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Abstract—The system design and development of embedded 

software is under a lot of challenges. Model-based software 

systems are drawing more and more attentions. In our previous 

work we proposed a system level design language named 

SyncBlock and developed a toolset for the design of 

synchronous embedded system. Although our toolset is superior 

for building synchronous models, it is difficult to model the 

external environment of embedded system ideally, and does not 

support asynchronous modeling functionalities or the merging 

of heterogeneous models of computation. Ptolemy II is a 

well-known modeling platform which supports many 

well-defined heterogeneous models of computation. In this 

paper we propose a series of rules and mechanisms on model 

transformation from SyncBlock to the SR model of 

computation in Ptolemy II for heterogeneous model merging. 

Using our method, we can model and simulate synchronous 

embedded systems by SyncBlock, and then simulate the 

designed model further coupling with external environment 

modeled by other models of computation in Ptolemy II like 

Discrete Event Domain, and finally generate codes by the 

SyncBlock modeling tool. Through heterogeneous model 

merging by model transformation, we combine the advantages 

of the two modeling tools. 

 
Index Terms—Heterogeneous model merging, model 

transformation, simulation, SyncBlock, Synchronous Reactive 

model.  

 

I. INTRODUCTION 

In order to address the challenges in modeling, simulation 

and implementation of the applications of synchronous 

embedded systems, we have designed a synchronous 

modeling language SyncBlock [1], which is a system level 

language based on automata and block diagrams. It has 

several advantages. Both the operational semantics and 

formal semantics of SyncBlock are precisely described, so 

that it can be used for modeling, simulation, verification and 

code generation. In SyncBlock, a system is modeled as a 

combination network of compound blocks and atomic blocks. 

SyncBlock supports hierarchical decomposition and 

concurrent process execution. Furthermore, code generation 

to both hardware, e.g., VHDL, and software, e.g., C is well 
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supported, which can enable automatic generation of the 

efficient implementation of SyncBlock models. SyncBlock is 

superior in modeling of synchronous systems, but it can 

hardly model asynchronous systems and the external 

environment of embedded systems. On the other hand, 

Ptolemy II [2], [3] defines many models of computation like 

Synchronous Reactive (SR), Discrete Event (DE), and 

synchronous dataflow (SDF) etc. [4] It is effective for 

modeling the external environment and equipment 

information.  

 

 
Fig. 1. A simple traffic light model in Ptolemy II. 

 

 
Fig. 2. Top-level model of the traffic light controller. 

 

 
Fig. 3. The implementation of the normal state. 

 

Let us introduce an example to denote the faithfully 

simulating of embedded systems by heterogeneous model 

fusion in Ptolemy II. Fig. 1. [5] depicts a model of traffic light. 

This model illustrates a typical design pattern where the top 

level is a DE model of the physical environment for a system 
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under design. Opening the TrafficLight actor, we can see its 

implementation as presented in the Fig. 2. And looking inside 

the normal state, we can see the implementations as presented 

in the Fig. 3. The PoissonClock actor occasionally injects an 

Error signal. The Error condition then lasts 5 seconds, as 

determined by the TimedDelay actor. However, the traffic 

light model in SyncBlock as presented in the Fig. 4 does not 

contain any physical environment like the clock signal in 

Ptolemy II. The model should get the values of the input ports, 

which may be manual or file input, when a new iteration 

starts. 
 

 
Fig. 4. TrafficLight modeled by SyncBlock. 

 

Thus, by transforming the models to Ptolemy II, we 

combine the comprehensive advantages of SyncBlock with 

Ptolemy II's extended modeling capabilities, and the model 

simulation becomes more faithful for the system design.   

To analyze and design synchronous embedded systems, 

SyncBlock is convenient and effective for modeling and 

simulation. It supports concurrency and code generation. 

