
  

 

Abstract—The paper presents some aspects regarding the 

mathematical model and performance evaluation for a two 

stages strap-on boosters launcher. This work uses two separate 

models dedicated for each flight phase. For the ascending phase, 

we will use a three degrees of freedom model in quasi–velocity 

frame. For the orbital phase, we will use a Gauss perturbing 

model. The results analysed will be in quasi-velocity frame but 

also some orbital parameters will be presented. Using these 

models, the strap-on boosters launcher performances will be 

evaluated. The novelty of the paper consists in orbital injection 

approach, with optimal manoeuvre description 

 
Index Terms—Mathematical model, orbital injection, 

strap-on booster launcher performances.  

 

I. INTRODUCTION 

Today space programs are one of the priorities of the 

European Union. In order to ensuring the space access, 

Europe already has 3 launchers: Vega, Ariane and Soyuz, and 

intends to also develop the small and micro launcher class. To 

address the problem of designing a new launcher, the first 

step is to developed a mathematical model for performance 

evaluation, model which must be validated in a known case. 

In this idea, the paper proposes a performance evaluation 

model of a strap-on booster launcher, which is tested for 

Ariane 6 case. To approach this problem and in general for 

evaluating the launching capabilities it is necessary to 

elaborate an adequate mathematical model that ensures the 

evaluation of the launcher's capability to inject the payload on 

different circular orbits. The mathematical model presented 

below seeks to answer these needs. Having these 

requirements in mind, in order to develop the strap-on 

booster launcher (SBL) model, we will describe the 

necessary frames, the coordinate transformations, the 

equations of motion and the guidance law necessary to define 

the launcher motion for both flight phases.     

 

II. COORDINATE SYSTEMS 

First, we will define the coordinate systems specific for the 

motion of the small launcher.  
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A.  The Earth Frame 

This inertial coordinate system has the origin in the Earth's 

center and does not participate in its diurnal rotation (Earth 

spin). The axis 
pX  is in the equatorial plane along the vernal 

axis. The 
pZ  axis is along the polar axis, towards the North 

Pole. The 
pY  axis is also in the equatorial plane and 

completes a right frame being in the equatorial plane. 

B. The Local Frame  

This coordinate system has the origin in the starting 

position, being earthbound, and participating in the diurnal 

rotation (Earth spin). The LY  axis is the position along the r  

vector  at the start moment. The  LZ  axis is parallel with the 

equatorial plane, being oriented to the East. The LX  axis 

arising is forming with the first two axes a right frame (Fig. 1).   

 

Fig. 1. The geocentric, local and geographical frames. 

 

C. The Start Frame 

This coordinate system has the origin in the starting 

position, being earthbound and participating in the diurnal 

rotation (Earth spin).  The axis SY  is the position along the r  

vector  at the start moment. The axis SX  is oriented towards 

the launch direction and makes an azimuth angle 0  with 

respect to the LX  axis. The SZ  axis, is forming with the first 

two axes a right frame, being oriented to the right with 

respect to the launch plane.  

D. The Geographical Mobile Frame 

 This coordinate system has the origin in the mass center of 
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the launcher, being earthbound and participating in the 

diurnal rotation. The axis 
gy  is the position along the r  

vector. The axis  
gz  is parallel with the equatorial plane, 

being oriented towards the East. The axis 
gx is forming with 

first two axes a right trihedral. The geographical mobile 

frame overlaps the local frame at the start moment.  

E. The Geocentric Spherical Frame  

This coordinate system has the origin in the Earth's center, 

being earthbound and participating in its diurnal rotation 

(Earth spin). The launcher position can be described using 

spherical coordinates , ,r  (Fig. 1).  

F. The Quasi-Velocity Frame 

 This coordinate system has the origin in the center of mass 

of the launcher. Similarly, to the velocity frame, the 

quasi-velocity frame has the axis *

ax  along the velocity 

vector, but the axis *

ay  it is in vertical plane.  The axis *

az  is 

forming with the first two axes a right trihedral. Next, we will 

use this trihedral to write the dynamic translation motion 

equations of the center of the mass.  

