
  

 

Abstract—Protecting valuable assets that are not in fixed 

locations but rather are capable of being relocated from place to 

place is an endeavor that has a wide variety of applications. 

Assets could be military in nature, such as personnel or 

equipment, or civilian, which could encompass anything from 

cargo shipments to moving from one home to another. In cases 

where any of these assets find themselves under threat of attack, 

one would of course prefer to have sufficient protective 

resources to provide a reasonable level of security for the asset(s) 

at all times. However, there can be many cases where such 

protection is not possible. It may be too costly to provide 

constant protection. Or, it may be that an asset has a mandatory 

relocation time, and there are simply too few available 

resources to provide complete protection. It could even be the 

case that a portion of the available resources are required to 

protect an even more valuable asset elsewhere. This paper 

presents a methodology for optimizing the protection of an asset 

when it needs to be relocated and there are insufficient 

resources to provide protection at all points along its journey. 

 
Index Terms—Agent-based simulation, game theory, mixed 

strategies, mobile asset protection. 

 

I. INTRODUCTION 

Assets can be found all around us. It is safe to say that any 

group, as well as the individuals comprising that group, 

possess (or want to possess) items that they consider to be 

valuable. Any such items of value can be counted as assets. It 

could very well be the case that items accorded great value by 

one group (or individual) are considered to be of little or no 

value by another group/individual, and vice versa. However, 

since the items are valued by at least one group/individual, 

then those items are assets to whichever people value them. 

Assets can be viewed in various ways. They could be items 

that increase the net worth of the holder, such as money or 

equipment or buildings. They could also be items that serve 

as tokens of someone’s status or position within society, such 

as badges or licenses or keys. Assets can be seen as items that 

increase the standing of a group in a plenary fashion, such as 

flags or totems or relics. They can even be items that serve 

only to increase one’s sense of well-being, such as photos or 

mementos or charms. 

While assets provide some level of value to the holder, it 

can also be the case that there is another group/individual that 

wants to possess a particular asset for themselves, or for some 

reason simply does not want that asset to be possessed by the 

current holder. In such situations, the group/individual not 

possessing the asset may derive value by taking possession of 
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the asset and becoming the new holder, or destroying it to 

prevent the current holder from possessing it any longer. 

It is these types of situations with which this paper is 

concerned. That is, this paper addresses situations in which 

one party possesses a particular asset, and another party 

wishes to appropriate that asset for themselves or destroy it. 

The party possessing the asset will of course wish to protect it 

against capture or destruction. To do so, that party will need 

to have access to resources capable of providing such 

protection. 

If sufficient security resources can be acquired such that 

the asset in question can be protected at all times, the problem 

of protecting the asset becomes moot. It becomes a case of 

simply allocating the necessary resources to the asset, and a 

constant, uninterrupted level of protection is provided. 

However, there are many situations in which resources 

sufficient to provide constant protection are not available. 

Examples of such situations include: 

 Sufficient resources could be made available, but to 

allocate them so as to provide complete protection for 

the asset would not be cost-effective. This could be the 

case if an asset of only moderate value is going to be 

mobile for a long time and/or distance (perhaps moving 

cross-country), and the cost of providing complete 

protection for the entire trip exceeds the value of the 

asset. 

 Sufficient resources are not available at the present time, 

but the asset must be transported immediately anyway. 

This could happen if there is an unanticipated need to 

relocate the asset while the protective resources are tied 

up elsewhere, such as the need to ship medical supplies 

in the face of a medical emergency. 

 Sufficient resources are not available either at all or for a 

long term. This could be because sufficient protective 

resources simply are not available at all, or they are 

currently assigned to another asset which is considered 

to be of greater value. 

If situations such as these arise, there will be assets that are 

going to be transported and will be in need of protection, yet 

there will not be sufficient resources to provide complete 

protection throughout the entire trip. For those events, a 

method will need to be devised to optimize the use of 

whatever resources will be available in order to provide the 

maximal amount of protection given the limitations of the 

protective resource availability. It is the development of this 

optimal resource allocation methodology that is the focus of 

this paper. 

