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Abstract—Efficient management during the operational 

phase of district energy systems has become increasingly 

complex due to the various static and dynamic factors involved. 

Existing deterministic algorithms which are largely based on 

human experience acquired from specific domains, normally 

fail to consider the overall efficiency of district energy systems 

in a holistic way.  This paper looks into taking a black box 

approach by using genetic algorithms (GA) to solve a 

multiobjectiveoptimization problem conforming to economic, 

environmental and efficiency standards. This holistic 

optimization model, takes into account both heat and electricity 

demand profiles, and was applied in Ebbw Vale district, in 

Wales. The model helps compute optimized daily schedules for 

the generation mix in the district and different operational 

strategies are analyzed using deterministic and genetic 

algorithm (GA) based combined optimization methods. The 

results evidence that GA can be used to define an optimum 

strategy behind heat production leading to an increase in profit 

by 32% and reduction in CO2 emissions by 36% in the 24 hour 

period analyzed. This research fits in well with future district 

energy systems which give priority to integrated and systematic 

management. 

 
Index Terms—Analytical model, district energy management, 

energy efficiency, genetic algorithms, multiobjective 

optimization. 

 

I. INTRODUCTION 

Energy systems in the 21st century are required to meet 

several important goals towards sustainable development 

including economic, environmental, and social aspects. A 

systemic approach needs to be taken to derive feasible 

integrated solutions to solve complex energy problems [1] as 

they involve multiple goals, many stakeholders and 

numerous technologies. Global energy production is 

increasing at a rate which is more than capable of meeting the 

rising energy demand [2], however, the rapid growth of CO2 

emissions due to increasing energy production, needs to be 

dealt with. Energy demand reduction or increase in energy 

efficiency is vital to keep this rate down. Consequently, 

increased use of renewable energy has gained popularity in 

countries all around the world. In most cases, these renewable 

are integrated into the generation mix along with 

conventional sources of energy. Although there have been 
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advancements in individual systems, it is also important to be 

able to increase the overall efficiency, when these systems 

work together. Learning to manage this pool of resources 

together, therefore, needs to be given importance. 

Decentralized systems at a smaller scale are becoming a 

feasible  choice [1]. They can be used as an alternative or an 

additional energy supply to the main grid. These include 

co-generation technologies such as combined heat and power 

(CHP), using biomass power, solar PV power, wind 

power…etc. at a local or regional level. Out of these, district 

heating and cooling systems (DHC) are increasingly being 

used today [3]. They produce steam and hot/chilled water in a 

central plant and distribute this to individual buildings 

(residential and commercial), in its vicinity, through a 

network of pipelines. They usually tend to be an interesting 

choice for energy supply in hospitals, industrial parks, office 

complexes, large campuses (universities), housing estates or 

small districtswhich can also have a mix of the above 

buildings. They are known to save energy, consumer space 

and inhibit air-pollution [4]. DHC systems which use CHP 

are increasingly being a popular choice not just in Europe, but 

in many other countries such as United States, China, Russia 

and India. It is very effective in reducing greenhouse gas 

emissions (GHG), and increasing economic benefits [5], [6]. 

DHC networks are also a long-term asset according to the 

International Energy Agency, as they are a bridge towards the 

future low carbon energy technologies. For example, they are 

capable of taking heat from any source including renewable 

heat sources, hence offering flexibility to integrate new low 

carbon sources when made available in the future [6]. The 

development of District Energy Systems – in particular 

Renewable Energy Sources (RES) – requires new business 

and technology platforms to manage the increased level of 

complexity and diversity of global energy management. 

Intelligent management of these systems is crucial to ensure 

they are operated at the highest efficiency which takes into 

account costs, emissions level, and matching demand with 

supply. 

The existing studies for district energy systems 

optimization largely focus on the planning (design) stage. 

Very few cases look into the optimization during operational 

phases, e.g. optimizing operational parameters [7]-[11]. This 

is due to several factors, including: (1) the integration of 

renewables and the use of co-generation plants in today’s 

energy mix make the problem more dynamic, uncertain and 

complex; and (2) many different constraints have to be 

factored in at each stage of the optimization, and require high 

computational power to provide near real time results. These 

are the main challenges that need to be addressed in order to 
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achieve the maximum energy efficiency during the complex 

and dynamic operation stage.  

Existing district energy systems can be further improved to 

achieve better efficiency while using primary energy 

resources to further reduce their environmental impact [12] . 

But achieving this can be a complex task and may require 

certain smart energy management techniques [13].  

The research presented here aims to help decision making 

on thesupply side, provided forecasting of demand is 

available. The paper looks intoapplyingoptimization methods, 

through scenarios, to an analytical model, consequently, 

providing optimum operational strategy for a 24 hour period.  

The approach is multi objective which considers overall 

profits and CO2 emissions whilst meeting demand at all times. 

The schedules help facility manager prioritize which source 

to use, when, and at what output level, to meet the overall 

energy demand. 

Following this introduction, Section II discusses related 

work undertaken for operational optimization in district 

energy systems. Section III introduces the Ebbw Vale pilot 

case study to which optimization is applied. Section IV 

describes the multiobjectiveoptimization model and the 

analytical model which is used as the cost function for the 

optimization. Section V analyses the results obtained from 

optimization and some important conclusions on the overall 

research and plans for future work are detailed in Section VI. 