However, it is infeasible to do simulation coupling with other 

heterogeneous modules, e.g., coupling FPGA design models 

with ARM programming models. After the model 

transformation from SyncBlock models to Ptolemy II models, 

the combination of simulation becomes feasible, because 

Ptolemy II contains models of computation, which is able to 

model heterogeneous modules, like DE. Through the 

simulation of coupling the source model and heterogeneous 

environment model, we can check up the completeness of the 

functionality and the timing correctness of the system-design 

model in a more faithful way. Afterwards, we use SyncBlock 

tool to generate reliable code, which can be synthesized and 

loaded into the FPGA processor directly. In the field of 

synchronous embedded system modeling, we put forward a 

complete set of solutions from modeling, simulation, 

validation, code generation in SyncBlock. Furthermore, we 

realize more faithful simulation in Ptolemy II merging the SR 

models and the DE models, which can model the system 

external information and physical environment. And we 

present the implementation of the transformation tool 

SyncToPtolemy integrated in the Tsmart platform. We can 

directly use SyncToPtolemy to transform the SyncBlock 

models to the Ptolemy II models for simulation coupling the 

synchronous embedded system model with the 

heterogeneous external environment model. 

The paper is organized as follows: related work is 

presented in Section 2. The proposed transformation rules are 

presented in Section 3, including the compound blocks and 

atomic blocks. Section 4 presents the transformation 

algorithm. Case studies are given in Section V, and we 

conclude the paper in Section VI. 

II. RELATED WORK 

A large amount of work has been contributed to reduce the 

complexity of the design of synchronous embedded systems. 

In many papers, the formal language based approach is 

attractive because it provides a unified basis for formal 

analysis to achieve expected correctness. The formal 

synchronous languages mainly contain Esterel [6], Lustre [7], 

Statecharts [8]. The Esterel and Statecharts are suitable for 

specifying control-oriented systems. They are easy for 

modeling of the complex decision control logic. But They are 

difficult for modeling of the signal flow and the data 

processing because the data communication among modules 

are realized by signal broadcast. The Lustre is good for 

specifying data-oriented systems. It is easy for modeling of 

the signal flow and data processing modules. But it’s difficult 

for modeling of the decision control logic.  

Based on the above system level design language, there are 

many corresponding tools supporting modeling, simulation 

of real-time, concurrent, embedded systems. The Esterel 

studio [9] and CEC [10] supports the design of digital 

systems. But the two tools are limited in code generation, 

many basic structures are not supported, and the simulation is 

not visual. The signal communication is hard to present 

clearly and visually. Simulink [11] is now widely used and 

the stateflow [12] has great modeling and simulation 

capability. But they have no formal semantics. Furthermore, 

the operational semantic of the parallel execution of automata 

is too complex and dependent on the relative position of the 

module. They are simulated in a sequence mode, from left to 

right, up to down. This kind of preemption is not fit for 

synchronous embedded system. 

The Ptolemy project studies heterogeneous modeling, 

simulation, and design of concurrent systems. The focus is on 

embedded systems [13], particularly those that mix 

technologies, including for example analog and digital 

electronics, hardware and software, and electronics and 

mechanical devices. The focus is also on systems that are 

complex in the sense that they mix widely different 

operations, such as signal processing, feedback control, 

sequential decision making, and user interfaces. However, it 

is primarily used as a simulation environment and cannot be 

verified and synthesized. The semantic is based on the event 

queue, which may be different from the real execution of 

some synchronous systems. 

 

III. TRANSFORMATION RULES 

The SyncBlock model is a network of blocks designed in 

the modeling language. The control-oriented behaviors can 

be captured in the parallel automata in an atomic block, and 

the dataflow behaviors can be captured in the data port 

connections among atomic blocks and compound blocks. The 

transformation rules from SyncBlock to Ptolemy II SR MoC 

is designed recursively in a top-down way. The basic 

elements, e.g., input and output ports, of compound blocks 

are transformed first, and then the communication 

mechanisms between sub-blocks at the same level are 

transformed. We then transform sub-blocks. If a sub-block is 

another compound blocks, we repeat this transformation 
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process from the first step. If it is an atomic block, the parallel 

automata are transformed. The advantages of our 

transformation strategy are: 1) the transformation process 

keeps the original structure of source model, which ensures 

the readability of the transformed model. 2) It keeps the 

semantics consistent with source model. The transformation 

rules of compound blocks and atomic blocks are presented in 

detail as follows. 

A. Compound Block 

At the top level, a compound block can be refined into 

several sub-blocks, each of which can be a   compound block 

or an atomic block. Communications between sub-blocks are 

connected through ports. Note that the direct cycle 

consideration of SyncBlock and Ptolemy II SR models are 

different, so the semantic preserving transformation of this 

mechanism is one key point of the transformation rules. In 

the SyncBlock modeling language, the data transmission 

between blocks are clear and visual. The cycle is broken by 

the inner data communication principle that the values are 

updated at the end of computation in an iteration, and the 

updated values will be read at the start of computation in the 

next iteration. During the transformation, keeping the 

hierarchical structure is our original intention. From what has 

been discussed above, there are two key aspects to be 

manipulated. 