 

II. BACKGROUND FOR THE SCENARIO 

The work done for this paper builds on the work done for 

two previous papers dealing with intrusion detection [1], [2]. 
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In the first work, a methodology was discussed for using very 

small Unmanned Aerial Vehicles (UAVs), called 

micro-UAVs, to detect intruders across large areas, where it is 

not possible to patrol the entire area all at once [1]. In the 

second work, a methodology was discussed for optimally 

deploying infrasound detectors to interdict intruders 

attempting to attack an asset from potentially a number of 

different approach paths of varying degrees of difficulty [2]. 

In these two previous works, the focus was on using 

various technologies in combination with optimization 

techniques to detect intrusion attempts against an asset. It 

also was the case in both works that the assets in question 

were static, i.e. in a fixed position and non-moving. Here, 

several of the concepts that played a role in the previous 

works (e.g. optimal usage of limited resources and preventing 

intruders from exploiting discernable patterns in resource 

deployment) are still meaningful and are incorporated, but 

the focus shifts from intrusion detection to intrusion 

prevention, and from static assets to mobile assets. 

In order to be able to determine the optimal use of 

protective resources for mobile assets, it is necessary to 

create a framework in which to study the problem. There are 

a limitless number of potential frameworks that could be used, 

and obviously it would be impossible to conduct studies on 

even the majority of them. Rather, it is necessary to have an 

operating scenario that is generic enough that it can be 

applied to a wide variety of real-world situations, yet specific 

enough that it adequately represents the problem domain. It is 

also necessary to make some simplifying assumptions when 

creating the operating scenario, but not to the extent that the 

scenario no longer reasonably reflects reality. 

Fortunately, this can be accomplished through the 

judicious selection of a model to implement the scenario. 

Models are highly stylized and simplified representations of 

real situations, yet are still capable of providing a great deal 

of insight into the scenarios for which they are created. For 

example, regression models of system behavior are 

frequently well off target when used as predictors of future 

results of the operation of the system. So, if they are so often 

wrong in their predictive capacity, then what is the point of 

using them? The answer is that even if the model is almost 

always unable to correctly predict future outcomes, it is still 

capable of providing the researcher with highly useful 

information, such as which factors contribute the most to 

system performance, and how sensitive the system behavior 

is to perturbations in factor values. 

Thus, for the purposes of this paper a scenario was created, 

and a model representing that scenario was constructed in 

order to conduct tests of the operations of the scenario. The 

scenario created is as follows: we posit a vehicle, carrying an 

asset of some arbitrary value. The vehicle is transporting the 

asset from a given starting location to a given destination, 

through territory that is known to harbor persons who would 

like to see the asset either captured or destroyed. These 

“hostiles” will attempt to intercept the vehicle before it can 

reach the designated destination. If this happens, the asset is 

considered lost and the trip has failed. If the vehicle manages 

to reach the designated destination with the asset intact, the 

trip has succeeded. Resources are available to provide 

protection for the asset, but the number of resources is 

insufficient to provide protection for the asset at all times. 

As mentioned previously, some simplifying assumptions 

are necessary to make the scenario workable, provided that 

these assumptions do not render the scenario unrealistic. Here 

it is assumed that the vehicle is travelling along a straight 

path from its origin to its destination. Though paths taken by 

mobile assets in reality are likely to be anything but purely 

straight, the assumption is still valid because the protection of 

a mobile asset is not a function of the shape of its path, but 

rather of the characteristics of that path. 

This leads to the next assumption. It is assumed that there 

are several points along the path (called waypoints for 

identification purposes) where the vehicle could potentially 

be attacked by hostiles. Outside of these waypoints, the 

vehicle is not at risk of being attacked. This assumption is 

valid because travel paths followed by mobile assets may 

often pass through areas of terrain (such as mountainous or 

watery regions) where only certain portions of the path are 

suitable for mounting an attack against a moving vehicle. A 

related assumption is that the vehicle is travelling at a 

constant speed, which is typical for convoys or vehicles 

carrying larger assets (e.g. machinery). 

Another assumption is that if protective resources are 

deployed at a given waypoint, the vehicle is invulnerable to 

attack. Conversely, if no protective resources are deployed at 

a waypoint and an attack occurs, the attack will always 

succeed. These assumptions were made to avoid 

unnecessarily complicating the scenario with extensive 

probabilistic calculations to determine if an attack is 

successful. In other words, the point of the scenario is to 

attempt to maximize the likelihood that protective resources 

will be deployed at waypoints where attacks occur, not the 

precise probability of success of those attacks. 