 

II. RELATED WORK 

Many of existing work focus on single objective 

optimization, involving an economic requirement to 

minimize the overall cost of energy generation [14], [15], 

[16], [17]. The underpinning research addresses individual 

systems or technologies in the domain of district energy 

optimization (for example, boilers, CHP, district heating 

networks, biomass energy…etc.). Pantaleo  et al.  [19], [20] 

aim to optimize operations in smart grid or micro-grid; 

however, they focus solely on electricity and power domain. 

These studies lacked a more holistic approach to 

systematically consider the inter-relationship among 

different components.  

Increasing concern on climate change and CO2 emissions 

have led to more stringent environmental legislations. Hence, 

energy managers have also had to try keeping greenhouse gas 

emissions as low as possible. There is also constant pressure 

for improvement of the technologies and fuels used; as this 

help keep emissions from energy production as low as 

possible. Integration of renewables into the energy 

generation mix has also become crucial as they help cut down 

on emissions level. For example, a lot of work has looked 

into trying to reduce greenhouse gas emissions by integrating 

biomass plants into the generation mix [18]-[21]. These 

models were more or less focused on biomass supply chain 

and distribution; however, they do not look into operational 

optimization. Biomass is a low carbon option given the low 

carbon emission released compared to other fossil fuel 

options.  However, the costs of integrating renewables into 

the generation mix and its management need to be capped, 

prompting the need for a multiobjective approach.  

Arnette A. and Zobel C.W. use mixed-integer linear 

programming (MILP) techniques to deal with these multi 

objective problems taking into account renewable energy and 

conventional sources of energy such as coal plants, but focus 

on the electricity supply side only [22]. Their approach does 

not take into account thermal energy. On the other hand, Hire 

math R.B. et al. introduce a holistic mathematical model 

which takes into account several objectives, e.g. production 

and distribution price impact on environment; efficiency of 

technology used; and also potential labor employment in the 

area due to decentralized energy planning [23]. This, 

however, is more related to design optimization than 

operational optimization. Research has also looked into 

optimizing the control parameters in the energy systems – 

boiler set points, water flow set-points, and district heating 

supply [8], [9]. These set-points or schedule of set points 

remain constant throughout operations phase and do not take 

into account the day to day changes in demand profiles.  

Artificial intelligence (AI) is also being increasingly used 

for smart control of district energy management systems. 

Using neural networks, forecasting models, optimization 

techniques in complex systems to support scheduling, 

adaptive control, model predictive control,  robust pattern 

detection [1]. A “master slave” optimization technique [24], 

[25] was used to combine  evolutionary algorithms and MILP 

to solve the district optimization problem. However, the 

research looks into both sizing of systems along with 

operating parameters, more relevant for design purposes. 

Similarly, Maifredi et. al. use a decomposition approach to 

solve their optimization problem [26]. Here, dynamic 

programming theory is used to provide dynamic schedules 

(changes every 24 hours) for electricity and heat production 

in the co-generation system. The author splits the 

optimization problem into dynamic problem and static 

problem with each having their own set of decision variables; 

but the optimization only considers cost as the objective. 

 et al. conducted a review of optimization methods 

applied to renewable and sustainable energy, and showed a 

significant increase in research papers using optimization 

methods to solve renewable energy problems, especially for 

wind and solar systems [27]. The authors review focused on 

papers that use traditional optimization methods such as 

mixed-integer and interval linear-programming; quadratic 

programming and Lagrangian relaxation. They argue that 

heuristic optimization, such as genetic algorithms and 

particle swarm optimization, is a growing trend in the field of 

renewable and sustainable energy management. The review 

reveals that most of the research has not yet taken a holistic 

optimization approach as the focus is more on individual 

renewable energy sources, e.g. wind power, solar energy, 

hydropower, and bioenergy. Their review also indicates that 

forecasting techniques are being combined with optimization 

approaches. For example, Marik et al., combine forecasting 

along with mixed integer nonlinear programming 

(MINLP)optimization techniques [9]; whereas, Hashemi 

developed an offline model to optimize the operations of a 

combined cooling and heating power (CCHP) system (with 

storage) and uses non-linear solvers (LINGO 8.0)[11]. 

However, both studies only consider cost optimization.  

Ikonen et al., [28] use physical models and multi integer 

programming to optimize the supply temperature of a district 

heating network; they  propose to extend their work in the 

future using forecasting models to implement near real time 
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optimization. Pini Prato et al.,  [10] look into 

thermo-economic optimization of CHP systems using MILP 

techniques. Even though the optimization focuses on the 

operational stages, it does not consider emissions as an 

objective, but rather tries to exploit the heat storage 

capabilities of the network itself.  

The literature reviewed here concludes that very few have 

looked into multiobjective optimization which is what is 

needed when considering district energy management at an 

operational level. Fig. 1 below summarizes the methodology 

adopted in the work covered in this section and shows that 

evolutionary algorithms are seldom applied. The authors of 

this paper believe that taking a black box approach to 

optimization can be effective and hence adopts this 

methodology.  

