

be useful yet will not be discussed in the scope of this paper. 

 Online Appearance Model Update  

After the decision making of the data association, each 

track hypothesis has a new object observation. The models 

need updates to incorporate such new instances. The update 

of the appearance models is much more important than that of 

the motion models, given that the appearance models are 

often more sophisticated and reliable over a long time 

interval. In this subsection, we deal with the problem 

occurring during the update of appearance models. 

In MHT-based algorithm [5][8], each track hypothesis t in 

frame fr  keeps a bag of feature vectors of previous 

observations 1,2,{ }frV v . The update of the appearance 

model is as simple as appending the feature vector 1frv   of 

its new instance into its bag. All vectors in the bag are equally 

weighted. The updated model will guide the next step of the 

data association, to which every previous observation has the 

same contribution. 

However, all to-be-absorbed observations are not always 

benign. Due to occlusions (especially those spanning 

long-duration and long distance) as well as abrupt object 

and/or camera movements, tracking algorithms often struggle 

to fill in the blank of missing targets by introducing 

ambiguous observations into the track, under the guidance of 

motion models. Partially occluded, imprecise or even 

negative observations of poor appearance scores are accepted 

only because of their advantageous locations. Appearance 

models can be contaminated by such noises once updated. 

The inconsistency in object appearance will then lead to 

mismatches, track fragments, and trajectory merging (see Fig. 

3). 

Therefore, appearance models need to be amended when 

motion models malfunction. In this paper, we inherit the 

appearance model in [8] which was originally represented by 

the average of all the normalized vectors in set V : 
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v V k
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V
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
  (6) 

where  is the L2 norm of a vector, and the cardinality V  

indicates the length of the track hypothesis t  in the frame 

fr . Instead of entirely trusting a new observation fitting of 

the appearance model, we come up with an online sanity 

check. 

Given the cosine similarity between its feature vector 

1frv   and the model, 
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likelihood of an accurate appearance-based data association 

is defined by assuming the similarity scores follows a 

Gaussian distribution: 
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

  (8) 

where ( ; , )f sim    is the probability density function of 

the Gaussian distribution ( , )N    with the mean   and 

standard deviation  . The statistical values of an accurate 

and inaccurate association are subscripted with   and  , 

respectively. They are often recorded during the training 

phase of metric learning [8]. For the details of similarity 

metric learning in Eq. (7) and (8), please refer to [9][8]. 

With the appearance-based association likelihood, the 

model update described in Eq. (6) can be improved: Every 

feature vector is weighted according to its similarity with the 

appearance model. Therefore, outliers have less influence on 

the object appearance. Besides this, the pairwise similarity in 

Eq. (7) and the likelihood in Eq. (8) are already calculated for 

the data association before the model update phase. The 
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online update in Eq. (9) improvement has no extra overhead 
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TABLE I: MULTI-PERSON TRACKING RESULTS ON MOT16 BENCHMARK [7] 

Method MOTA MOTP MT ML FP FN IDsw Frag 

MHT_DAM v1 [5] 42.9 76.6 13.6% 46.9% 5668 97919 499 659 

MHT_DAM v2 [5] 45.8 76.3 16.2% 43.2% 6412 91758 590 781 

Baseline 44.3 76.0 14.9% 42.3% 9316 91331 883 850 

Baseline + U 45.4 76.3 15.4% 43.2% 5735 92954 794 779 

Baseline + U + C 46.0 76.3 15.5% 42.6% 5124 92697 693 759 

MOT accuracy (MOTA) is the most important evaluation metric. For more instructions, please refer to the website of MOT Challenge. 
 

 

Fig. 5. Samples of the tracking results of the sequence MOT16-01. With the proposed online appearance and motion models coupling, targets can be recovered 

after a long period of disappearance. For instance, the person with ID = 1 (red bounding box) is consistently tracked, even enduring an incessant occlusion of 

more than 60 frames. 

IV. EXPERIMENTS 

Experiments are conducted on the MOT16 benchmark [7] 

to demonstrate the effectiveness of our contributions. The 

deep Siamese network designed in [8] for metric learning is 

illustrated in Fig. 4. The realization specifications are 

inherited from [8] with some modifications: deep residual net 

with 50 layers [3] is chosen as the backbone for the 

convolutional feature extraction; it is trained only on the 

MOT16 training set, no other datasets are involved.  

The tracking result of the original method in [8] (without 

any improvement described in section III) is set as the 

baseline. A test only with the online appearance update 

mechanism (section III. B) is then conducted (denoted as 

“baseline + U”). The last experiment includes both the 

contributions (denoted as “baseline + U + C”). 

The evaluation metrics of the tracking results are listed in 

Table I, along with the original MHT algorithm (two 

submissions). Without abusive hyperparameter tuning, our 

algorithm outperforms the original MHT algorithm. 

When compared to the baseline algorithm, the application 

of each of our online coupling strategies results in a notable 

improvement in most evaluation metrics. It proves the 

effectiveness of our online appearance-motion coupling. 

Besides this, no noticeable overhead is added given its simple 

structure and negligible calculation. On the contrary, 

hypothesis trimming becomes faster with the help of the 

proposed coupling model. 

Some tracking results can be found in Fig. 5 at the end of 

the paper. 

 

Fig. 4. Illustration of deep Siamese network [8]. Input images are resized to 

224 by 224. The two branches are identical until a cosine similarity is 
calculated between their final feature vectors. 

V. CONCLUSION 

In this paper, we deal with the failures of tracking guidance 

models by proposing an online model coupling mechanism. 

The working status of appearance/motion models is checked 

online during tracking. Adjustments will be made under the 
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circumstances of the temporary model dysfunction. Motion 

models are designed to take over when appearance models 

have low credibility in terms of the association prediction, 

with the help of a variable coupling coefficient. As for the 

model update, outliers are prevented from dominating the 

appearance models with the help of a weighted observation 

combination. Experiments were carried out on the MOT 

Challenge benchmark, and the results showed the benefits of 

our proposed strategies.  
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