There is no distinction made as to the exact nature of the 

available protective resources, or the technologies that are 

used by those resources to provide protection for the asset. 

They are simply resources of some kind that are capable of 

protecting the asset from capture/destruction if they are 

deployed where an attack occurs. One distinction that does 

need to be made is that whatever the nature of the protective 

resources, they cannot be transported along with the asset. 

This reflects both the fact that one of the basic tenets of this 

paper is that constant protection of the asset throughout its 

journey is not available, and the fact that in many cases, 

protective assets capable of providing protection against a 

well-equipped intruder would need to be such that they could 

not be carried by the vehicle. 

Given the aforementioned framework and accompanying 

assumptions, we have a scenario that is reasonably generic 

yet realistic, and which can be used to test methodologies for 

optimizing the deployment of available protective resources. 

The next step was to construct a model that accurately 

reflected the scenario. 

 

III. ANALYZING THE SCENARIO 

Given the nature of the scenario as defined, it was decided 

that an agent-based simulation model would be appropriate 

for analyzing the scenario and evaluating protective resource 

optimization methods. An agent-based simulation is one in 

which, rather than modeling a sequence of events that occur 

in a particular order, a collection of entities, or agents, is 

defined. Each agent is created with a predefined set of 
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behaviors that it is capable of performing. The agents exist 

within an “open world” environment, in which they can 

potentially encounter other agents and interact with them 

over time. When interactions occur, the involved agents will 

participate according to their behaviors. So, for example, if 

one agent’s behavior is such that it seeks to acquire money, 

then whenever that agent encounters another it will ask that 

other to give it some money – perhaps a particular quantity, 

perhaps all that the other agent has. 

Fig. 1. NetLogo interface. 

 

In addition to interacting, agents can produce other agents, 

and they can also “die” and be removed from the simulation 

environment if certain specified conditions are met. The 

process of producing other agents, as with interacting, occurs 

according to an agent’s defined behavior for doing so. It may 

produce duplicates of itself, or “hybrids” consisting of some 

of its own traits combined with some from other agents with 

which it interacts, or completely new agents having new 

traits. 

An agent-based simulation is ideal for modeling the 

defined scenario, since that scenario consists of a series of 

interactions between the vehicle carrying the asset, the 

protective resources, and intruders seeking to gain access to 

the asset. Each of these actors has a clear objective that it is 

trying to achieve, so defining their respective behaviors is 

straightforward. 

The particular mechanism chosen to implement the 

simulation is a tool called NetLogo [3]. NetLogo is a 

self-contained agent-based simulation environment, 

consisting of a graphical user interface (GUI) builder and a 

facility for programming the operations of the simulation. It 

has facilities for constructing the “world” of a simulation as 

well as a wide variety of GUI components and reporters for 

monitoring and tracking the state of the simulation. It also has 

its own programming language, and an extensive library of 

simulations that can be referenced. 

The GUI designed for the simulation is shown in Fig. 1. 

Along the top left of the GUI are four buttons that are used, 

respectively, to initiate a pathway for the mobile asset as 

defined by the user, to initiate a plan for protecting the asset, 

to step through the simulation one iteration at a time, and to 

run the simulation to completion. 

Below these buttons is a window that depicts the path of 

the vehicle. The vehicle is shown as a truck icon moving 

along a roadway in the middle of the window. The boxes in 

the roadway are the waypoints, which have a number in their 

lower right corner that indicates the relative difficulty of 

attacking the vehicle at that waypoint (a higher number 

indicates greater difficulty). The boxes are color-coded to 

indicate if there is no intruder attacking at that waypoint 

(green), there is an intruder attacking at an unguarded 

waypoint (red), or the waypoint is being protected (blue). The 

vertical stripe at the right of the window indicates the 

destination of the vehicle. To the right of this window are 

reporters that show statistics for the simulation, including: 

total number of successful trips, total number of failed trips, 

cumulative probabilities of each waypoint being protected, a 

running graph of the success rate for getting the asset to the 

destination, and the current overall success rate. 

In the lower left of the GUI are the user-definable 

parameters for setting up the simulation. Included here are: 

the method that intruders will use for selecting a waypoint to 

attack, the maximum number of trip failures that can occur 

before the simulation will automatically terminate, the 

maximum number of “ticks” of the simulation clock that can 

occur before automatic termination, the difficulty rating for 

each waypoint, and the percentage of time that each waypoint 

will be protected by protective resources. 