 

 
Fig. 1. Optimization methodology adopted. 

 

III. EBBW VALE PILOT INTRODUCTION 

The site is located on the floor of a valley to the south of 

the town of Ebbw Vale and covers an area of approximately 

78 hectares and was formerly occupied by a steelworks, 

which closed in 1982. Demolition and remediation was 

subsequently undertaken to create sires for residential, 

commercial, education and leisure developments. The whole 

of ‘The Works’ site is owned by Blaenau Gwent County 

Borough Council (BGCBC), along with the six 

buildings/structures forming the Pilot project which are all 

located at the northern end of the site. 

 

 
Fig.

 
2. Ebbw vale site.

 

 

The Energy Centre has been designed to provide district 

heating to commercial developments which will be 

constructed south of the existing development and also to 

sites to the north.The six buildings/structures on The Works 

site which is part of the RESILIENT
1
 Pilot project are: 1) 

General Offices, 2) Learning Zone (College), 3) Energy 

Centre, 4) Multistory car park - MSCP, 5) School for 11-16 

pupils, 6) Leisure Centre. 

An 8MW HV electricity main runs through the site and 

supplies the School, Leisure Centre and the General Offices. 

It also supplements the supply from the gas-fired CHP unit to 

the other buildings. The CHP also works in conjunction with 

the four gas-fired boilers (any number of boilers can be used 

based on when they are needed) to provide the district heating 

system. BGCBC has also installed Biomass boilers in the 

Energy Centre. The buildings (apart from the General Offices) 

are new and their design was based on the  Energy Centre 

providing a district heating system with electricity being 

provided from a combination of the main grid and a CHP unit, 

and this is the current situation. 

A. Thermal Power Supply 

The district heating is provided from 4 gas-fired boilers 

(ICI REX180 1950kW (input)) and a Cogenco 375kW CHP 

plant. The boilers are fitted with Nuway MGN2800 burners 

with 790-2800kW output and each boiler has two Variable 

Speed Driven (VSD) circulating pumps each rated at 7.5kW 

and run on duty when there is a boiler demand. The CHP 

plant generally maintains the base loading and the boilers are 

connected to the external natural gas grid and are all 

separately metered. The CHP, however, gives priority to 

meeting heat demand. If the subsequent electricity produced 

is not enough to meet the demand at any particular time, then 

electricity is purchased from the national grid. This is a 

common strategy that can be used [29]. 

B. Electricity Supply  

The electricity demand for the site is currently being 

provided through a combination of the CHP plant and the 

main electrical grid. The CHP provides 375 kW of electricity 

to the BGCBC switchboard which is located in the Learning 

Zone. The supply is used by the Zone, the Energy Centre 

itself, and the multi-story car park (MSCP). When the load 

required exceeds this supply capacity the shortfall is obtained 

directly from the grid supply. If there is a surplus from the 

CHP this goes to the grid and a payment is received by 

BGCBC under the FIT (Feed-in Tariff) process. The General 

Offices, Leisure Centre and the 11-16 School are all 

connected to the main electricity grid and do not benefit from 

the CHP or any renewable electricity generation.  

 Fig. 3 shows the interlinking schematic flow between heat 

and electricity networks. There is a potential for increasing 

energy efficiency during operations because the CHP and gas 

boilers predominantly run at a constant setpoint based on the 

season. Varying the power within the limits of best practice 

operations can increase energy efficiency. Also, currently the 

operation strategy is fixed which is to use CHP to meet the 

base load, and biomass or gas boilers come online when there 

is a need for it.  Optimization of the strategy, during different 

demand conditions, can also perhaps bring about economic or 

environmental savings. Optimizing the energy generation 

mix at an operational level therefore is a critical issue for the 

facility managers. 

 
1 Resilient Project, www.resilient-project.eu, (March 10,2015) 
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Fig. 3. Heat and electricity schematic flow in the district. 

 

IV. MULTIOBJECTIVE HOLISTIC OPTIMIZATION 

The study conducted here proposes a multiobjective and 

holistic optimization model to improve district energy 

management. The approach here can be termed ‘holistic’ as 

the model considers emissions, costs and also energy 

efficiency as it tries to match demand and supply. 

Furthermore, it prioritizes heat energy supply but also takes 

into account electricity production by the cogeneration units. 

The objectives considered for optimization are – 

1>minimizing operational costs, and 2>minimizing carbon 

emissions. The constraints implemented make sure that the 

solution also meets the demand at all times during the 24 hour 

period analyzed. The analysis performed here can help 

facility managers decide on the operational strategy that 

needs to be adopted in the district and also find an optimum 

output power of each source in the district for a 24 hour 

demand profile.At this stage of the research, there is no 

real-time prediction of demands for the buildings and the 

experiments have been carried offline, taking a typical winter 

demand profile as an example. This was provided from 

University of Genoa, developers of a load profile generator 

tool. UNIGE are also partners involved in the RESILIENT 

project. However, in the future, this work can be integrated 

with artificial intelligent techniques, such as forecasting 

models or neural network models, to perform a near real time 

optimization based on the daily load forecasts of the 

buildings in the district. Being proactive and forecasting the 

energy demand takes into account the dynamic changes in 

demand profiles and this very important to increase the 

efficiency of the overall system.. Future adaptation of this 

work would look to use the results of optimization to generate 

schedules for control parameters such as water supply 

temperature.One of the limitations is that the study is steady 

state and hence ignores previous time steps during 

optimization, and therefore cannot consider latency effect or 

time constants. This section aims to describe the analytical 

model along with optimization algorithm in detail including 

the various objectives, decision variables, and constraints 

considered. 