 

III. THE GRAVITATIONAL ACCELERATION 

If we consider the spherical Earth, the gravity is expressed 

by one term denoted Arg [2], oriented along radius r . This 

term, containing only the gravitational component without 

centrifugal contribution, which will be added later  

 

2
.Arg

r


        (1) 

where: 
143.9861679 10    (2) 

  

IV. THE EQUATIONS OF MOTION IN QUASI    VELOCITY 

FRAME 

Because quasi-velocity frame is not an inertial frame, the 

dynamic equation of motion in quasi-velocity frame has 

following form [1], [3]:  

 

V c
t m


    



V N
Ω V g a                       (3) 

 

where we have grouped the aerodynamic and thrust forces. 

 

 N F T                                      (4) 

 

The Coriolis acceleration is: 

 

 2c p  a Ω V                                     (5) 

 

The local derivative of the velocity in quasi-velocity frame 

is t V . 
V


Ω  is the rotation velocity of the quasi-velocity 

frame related to the local frame, which can be express as 

vectors:   

V     Ω γ χ λ                               (5) 

 

The derivatives of latitude and longitude angles along 

geographical frame and the derivatives of the climb angle and 

the air-path track angle are presented in paper [1].  

In this case, the components of the angular velocity vector 

along quasi-velocity frame become:  

 

              (6) 

 

Taking in consideration that the vector 
pΩ  has the same 

orientation as the vector λ , the Coriolis acceleration 

components in quasi-velocity frame are: 

 

0cxa  ; 2 2 cos sincy pz pa V V        ; 

 2 2 sin cos cos cos sincz py pa V V           
(7) 

 

The gravitational acceleration previously introduced, is 

expressed by two terms, one term denoted rg  and oriented 

along radius r  and the other term g  parallel with polar axis

N S . These two terms contain gravitational components 

and also centrifugal components given by the Earth's spin.  

 
2

r Ar pg g r  ;   
2 sinpg r  , (8) 

  

where Arg  are given by relations (1) , (2), depending on the 

range. 

Next, we will project the terms given by relation (8) along 

quasi-velocity frame. Summarizing, starting from relation (3), 

we obtain the dynamic equation which describes the motion 

of the center of mass of the launcher in quasi-velocity frame 

[1], [3]:  

 

 

 

 

(9) 

 

 

 

 Complemented with kinematic equations: 

 

.  ; ; (10) 

where , ,x y zN N N  are projection of the applied forces along 

quasi-velocity frame. 

Supposing the aerodynamic angles are very small, the 

components of the applied forces become: 

, ,T T T

x y zN D X N Y N Z                       (11) 
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where  ; ;T T TX Y Z  are the thrust components and D  is the 

drag force. 

Considering that the roll commands are given by separate 

Reaction Control System (RCS) and pitch n  and yaw m  

commands are given through the angular deflection of the 

main Solid Rocket Motor (SRM), the thrust components are 

given by: 

 

cos cos ; sin cos ; sin ;T T T

n m n m mX T Y T Z T       

(12) 

 

where:  

 

1 2( ) ; 0;n d y mk k a                          (13) 

 

With imposed value for climb angle d , and 

 

/ ;T

ya Y m                                        (14) 

  

V. EVOLUTION IN ORBITAL PHASE, PAYLOAD INJECTION 

In order to evaluate the orbital phase and the payload 

injection we use as inertial frame, the Earth frame. First, we 

obtain the velocity in geographic frame with respect to the 

inertial frame, by adding Earth rotation: 

 

cos cos ; sin ;

cos sin cos

xg yg

zg p

V V V V

V V r

  

  

 

   
                  (15) 

 

Hence: 

2 2 2

xg yg zgv V V V    arcsini ygV v             (16) 

 

Next, we are interested in the angle   between the range 

vector r  and the absolute velocity vector v  at the end of the 

ascending phase and beginning of the orbital phase [2].  

Having the i  angle, we can write a simple relation: 

 

2 i                                      (17) 

 

which allows the computing of the   angle. The other two 

values, v  and  r  at the end of the ascending phase depend 

mainly on the launcher's characteristics: thrust and mass 

which are being obtained with equations (9), (10), (17) As it 

is shown in work [4], the knowledge of these three 

parameters at the end of the ascending phase is enough for the 

fully definition of the launcher's movement in the orbital 

phase. Using the Kepler model, one can determine the orbit 

elements. Thus, we can obtain immediately the kinetic 

moment and the unitary energy:  

 

sinh rv  2 2E v r                         (18) 

 

From where we get the parameter p , the geometrical 

elements of the orbit: e  - eccentricity, a -semi-major axis 

end  -eccentric anomaly: 

2p h  2 21 2e Eh    21a p e                (19) 

cos
a r

ae



  

 

In order to obtain a circular orbit, from Gauss perturbing 

equations [2], we can extract the eccentricity equation: 

 
2 2

2
1 12 2

( ) cos
sin sin cosTf a e

e
neaf f

   
  



  
  

 
  (20) 

 

where: 2 21 e   ; 1 cosf e     

Ta  - The acceleration derived from thrust. 