In this version of the simulation, there are four waypoints. 

To simulate the limitations on the protective resources, one 

waypoint will be selected by intruders to be attacked, and one 

waypoint will be selected to be protected, for each trip of the 

vehicle. To run the simulation, the user selects values for the 
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intruder attack method (which can be random, proportional 

according to the relative difficulties of the waypoints, or 

optimal according to a mathematical formula which will be 

discussed in the next section), the maximum number of trip 

failures, the maximum number of ticks of the simulation 

clock, and the difficulty ratings for each waypoint (which are 

integers ranging from one to four). 

Once these values have been set, the user clicks on the 

“setup trip” button. This will create the pathway for the 

vehicle to take in transporting the asset. The user can then 

decide on a plan for how often to protect each waypoint with 

the one available protective resource. This is where the 

optimal ratio of waypoint protection can be calculated, the 

method for which will be discussed in the next section. The 

percentage of time that the protective resource will be 

assigned to each waypoint is entered, at which point the user 

clicks on the “setup patrols” button to enter the protection 

plan into the simulation. 

The user can then elect to step through the simulation one 

tick of the simulation clock at a time (by repeatedly clicking 

on the “go once” button), or allowing the simulation to run to 

completion by clicking on the “go” button. The simulation 

itself then consists of repeated attempts of the vehicle to 

transport the asset along the pathway as defined and reach the 

destination without being successfully attacked. As the 

vehicle moves along the pathway, it will of course have to 

pass through each of the waypoints before reaching the 

destination. If the vehicle reaches a waypoint that the intruder 

has not selected for attack, it simply passes through the 

waypoint and continues. If it reaches a waypoint that is 

currently being protected, again it passes through that 

waypoint and continues. If it reaches a waypoint that is 

targeted for attack by the intruder and is not currently being 

protected by the available protective resources, the asset is 

lost and the trip fails. If the vehicle succeeds in passing 

through all waypoints and reaching the destination, the trip 

succeeds. 

At the conclusion of each trip, the vehicle is returned to the 

starting point and another trip commences. This process 

continues until either the defined maximum number of failed 

trips occurs, or the defined maximum number of ticks of the 

simulation clock have occurred. Each trip is conducted under 

the same parameter settings, and this repetition is allowed so 

as to be able to determine an average asset transportation 

success rate for the pathway as defined, which is shown in the 

reporters to the right of the simulation. In this way, any 

number of different configurations of pathways can be 

defined and tested, and for each configuration, any number of 

protection plans can be defined and tested. Having defined 

the operating scenario and created a simulation model to 

implement that scenario, the next step was to use the model to 

test methods for optimizing the success rate of transporting 

the asset. 

 

IV. RESULTS OF THE SCENARIO 

To validate the model and gauge whether it was operating 

correctly, an initial series of tests was conducted in which 

each waypoint was assigned the same difficulty rating and the 

same likelihood of being protected, and the intruder was set 

to choose a waypoint to attack at random. In this 

configuration, for each trip of the vehicle one of the four 

waypoints would be selected at random to be protected, and 

one of the waypoints would also be selected at random to be 

attacked. Given this configuration, it would be expected that 

one out of four times the waypoint selected for protection and 

the waypoint selected for attack would be the same, resulting 

in a predicted asset transportation success rate of 25 percent. 

If the model was operating properly, then it should report an 

average success rate of close to 25 percent, and indeed, test 

runs yielded success rates within one percentage point of 25, 

which provided confidence that the model was functioning 

properly. 

At this point, the model could be used to assess the 

effectiveness of protection plans for the asset. But, why is it 

that the protection plans are expressed in terms of the 

percentage of time in which each waypoint will be protected? 

The answer relates to the fact that there are insufficient 

protective resources to simultaneously protect all the 

waypoints in the asset’s transportation path (for the 

simulation, this is reflected by having only one protective 

resource for four waypoints). This is the main focus of this 

paper, but again, why is it necessary to define percentages of 

time that each waypoint will be protected? 