A. Analytical Model 

The authors preferred to develop the analytical model 

independently rather than using existing simulation packages 

such as TRNSYS or Simulink as these packages were 

considered to be less flexible when it came into the details of 

the district case study considered here. The analytical model, 

was able to take into consideration the minute details, for 

example - renewable heat incentives, carbon taxes, and 

emissions due to biomass transport. The model uses the heat 

production schedule, forecasted heat, and electricity demand 

for a period of 24 hours as the input and calculates the daily 

operation costs and emissions of carbon dioxide (kg) for the 

entire district. Fig. 4 below shows the input and output used 

in the analytical model. 

 
Fig.4. Input and output of the analytical model shown as a workflow. 

TABLE I: NOMENCLATURE USED IN EBBW VALE ANALYTICAL MODEL 

 

 Symbol Representation Value 

Su
b

sc
ri

p
t 

I represent the CHP  - 

J represent a boiler  - 

K represent a biomass boiler  - 

G represent an energy source system  - 

E  represent the different greenhouse gases CO2, SO2, NOx, 
PM 

Ec
o

n
o

m
ic

 p
ar

am
et

er
s 

𝑃𝐸𝐿𝐸𝐶  Purchase price of electricity (£/𝑘𝑊ℎ𝑒𝑙 ) Day rate: 0.11 

Night rate: 0.07 

𝑃𝐺𝐴𝑆  Purchase price of natural gas (£/𝑘𝑊ℎ𝑔𝑎𝑠 ) 0.0248 

𝑃𝐵𝐼𝑂  Purchase price of biomass (£/kg)  0.205  

𝐶𝑠𝑎𝑙𝑒 ,𝑐
𝐸𝐿𝐸𝐶  Sale price of electricity (for the energy use system) 

(£/𝑘𝑊ℎ𝑒𝑙 ) 
Day rate: 0.11 

Night rate: 0.07 

𝐶𝑠𝑎𝑙𝑒 ,𝑛𝑔
𝐸𝐿𝐸𝐶  Sale price of electricity (for the national grid) (£/

𝑘𝑊ℎ𝑒𝑙 ) 
Day rate: 
0.0764 

Night rate:0.03 

𝐶𝑠𝑎𝑙𝑒 ,𝑐
𝐻𝐸𝐴𝑇  Revenue for delivering heat to the energy use system 

(£/𝑘𝑊ℎ𝑡ℎ ) 
0.0594  

𝐶𝐶𝐻𝑃
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  Maintenance rate for CHP (£/𝑘𝑊ℎ𝑒𝑙 )) 0.0035  

𝐶𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  Total maintenance cost for Energy Centre - 

𝐶𝑠𝑎𝑙𝑒 ,𝑐
𝑅𝐻𝐼  Renewable Heat Incentive for biomass production 

(£/𝑘𝑊ℎ𝑡ℎ ) 
0.12 

𝑄𝑔  Thermal generation of energy source system g - 

𝐸𝐶𝐻𝑃  Electrical KWh generated by CHP (kWh) - 

𝜂𝑔  Efficiency of the energy source system g 
(dimensionless) 

- 

*𝐸𝑑𝑒𝑚𝑎𝑛𝑑    Electrical energy demand (kWh) - 

𝐸𝑠𝑜𝑙𝑑 ,𝑐  Sold electricity to the energy use system (𝑘𝑊ℎ𝑒𝑙 ) - 

𝐸𝑠𝑜𝑙𝑑 ,𝑛𝑔  Sold electricity to the national grid (𝑘𝑊ℎ𝑒𝑙 ) - 

𝐸𝑏𝑜𝑢𝑔 ℎ𝑡  Electricity bought from the national grid (𝑘𝑊𝑒𝑙 ) - 

𝑄𝑠𝑜𝑙𝑑 ,𝑐  Thermal energy sold to Energy using system - 

 𝑄𝑑𝑒𝑚𝑎𝑛𝑑  Thermal demand (kWh)  

Τ CHP’s heat and power ratio (dimensionless) 0.65 

En
vi

ro
n

m
en

ta
l 

P
ar

am
et

er
s 

𝜇𝑒
𝑙    

Amount of ‘e’ emitted from the energy source system 
using fuel ‘l’ (kg) 

- 

𝜀𝑒
𝑙    

Specific emission of e per kWh for energy source 
system using fuel l’’ (kg/kWh)) 

Refer to table I 

χ𝑙  Calorific value of fuel l (kWh/kg) - 

 𝜇𝑒
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

 Emissions due to transport for biomass (kg) - 

BTrc 
Carbon emission factor for biomass transport. (kgCO2 
/KgBiomass – Km) 

0.00012 

O
th

er
 P

ar
am

et
er

s 

𝐷𝐼𝑆𝑃&𝐸𝑉  
Distance between biomass producer and Ebbw Vale 
(km) 

277 

𝐶𝑜𝑛𝑠𝐺𝐴𝑆   Natural gas consumption (𝑘𝑊ℎ𝑔𝑎𝑠 ) - 

𝑁𝐺  Number of energy source systems 7 

𝑁𝑙  Number of types of fuel used 
Biomass, 
Natural gas 

𝑁𝐶𝐻𝑃  Number of CHP 1 

𝑁𝐵𝑂𝐼𝐿𝐸𝑅  Number of boilers 4 

𝑁𝐵𝐼𝑂𝑀𝐴𝑆𝑆  Number of biomass boilers 2 

 1 
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Table I below shows the nomenclature used in Ebbw Vale 

analytical model. 