1  - The angular deflection of the thrust vector, relative to 

the perpendicular direction on r in the orbit plane; 

2  - The angular deflection of the thrust vector outside the 

orbit plane. 

If we want an optimal maneuver to minimize in minimum 

time the eccentricity and achieve a circular orbit, we impose 

the following condition: 

 
2 2

2
1 12 2

1

( ) cos
sin cos sin 0Tf ae e

neaf f

   
  

 

  
   

  
(21) 

 

And obtain an optimal value for the thrust angular 

deflection: 

 

1 2 2
tan sin

e

f


 





                             (22) 

 

where e  - eccentricity and  - eccentric anomaly. 

Next, we evaluate the sign of relation  (21)  for the angular 

deflection (23) in order to obtain an eccentricity 

minimization.  

If we substitute in relation (21)  the angular deflection form 

(23) and consider the second angular deflection null  

 2 0  , we get: 

 
22 2

1

2 2

( ) cos
sin 1Tf a e

e
neaf f

   




   
   

   

       (23) 

 

If we want to decrease the eccentricity, we impose the 

condition: 

 

 2 2 0f                                     (24) 

 

Equivalent with: 

 
2 1cos 2 cos 1 0e                        (25) 

 which means: 

 
11 cos (1 )e                                (26) 

Based on these results (23)  we can impose optimal pitch 

and yaw command for injection in circular orbit: 
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1n     ; 0m                           (27) 

 

 

Fig. 2. SBL configuration. 

 

VI. OPTIMIZING THE ASCENDING PHASE 

We start by describing for a two stage launcher with liquid 

fuel motor and four solid strap-on boosters, the typical 

ascending phase. Lift off is considerate from 00 t  up to 

st 21  , when the climb angle is  90  and the SBL 

evolution is vertically. At st 72  the climb angle is 1  and 

maintains this value up to 133  tt . Between 3t  and 

4t  ,the second ignition of second  stage , the climb angle has 

no constrains, being in the gravity turn phase.  Starting with 

second ignition of the second stage 4t , the optimal 

manoeuvre is donned in order to make zero climb angle and 

also to cancel orbit eccentricity. The jettison fairing coincides 

with the separation of the stages 1 – 2.  For SBL, the burning 

duration of the boosters  is  stab  94 ,  the burnout duration 

of the first stage including booster burning duration is 

sta  5341   and for the second stage is  sta  7602   

(TABLE II) . We suppose that burnout duration of second 

stage separated in two phases with a duration 

222221  760;  stt aa .  Between the burnout of 

the first phase and the ignition of second phase we have a  

coasting phase with a duration 3 . Summarizing, the 

ascending phase of SBL depends on four independent 

parameters, 1 , 2 , 3 1 , which can be the subject  of 

optimization.  The strategy adopted consist that for different 

initial azimuth angle 0  (orbit inclination) and different 

payload mass (MPL), to obtains by optimization: 1 , 2 ,

3 , 1 , which minimized performance index: 

 

 dtDaaJ
ft

y 
0

3

2

21                    (28) 

 

where k  are the weights. We minimize them by using 

random number generators in a so called “Monte Carlo” 

method.  The optimization method allows us to obtain at the 

end a circular orbit with maximum altitude and minimum 

manoeuvring effort for different orbit inclinations and 

different payload mass, which translates into SBL 

performances.  

 

VII. INPUT DATA FOR SBL MODEL 

The input data used are taken from [5]. 

 

TABLE I:  MASS CHARACTERISTICS 

Configuration Mass [tons] 

 Initial Final 

4 Boosters + Stage I + Stage II 

+ P/L+FER 
809.6 299.7 

Stage I + Stage II  + P/L+FER 198.7 58.7 

Stage II  + P/L 40.9 11. 