In reality, suppose that we decide that we will always 

deploy whatever protective resources are available to protect 

a particular set of waypoints (perhaps the ones that are easiest 

for the intruders to attack). If we do this, then in a short 

amount of time the intruders will realize that it is always the 

same set of waypoints that is being protected, and will just 

attack one of the waypoints that they know will be 

unprotected. Likewise, suppose that we rotate the available 

protective resources around the waypoints in a regular 

fashion. Again, the intruders will be able to discern that the 

waypoints are being protected according to a pattern, and 

they will follow the pattern to attack waypoints that they 

know will not be protected at a given time. Thus, if we are to 

maximize the likelihood that the asset will be successfully 

transported, we cannot deploy the available protective 

resources according to any predictable pattern. 

This makes it sound as if each time an asset is transported 

along a given pathway, we should just randomly select 

waypoints to be protected according to the available 

protective resources, and all other things being equal that is in 

fact the case. However, this assumes that all waypoints are 

equally likely to be attacked, and as alluded to earlier there 

are many situations in which this is not true. It could easily be 

the case that some waypoints are easier to attack than others, 

meaning that intruders would be more likely to attack these 

waypoints than ones where they would have a much harder 

time in mounting an attack. However, as we have seen, even 

if some waypoints are more likely to be attacked we cannot 

always deploy the available protective resources to protect 

those waypoints, or even protect them according to a 

predictable pattern, as this will invite failure. 

So, it is clear that whatever protective resources are 

available, if these resources are insufficient to simultaneously 

protect all waypoints at all times, then it will be necessary to 

randomly deploy the protective resources to the waypoints at 

various times. In doing so we will not allow intruders to have 

any a priori knowledge of which waypoints will be protected 

at a given time. But, the fact remains that some waypoints 

may be more likely than others to be targeted for attack, so 
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even if intruders do not know beforehand which waypoints 

will be protected, they still will be more likely to want to 

attack the preferred waypoints. Thus, if we randomly deploy 

the protective resources in equal measure, the waypoints that 

are more likely to be attacked will be assigned protection less 

often than they should, and we still will not achieve the 

optimum asset transportation success rate possible. 

Given these facts, is it possible to guarantee that the 

optimal deployment ratio of the available protective 

resources for a given pathway can be achieved? The answer 

is yes, and can be found in the use of mixed strategies. The 

use of mixed strategies is an element of the field of game 

theory, which is the systematic study of decision-making 

where a decision made by one party depends in large part on 

the decisions made by other parties participating in the same 

situation. That is definitely the situation here, as the decision 

of where to deploy the available protective resources depends 

in large part on which waypoints the intruders are likely to 

attack, and the choice of which waypoints to attack depends 

in large part on which waypoints will be protected. 

The use of mixed strategies allows us to mathematically 

determine the optimal ratio at which to deploy the available 

protective resources by maximizing the expected value of the 

asset transportation success rate [4]. That is, the deployment 

ratio will be set such that the success rate achieved over time 

will be the same regardless of which waypoints the intruders 

choose to attack [4]. What this does is to make the intruders 

ambivalent to choosing which waypoints to attack, since no 

matter what they choose, the success rate over time will be 

the same [4]. Thus, we do not need to know what waypoints 

the intruders are planning to attack, nor do we need to care. 

By following the calculated mixed strategy, the success rate 

will be maximized. 

But, how do we know that this specific deployment ratio as 

determined by calculating the appropriate mixed strategy is 

in fact optimal? To answer this, we need to see what happens 

if we use any deployment ratio other than the one that the 

mixed strategy tells us is optimal. We have already seen that 

the mixed strategy was calculated such that no matter what 

the intruders decide to do, the expected value of the asset 

transportation success rate is the same. If we use any other 

ratio, then the expected values for the success rate under the 

different attack plans that are possible for the intruder must 

no longer be the same. This in turn means that the expected 

value for the success rate under at least one attack plan must 

be better than it is for other attack plans. 

If the expected value of the asset transportation success 

rate for a particular attack plan is less than for another plan, 

then the intruder should always follow one of the attack plans 

that carries the lowest expected success rate, in order to 

minimize the success of transporting the asset. But, if the 

intruder is always following a particular attack plan, then the 

available protective resources can always be deployed to 

counter that plan. That is, the intruder will always be 

attacking the same waypoints, so the protective resources can 

always be deployed to those waypoints. But then, if the 

protective resources are always being deployed to the same 

waypoints, then we are right back where we started. The 

intruders will adopt a different attack plan to counter the 

current deployment plan, which will then need to itself be 

countered, and so on, and we will always be in pursuit of 

countering what the intruders are doing, and thereby never 

achieving the best success rate. Thus, it is only when the 

optimal mixed strategy is being followed that the asset 

transportation success rate can be guaranteed to be optimal 

[4]. 