 
Fig. 5. Optimization model using Ebbw vale mathematical model as a cost 

function. 

District operation simulation equations 

The following sets of equations are needed to inform a 

district operation simulation model. It is used to calculate 

relevant outputs, e.g. energy production. This section 

presents the different types of operating equations. 

The equations below are used to calculate the production 

of energy - thermal energy produced from CHP, boiler and 

biomass boiler; and, the electrical energy produced from the 

CHP. The thermal energy produced contributes to both cost 

and emission calculations. 

 

𝑄        𝑄 
       
                                (1) 

        

𝑄     𝑄 
    
                           (2) 

  

𝑄         𝑄 
        
                        (3) 

 

The electrical energy can be calculated as shown below: 

 

𝐸     𝐸 
    
                           (4) 

 

𝐸   is calculated using the CHP power to heat ratio given 

by the CHP manufacturer, as below: 

 

𝐸  𝑄                      (5) 

 

Here,   = 0.65, which is obtained from the manufacturer’s 

documents. 

The electricity exchanged with the national grid will also 

contribute towards the cost objective function and is 

calculated as shown below: 

Electricity sold to the national grid: 

 

𝐸        𝐸    𝐸             (6) 

 

Electricity bought from the national grid: 

 

𝐸       𝐸       𝐸          (7) 

 

The natural gas consumption is used for calculating the 

cost objective function and is calculated as shown below: 

 

𝐶𝑜𝑛𝑠     
     

  

           
        (8) 

 

B. Optimization Algorithm 

Fig. 5 shows the optimization model applied in the case of 

Ebbw Vale with inputs and outputs variables. 

Objective Functions 

The first objective function is related to the operational 

costs of the district i.e. fuel consumption for energy 

production and also electricity bought from grid. The aim of 

this objective function is – 

 

Minimise   𝐶                            

 

𝐶              is the total cost for the energy centre; 

𝐵              is the total income received by the energy 

centre;  

The various costs are calculated as shown below: 

 

𝐶              𝐶        𝐶     𝐶      

𝐶            𝐶                               (9) 

 

Here, 𝐶      are the costs due to taxes, 𝐶     are the 

costs due to gas consumption and 𝐶         are the costs due 

to biomass consumption 

 

𝐶        𝑃                           (10)  

 

The transport cost for biomass is included in the buying 

price and hence the transportation costs do not appear in this 

equation. The storage losses for biomass are ignored because 

of highly efficient storage system being used in Ebbw Vale 

along with the best pellet fuel. 

 

 𝐶      𝐶       𝑁    𝜇   
     𝑁         𝜇   

         

                        𝑁𝐵𝑂𝐼𝐿𝐸𝑅  𝜇𝐶𝑂2𝐵𝑂𝐼𝐿𝐸𝑅                                            
(11)  

  𝐶     𝑃    𝐶𝑜𝑛𝑠                         (12) 

 

  C           =𝐸        𝑃                    (13) 

 

𝐶            includes  the maintenance cost of CHP 

only as they include a regular service, moreover, this rate 

unlike for other sources can be calculated based on use of 

CHP for electrical energy produced [30]. Investment costs 

are not part of the model as the scope of this paper only looks 

into operational stages of district, therefore, avoiding the 

static costs which do not affect the operations. 

 

𝐶            𝐶   
             𝐸                  (14) 

 

Revenue for Energy centre comes from: 

1) Electricity sold to Learning Zone,  

2) During night times, the excess electricity produced by 

CHP is sold back to the grid; and finally,  

3) Heat energy sold to Learning zone in the district, and  

4) Renewable Heat Incentive (RHI) from Biomass 

production [31]. 
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𝐵                 𝐶      
     𝐸       𝐶       

     𝐸        

𝐶      
                   𝑄       + 

                              𝐶      
    𝑄                                               (15) 

 

The second objective function is related to greenhouse gas 

emissions  

                         Minimise   𝐺𝐻𝐺         

 
The aim of this objective is to minimise the total 

greenhouse gases emissions. This needs to take into account 

the CO2 equivalent produced from the different fuels used by 

sources. The greenhouse gas conversion factor for unit 

energy can be adopted from the Department of Environment, 

Food & Rural Affairs (DEFRA) [32] as shown below in 

Table II. 