P/L 5 5 

 

In Fig. 2 we have: P/L Payload;; ST - Stage; B  - Boosters 

Main geometrical sizes at SBL start are: ml 63  md 4.5  

TABLE II: THRUST CHARACTERISTIC 

Stage 
Specific impulse  

(*)  [s]   
Propellant mass [tons] 

Burnout duration 

t [s] 

B 280 480. 94 

I  432 170. 534 

II  465 30. 760 

*  Vacuum conditions  

 

VIII.    TEST CASE 

As test case, we choose an equatorial orbit, with the 

following initial conditions: Geographic orientation: 

Azimuth angle  900  (towards the East); Geocentric 

latitude  0  (Equatorial latitude); Altitude: mh 10  ; Initial 

velocity ]/[10 smV  ; Initial climb angle  900 . 

Payload mass ][5000 kgMPL  . Corresponding to minimal 

value of performance index (29), we obtain: ][361 s ,
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][3782 s   ][2602 s  861 , which leads to a 

circular orbits with altitude ][2692 kmhp   . Using these 

parameters, we have defined a circular orbit described in next 

item. 

 

IX. RESULTS 

Fig. 3 shows the relative velocity, which means the ratio 

between absolute velocity in inertial frame (17) and velocity 

corresponding to a circular orbit. We can observe that after 

injection phase relative velocity remain at unit value. In the 

same diagram is shown the altitude, which after injection 

remains at a constant value. 

 

 
Fig. 3. Vi/V1 relative velocity and hp – Altitude. 

 

   

 

Fig. 4. DTN-Deflection angle and ga- climb angle. 

Fig. 4 shows the deflection angle of the thrust vector 

related velocity during ascending and orbital phase. From this 

diagram, one can observe large values of the deflection angle 

during final injection manoeuvre. To solve this problem is 

necessary to rotate entire SBL body with a combined 

manoeuvre which uses in the same time TVC (Thrust Vector 

Control) and RCS (Reaction Control System). The same 

diagram shows the climb angle  which is controlled by the 

thrust deflection angle. One can observe that it starts at 

 900 , followed by the imposed value   861  and  

after orbital injection remains at zero value.  

 

 

Fig. 5. Acceleration in quasi velocity frame 

 

 

Fig. 6. E- eccentricity and a- semi-major axis. 

 

 Fig. 7.  Maximum altitude for circular orbit as function of inclination and 
payload mass. 

 

For the same test case, Fig. 5 shows the acceleration in 

quasi - velocity frame. One can observe xa as the result of 
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thrust of each stage along velocity vector and also 

acceleration ya  normal on velocity in orbital plane. The 

acceleration za  normal on orbital plane are insignificant.  

Fig. 6 shows two orbital parameters, eccentricity and semi 

major axis during ascending and orbital phase. 

One can observe that eccentricity decreases to zero, and 

after the injection phase remains at this value. In the same 

time the semi major axis increases simultaneous with 

velocity and remains constant after orbital injection.   

Fig. 7 shows maximum altitude orbit as a function of orbit 

inclination and payload mass which means SBL 

performances.    

 

X. CONCLUSIONS 

As we said at the beginning, the paper has as objective the 

building of a simple mathematical model able to evaluate 

launcher's performances. In order to solve this problem, we 

separated the launcher's evolution in two phases, the first 

phase being the ascending phase until the launcher or the 

upper stage of it is in optimal position to make orbital 

injection and the second phase when the upper stage performs 

orbital manoeuvres and payload injection.  For each phase, 

we developed a separate calculus model. For the ascending 

phase we developed a 3DOF model which describes the 

functionality of the launcher in the quasi-velocity frame in 

accordance with the work [2]. For the orbital phase, we used a 

sample model based on Kepler's theory [3], which allows us, 

to evaluate orbital parameters, and Gauss orbital perturbed 

equation [3] in order to obtain optimal injection manoeuvre. 

Despite different model used for each flight phases, for 

unitary approach we use actually only 3DOF model in 

quasi-velocity frame, by transform the command from orbital 

frame in quasi – velocity frame. Considering that launcher is 

targeting at circular orbits, we built a performance index 

based on maximum semi major-axis, minimum manoeuvring 

effort and minimum drag force, which allows the defining of 

the characteristics parameter of a trajectory required to obtain 

a circular orbit with maximum altitude at the end of orbital 

phase. The test case build and the results obtained prove the 

correctness of the developed model, including the strategy 

adopted for optimizing the accessional phase. Considering 

other case, with deferent initial condition, we used the model 

developed to evaluate the entire field of SBL performance. 

The solution adopted for SBL mission design must take into 

consideration that the accuracy of the desired orbit depends 

directly on the upper stage, which makes the injection for 

transferring the payload to the desired orbit.  
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