 

Fig. 2. Example gambit interface. 

 

Knowing this, the optimal mixed strategy can be calculated 

for any situation such as this in which a mixed strategy can be 

used to find the best way to randomly select decision options. 

These calculations can be done by hand; however, this can 

become a complicated process, particularly if there are more 

than four possible options that can be followed. Because of 

this, a tool called Gambit was used to help find the optimal 

mixed strategies for the simulation [5]. An example of the 

Gambit interface is given in Fig. 2. 

To use Gambit, a matrix is created having one dimension 

for each participant. Within each dimension are listed all of 

the available options for the participant with which the 

dimension is associated. Entries within the matrix are then 

made representing the payoffs associated with each particular 

combination of options for each participant. A payoff 

represents the relative value of an outcome to a given 

participant, usually expressed as ordinal numbers where 

positive numbers indicate desirable outcomes, negative 

numbers represent undesirable outcomes, and zero values 

represent that the status quo has been preserved (i.e. the 

overall satisfaction of the participant has not changed as a 

result of the outcome). Once the matrix is constructed, 

Gambit will calculate the optimal mixed strategy based on the 

contents of the matrix. In the example shown in Fig. 2, there 

are two participants (Player 1 and Player 2), each with two 

possible decision options (A and B), and thus we have a 2x2 

matrix. In each cell of the matrix, the first number listed is the 

payoff for Player 1 (the “row” player), and the second 

number listed is the payoff for Player 2 (the “column” player). 

Based on the participants, possible options, and payoffs given 

in the matrix, Gambit has calculated that in order to achieve 

the optimal expected payoff, both Player 1 and Player 2 

should choose the “A” option 70 percent of the time, and the 

“B” option 30 percent of the time. These values are shown in 

the lower half of the interface. 

Even given the fact that the operational scenario defined 

for this paper was a simplified representation of potentially 

real situations, and also that the use of tools such as NetLogo 
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and Gambit rendered the testing of the scenario substantially 

easier, exhaustive testing of the scenario remained all but 

impossible. The model defines four waypoints, each of which 

can be assigned one of four levels of difficulty. This amounts 

to 44, or 256 possible configurations of just the waypoints 

themselves. In order to exhaustively test the scenario, each of 

these configurations would have to be tested against all 

possible protective resource deployment plans. Even if these 

plans were restricted to the use of only integer percentages 

for the deployment ratios, that would still result in 1004, or 

100,000,000 different possible plans, for a total of a 

minimum of 2.56 billion different tests that would need to be 

run if we are to prove that the calculated ideal mixed strategy 

can be shown through simulation to be in fact optimal. Each 

of these tests would also need to be repeated in order to obtain 

viable average asset transportation success rates that could be 

compared to make this determination. 

Clearly, such testing is well beyond the realm of feasibility. 

Thus, some representative sample configurations were tested 

so as to observe if the calculated mixed strategy showed 

indications of optimality. One of those tests was the one 

already mentioned, which was to assign the same difficulty 

rating to all waypoints, and deploy the protective resource to 

each waypoint with the same frequency. This gave a baseline 

performance indicator, which showed what sort of asset 

transportation success rate could be expected in a completely 

randomized configuration. As discussed, these tests resulted 

in an average success rate reading of almost exactly 25 

percent, which is as expected. 

The other set of configurations that were tested were 

chosen for a specific reason. In these configurations, each of 

the waypoints was assigned a different difficulty rating. To 

calculate the optimal mixed strategy, the following payoff 

structure was assigned: 

 The asset was accorded a value of 10. 

 If the intruder was successful in attacking the asset, they 

would receive a payoff of the value of the asset minus the 

difficulty rating of the waypoint where the attack 

occurred. So, for example, if a successful attack occurred 

at a waypoint with a difficulty rating of 2, then the payoff 

to the intruder would be 10 – 2 = 8. 

 If the intruder was not successful in attacking the asset 

(i.e. the waypoint selected for attack was protected), they 

would receive a payoff of -10 minus the difficulty rating 

of the waypoint. So as before, if the waypoint attacked 

had a difficulty rating of 2, but was guarded by the 

protective resource, the attack failed and the intruder 

would receive a payoff of -10 – 2 = -12. 