 
TABLE II: CARBON DIOXIDE EQUIVALENT 

Fuel Source Symbol 
Specific Emissions 

(Kg/Kwh) 

Natural Gas 𝜀      
            0.1850 

Wood Pellets 𝜀      
            0.0118 

 

Greenhouse gas emissions for electricity bought from the 

grid is ignored as they are part of life cycle emissions. 

When the source ‘g’ is CHP or boilers: 

 

𝜇      
            𝜀      

             𝑄                  (16) 

 

On the other hand when the energy source ‘g’ is biomass 

boilers: 

 

𝜇      
        𝜀      

         𝑄                     (17) 

 

Emissions due to transport of biomass  𝜇 
         

 also 

needs to be calculated.     

 

 𝜇     
         

 𝐵𝑇𝑟         𝐷𝐼𝑆                (18) 

 

        
        

                               (19) 

 

Here, 𝐷𝐼𝑆         𝑘𝑚. According to the owners of 

the district energy system, the nearest biomass producer is 

PBE Fuels and they are 138 km away from the site.   

The carbon emission factor, 𝐵𝑇𝑟  , for biomass transport 

is taken from the biomass energy centre website [33] and  is 

0.00012 kgCO2 /KgBiomass – Km. This gives an approximate 

value for the amount of CO2 produced if biomass is 

transported by road. By knowing all the emissions, the total 

greenhouse gas emissions can be calculated as shown below: 

 

  𝐺𝐻𝐺           𝜇      
   

      𝜇     
         

 (20) 

 

Decision Variables 

According to the IEEE/IEC 61970-301 CIM (Common 

Information Model) standard, a regular schedule for 

automation systems can be defined by: 

 Δt a time step (a constant value in seconds); 

 𝑡  a start date; 

 𝑡  an end date; 

 an ordered list of m time points. 

The CIM contains formalised descriptions of electrical 

power system components. Out of which the IEC 61970 

standard defines the Application Program Interface (API) for 

Energy Management Systems (EMS). The standard can be 

used in a wide range of applications. It can be considered to 

be a tool which integrates any domain in a common power 

system model facilitating interoperability between 

applications. Smart grid resources can also be represented as 

objects, classes and attributes along with their relationships 

through the standard [34].  

In the proposed analytical model, each thermal energy 

production schedule is represented by a row vector. Let 𝑁  

be the total number of energy source systems and energy 

using systems in the district.  𝑔       𝑁 }, 𝑄    , 

where m is the number of time points 𝑚   
     

Δ 
 . 

Let 𝑔       𝑁  , the schedule of energy source system 𝑔 

will be denoted by:       
 
 𝑡    , where T is the set of 

time points (  𝑇   𝑚 ). For example, 𝑄   denotes the 

production schedule of the CHP generation system of the 

considered district.  

Constraints of the Optimization Algorithm 

The first constraint is that the thermal energy being fed into 

the ring has to exceed the sum of the thermal demand. Here a 

factor for losses - a safety factor needs to be taken into 

account – is taken from historical data as mentioned 

previously.  These constraints make sure that demand is met 

at all times.  

 

𝑄    
    𝑄      

   
                   (21) 

 

Secondly, CHP, gas boilers and biomass boilers have their 

own maximum and minimum power capacities. These were 

implemented in the model as lower bounds and upper bounds 

of the design variable itself. The lower and upper bounds are 

presented below in tableIII. Although the biomass boilers 

have a lower bound which is not equal to zero, the 

optimization solution can be corrected to make sure biomass 

boilers are turned off if the demand is already met. 
 

TABLE III: CONSTRAINTS OF ENERGY SOURCES 

 Lower Bound (Kw) Upper Bound (Kw) 

CHP 375 401 

Biomass Boilers 124 495 

Gas Boilers 0 1600 

 

The losses here were taken to be about 20 %. This was 

computed based on the limited amount of historical data that 

was collected from heat meters in the network. 

Optimization Algorithm Implementation 

Genetic Algorithms are nature-inspired stochastic 

optimization algorithms that have the following 

characteristics: 

 Encoding: the decision variables of the problem are 

encoded into abstract constructs; 

 Set-based: the algorithm manipulates a set of abstract 

constructs (called solutions) simultaneously; 
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 Iterative: the solution set is updated dynamically along 

the run of the algorithm, by applying so-called genetic 

operators to its elements, the crossover operator that 

creates new solutions by combining two or more 

existing solutions and the mutation operator that slightly 

modifies an existing solution; 

 Selection and replacement: a GA aims improve its 

solution set by iteratively exploring its neighbourhood 

in the problem’s search space (defined by the genetic 

operators) and by incorporating discovered better 

solutions; 

 Random-based: a GA applies most of the sub-processes 

mentioned above in a probabilistic manner; 

 Black-box: a GA only requires the value of a 

comparative performance measure for each solution 

(called evaluation), regardless of how this measure is 

computed. 

 

Fig 6. Optimization process workflow. 

 

Here NSGA-II algorithm, developed by Deb et al. [35] , 

was used and implemented in Matlab
2
. Fig. 6 above shows 

the overall optimisation process workflow and how the 

analytical model interacts with the NSGA-II optimisation 

algorithm. This analytical model is applied to the case of 

Ebbw Vale district and is used as the cost function for multi 

objective optimization. The link between optimisation model 

and analytical model is described in the points below: 

 The decision variables, here, are the twenty four hour 

production schedules in the analytical model for each 

source g,𝑄 . 
 Objective function 1 of the optimisation is linked to the 

total operational costs, which is as represented earlierin 

section IV B as  𝐶                            

 Objective function 2 of the optimisation is linked to the 

total operational emissions, which is represented by 

equation (20) in the analytical model. 

 The difference between the heat production 

schedule,  𝑄 and the heat demand schedule, 

𝑄      
 is computed from the analytical model. Thisis 

used to evaluate the constraints of the optimisation 

problems as shown in equation (21).  

The crossover operator is a straightforward generalisation 

of the classical single-point crossover operator, i.e. row 

vectors of the schedule matrix are crossed from either side of 

a randomly picked time point. The scope of this paper being a 

proof-of-concept of an optimisation model, the mutation 

operator is also basic: when mutation probabilistically occurs, 

a random value of thermal energy production is given at a 

 
2 http://www.mathworks.com/...nsga-ii--a-multi-objective-optimization-a

lgorithm (10 August 2015) 

randomly picked time point of a randomly picked schedule 

(respecting the lower and upper bound capacities of the 

targeted generation system).In order to keep the coherence of 

the generation schedules, a sub-procedure is applied. This 

procedure simply balances the thermal productions among 

generation systems of the same type without affecting the 

evaluation of the schedule in terms of cost, emissions and 

energy efficiency. The NSGA-II algorithm used maximum 

generation as the stopping criterion. In this case it was about 

100 generations. 

Following the definition of time schedules as decision 

variables previously, solutions are encoded as 𝑚 -by-𝑁  

matrices. Conceptually, they are matrices of regular 

schedules as standardised in IEEE 61970-301.  

 

V. RESULTS ANALYSIS 

Two different optimization test cases were conducted to 

Ebbw Vale pilot and the consequent optimized values were 

used to compare to the base case (which is the business as 

usual case). This section presents the testing results and its 

analysis. 

Business as usual case-This is the current operational 

strategy in Ebbw Vale Pilot wherein it uses CHP, biomass 

and gas boilers.The CHP is given priority to meet the loads.  

The smart (deterministic) algorithm tested in this scenario 

uses CHP to meet the base load; the biomass and gas boilers 

will come online when required. In this case, biomass boilers 

are preferred over gas boilers for three reasons: (1) They 

produce almost 10 times less carbon emissions compared to 

gas boilers, (2) They have a lower minimum setpoint which 
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can reduce the excess energy being produced, and (3) High 

renewable heat incentive provided for energy produced using 

biomass boilers making it economically attractive. The share 

of load produced by each source to meet the demand is shown  

below in Fig. 7. This scenario uses a deterministic algorithm, 

which takes a rule-based approach to produce the production 

profiles.  These rules are based on human knowledge. Fig.7 

shows demand being perfectly met by production profiles 

with the available resources. The cost and emission values 

achieved in this case are shown in Table IV. 

 

 
Fig. 7. Energy demand vs. Supply for business as usual scenario. 

Scenario 1: Optimization usingNSGA-II- Here the 

NSGA-II algorithm was used to solve the problem, as its 

robustness to solve various optimization problems has been 

widely assessed in the literature. Like other GAs, NSGA-II 

has user-defined parameters that impact the performance of 

the algorithm. In order to induce sufficient variety among the 

population sets visited during an algorithm run, the algorithm 

choses crossover is 0.9 and population size is 1000 - 

considering the scale of the solutions (3-by-48 matrices).  

Mutation value was set to 0.05 to make sure that the solution 

would not converge early. 

Fig. 8 shows an example of non-dominated solution 

provided by NSGA-II. The algorithm was adapted to energy 

management problem and therefore it makes sure that the 

demand was met for each time step. The optimization 

produced many sets of solutions. The cost and emissions 

value achieved through this scenario is shown in Table IV. 

Scenario 2: Optimization using NSGA-II but with a 

changed strategy - Previous scenario was only able to bring a 

small amount of savings in terms of emissions, but not much 

savings in terms of profits. The optimization found very few 

solutions that were able to meet all constraints and still keep 

emissions and costs low. In Scenario 2 therefore, the 

algorithm was flexible to choose another strategy i.e. change 

the priority order of sources. This brought a drastic 

improvement in results for the 24 hour demand profile 

analyzed. Fig. 9 shows how Biomass boilers and Gas Boilers 

were used instead of CHP. The cost and emissions are shown 

below in Table IV. 

 

 
Fig. 8. Energy demand vs. supply for scenario 1 using NSGA-II. 

 
Fig. 9. Supply vs. demand for scenario 2. 

All the demand curves presented above include the losses 

which are approximated at 20 %. This approximation is taken 

from historical data analysis. The objective values calculated 

along with their computational time for all the cases during a 

typical winter day is shown below in table IV: 

 
TABLE IV:  FINAL RESULTS 

 
Business 

as usual 
Scenario 1 Scenario 2 

Computational time 

(seconds) 
1.06 2372 2370 

Profit (£) £1854 £1805.18 £2442.68 

Carbon Dioxide emissions 

(Kg) 
2394.7 2374.9 1531.9 

No. of Time steps where 

demand was not met 
0 0 0 

 

VI. DISCUSSION 

Scenario one applies optimization to 24 hour schedule, 

however brings very little improvement in results.  The 

emissions were reduced by 0.8 % during the 24 hour period.  