 For the vehicle, if it succeeded in reaching the 

destination with the asset intact, it received a payoff of 

the value of the asset, or 10. 

 If the vehicle underwent a successful attack, the asset 

was lost so the payoff would then be -10. 

The configuration details, along with this payoff 

information, were entered into Gambit, and an optimal mixed 

strategy was calculated. The Gambit matrix and solution are 

shown in Fig. 3. The calculated optimal mixed strategy for 

the intruder, given in red at the left of the solution in the 

bottom half of the interface, reveals why this particular set of 

configurations and payoffs were selected for testing. Note 

that the values given for the frequencies at which the 

intruders should choose to attack each of the four waypoints 

are all the same. That means that the intruder can choose to 

attack each waypoint with equal probability. In other words, 

we can simply choose which waypoint will be attacked by the 

intruder for a given trip at random. This greatly simplifies the 

problem, and allows us to focus on testing only the calculated 

mixed strategy for the protective resource. 

These values are given in blue at the right of the solution in 

the bottom half of the interface, and show that the calculated 

optimal mixed strategy for protecting the asset is to protect 

the waypoint with the lowest difficulty rating 32.5 percent of 

the time, the waypoint with the second lowest difficulty 

rating 25.5 percent of the time, the waypoint with the third 

lowest difficulty rating 22.5 percent of the time, and the 

waypoint with the highest difficulty rating 17.5 percent of the 

time. 

Fig. 3. Gambit solution for test configuration. 

 

Intuitively, these values make sense since attacking 

waypoints with lower difficulty ratings result in higher 

payoffs to the intruder if the attack is successful, so 

waypoints with lower difficulty ratings would tend to be 

preferred by the intruder and thus should be protected more 

often, but is there any evidence that using this mixed strategy 

results in better asset transportation success rates than would 

be obtained at random? Repeated runs of the simulation 

resulted in success rates as high as 31.03 percent, with an 

overall average of 27.354 percent across all runs. These 

numbers are not dramatically higher than random, but they 

are in fact higher. Given that the protective resource is at a 

substantial disadvantage to begin with (one resource to 

protect four waypoints), any increase in the asset 

transportation success rate would be desirable. 

 

V. CONCLUSION 

It is clear that to optimize the asset transportation success 

rate for transporting mobile assets through hostile areas with 

limited access to protective resources cannot be 

accomplished by dedicating those resources only to some 

waypoints exclusively, or by rotating the deployment of those 

resources according to any discernable pattern. Optimizing 

the success rate can only be accomplished through deploying 

the protective resources probabilistically. However, this 

should not be done in a completely random fashion, without 

concern for the environment in which the asset is being 

transported. 

Though not conclusive, evaluating the efficacy of the 

optimal mixed strategy through the simulation provided 

evidence that using optimal mixed strategies to decide how 
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often to deploy available protective assets to the various 

waypoints yields better asset transportation success rates than 

other random methods. This corroborates what the 

mathematics were indicating from the beginning. 

Thus, a recommendation can be made that optimizing 

protection of mobile assets can be accomplished by 

calculating an optimal mixed strategy for the particular 

pathway over which the asset will be transported, and then 

deploying the available protective resources according to that 

mixed strategy. That being said, there are a number of ways 

in which the work done for this paper can be extended. 

The first extension that could be done would be to do 

additional testing. Though it has been shown that exhaustive 

testing is not feasible, additional testing of other scenario 

configurations certainly would be, given that the initial 

testing has indicated that using the optimal mixed strategy 

technique is useful for the configurations tested. Other 

extensions that could be made include: 

 Allowing for variable numbers of waypoints to be 

represented in the simulation 

 Allowing for protective resources to be able to cover 

more than one waypoint at a time in the simulation 

 Allowing for the representation of additional 

methodologies that can be used by the intruder in 

determining which waypoint(s) they will attack 

 Allowing for multiple attacks to occur along the 

vehicle’s pathway in a given trip 

 Develop and integrate a model for the probability of a 

successful attack given factors such as weapon’s class, 

sensor availability, attack strength, defense strength, 

motivation, surprise, and training level 

In short, there is plenty of room for additional research to 

be conducted in this area. However, one thing that is certain is 

that regardless of whether some or all of the extensions listed 

are performed, all of them will still need to include the 

optimal mixed strategy methodology as part of their 

operations. 
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