Profits on the other hand decreased by 2.6 %. The NSGA-II 

failed to improve results which were obtained from using 

deterministic algorithms in the business as usual scenario. 

Scenario two on the other hand was made flexible to 

experiment a different strategy in terms of the priority of 

sources to be used. This drastically improved the results and 

increased the profits by 31.8 % and decreased emissions by 

36 % when compared to the business as usual case. For the 

load profile analysed, CHP being turned off and using 

maximum biomass boilers is a better strategy. The black box 

approach to optimization clearly gives priority here to the 

biomass boilers over the CHP. One of the reasons for this 

could be the high heat incentive received for every unit of 

energy produced from the biomass boilers. Results might 

vary with varying demand profiles.Also, the relationship 

between cost and emissions is non-linear and complex. This 

is where a black box approach to optimization can be 

advantageous.  

The results show that using GA basedoptimization 

approach, NSGA-II in this paper, can bring savings in costs 

and emissions only if it is allowed to be flexible with not only 

power output but also the strategy.The advantage of using 

such an optimization solution is that it considers all the 

constraints and factors, and produces a solution, which is 

feasible and satisfies all the objectives. In the case of Ebbw 

vale, the numbers of feasible strategies for running the 

district are few. However this methodology can be more 

beneficial in complicated districts.  

One challenge would be the computational time for an 
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optimized solution to be found. The optimization process 

currently is time consuming as it takes about 2373 seconds  

hours on a normal computer with which has the following 

specification- Intel(R) Core (TM) i7-3930M CPU 

@3.20GHZ Processor Speed, RAM 32 GB. It still can assist 

facility managers in decision making, provided it is taken as a 

tool to perform ‘day ahead’ scheduling. Another alternative 

would be to consider parallelisation of the optimization 

process or using high performance computing that deals with 

the computational time as used previously by authors in [36]. 

However, the inherent convergence speed of the GA (i.e. the 

number of production schedule evaluations required to “jump” 

towards more better non-dominated solutions regardless of 

computation time) is another alternative the authors intend to 

investigate. A plethora of GA operator instances (selection, 

crossover, mutation) from the literature as well as other 

metaheuristics can be experimented, starting with the ones 

that are known to solve similar real-world optimization 

problems and moving towards ones that are tailored for 

district energy production scheduling. The resulting 

best-practice metaheuristics set-up for district energy 

schedule optimization, combined with accurate load 

prediction and possibly deployed on delocalised high 

performance computing infrastructures, could be at the heart 

of a multicriterion [36].  

The results achieved in this paper however, already show 

that GA is able to produce optimized solutions that overcome 

the most obvious operational strategy devised through human 

knowledge (heuristics). In this case, for the demand profile 

suggested, the solution provided suggests turning off the 

CHP and using more of the biomass boilers and gas boilers. 

This therefore, can help improve the business as usual case by 

reducing emissions and increasing the operational profit of 

the district over the 24 hour period analysed. 

 

VII. CONCLUSION 

The study conducted here looks into taking a multi 

objective optimization approach with genetic algorithms for 

district energy management, by aiding facility mangers to 

device optimum production schedules. The optimization 

model takes a holistic approach which includes both heat and 

electricity domains, whilst taking into account all the 

operational constraints. The results of the study prove that 

running GA based optimization by just varying the power 

outputs on a pre-determined strategy does not improve results. 

However, optimization performed well when the algorithm 

was flexible with both the output power and the production 

strategy itself (i.e. order in which sources are used) as well. 

The optimization applied to the analytical model of Ebbw 

Vale district shows increase in profits and reduction in 

emissions when compared to using normal deterministic 

algorithms. 

The only pre-requisite for the optimization problem is the 

24 hour demand profile prediction of the various energy 

consumers in the district. If this is available, such a solution 

can be deployed in real world by running it as a day ahead 

scheduling tool. The Demand profiles change every day and 

hence being pro-active and planning ahead can increase 

energy efficiency of the overall system.   

Future work should look to translate the energy production 

schedules to the actual setpoint –for example, supply 

temperature, return temperature, mass flow of water…etc. 

The current analytical model used is specific to Ebbw Vale 

case study, but it can also in the future look to integrate 

renewables and storage facilities. This would make the 

district energy analytical model generic which can then be 

easily applied to other district sites with slight alterations. 

Other GA based optimization algorithms can also be 

evaluated with this model to check for any improvement in 

results. 

The authors believe that the work produced here fits into 

the fourth generation of district energy systems which would 

require a holistic coordination of operations, and would have 

to also consider the real time variations in demands to 

improve the overall efficiency. The optimization model 

presented in this paper would form one module or part of the 

real time energy management framework would be needed in 

the future. It would also need other modules such as demand 

predictions, for example because real-time dynamic changes 

in district energy demand is seldom taken into account by 

today’s energy management frameworks. Together they 

would deal with the complex issue of trying to  match 

demand and supply in real time taking into account all the 

static constraints and objectives. 
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