First, we transform the block diagram of the hierarchy 

mapping. To preserve the original hierarchical structure of 

the source SyncBlock model and the readability of the 

transformed model, we do not flatten the hierarchical 

relationships in the source SyncBlock model or put all the 

parallel automata at one level, although this is easier than 

maintaining the structures. In order to achieve this goal, we 

use nested TypedCompositeActor in Ptolemy II to achieve 

the same hierarchy in the process of transformation. 

Second, we transform the communications between 

components. The communications between sub-blocks at the 

same level are realized by port connections. Because of the 

inner data communication principle in SyncBlock that the 

output values are updated at the end of computation in the 

current iteration, and because the updated values will be read 

at the start of computation in the next iteration, the dataflow 

transfer will delay one clock cycle. When transforming the 

communications between sub-blocks, we add a 

NonStrictDelay actor as presented in Fig 5 in front of every 

output port of the dataflow sender so that the output value 

transfer will be consistent with source model which has one 

clock cycle delay. 

 

 
Fig. 5. NonStrictDelay actor connected with output port in data 

communication transformation. 

B. Atomic Block  

Parallel automata in atomic blocks are the most important 

components to express the system behavior in SyncBlock 

model. Thus, for the sake of equivalent conversion, we apply 

the parallel Modal Models in Ptolemy II to achieve the same 

ability of expression as parallel automata. Inside the modal 

model is a finite-state machine controller, and inside each 

state in the FSM is a refinement model. The controller is a 

finite-state machine (FSM) [14], which consists of states and 

transitions. In the process of transforming parallel automata 

to the modal model, three important points need to be 

considered specially: 

First, in SyncBlock the transition actions support some 

basic control structure such as IF ELSE statement. For 

example, Fig. 6 presents two parallel automata, one of which 

is a self-loop with a transition whose action has some IF 

ELSE statements as presented in the Fig 7. However, 

Ptolemy II does not support IF ELSE statement. 

 

 
Fig. 6. two parallel automatons in SyncBlock. 

 

 
Fig. 7.  Action of the self-loop transition. 

 

To maintain the readability of the transformed model, we 

add refinement in the state which the transition’s arrow 

points to. The basic control structure is show in the followed 

sheet, among BCS, statement block A, B, C, D can be empty 

and also be a nested BCS.  

 
TABLE I: BASIC CONTROL STRUCTURE IN THE ACTION OF TRANSITION 

Basic control structure BCS:  

A 

If () then 

B 

else 

C 

fi 

D 

 

The basic control structure can be refined as presented in 

the Fig 8 in Ptolemy II’s FSM , and if A, B, C, D also contain 

a BCS , we would perform recursive refinement . 
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Fig. 8.  BCS modeled in Ptolemy II’s FSM. 

 

The second point is the action of transition transitions. 

Once a transition is chosen in SyncBlock, its actions are 

executed in order. The format of an action is typically the 

operand= expressions. No matter the operand is a port name 

or variable name, all actions are specified by the action 

parameters of the transition together. But in Ptolemy II the 

output action is specified by the outputActions parameter of 

the transition for ports and the set action are specified by the 

setActions parameter of the transition for variables. So when 

we transform the transition’s actions, the main idea is to 

separate port actions from variable actions. 

The final point is about priorities. The priority is defined 

on the name of two transitions in a single automaton. Ptolemy 

II does not support priorities between transitions. 

 

IV. ALGORITHM DESIGN 

 
algorithm 1: SyncBlock model atomic block to Ptolemy II’s Modal Model 

input: SyncBlock model atomic block B 

output: Ptolemy II model P 

for each variable vi∈B do 

vi is transformed to Ptolemy II’s variable  

end 

for each input/output port pi∈B do 

pi is transformed to Ptolemy II’s input/output port 

end 

for each parallel automaton ai∈B do 

ai is transformed to Ptolemy II’s Modal Model 

end 

 
algorithm 2: SyncBlock model compound block to Ptolemy II’s 

TypedCompositeActor 

input: SyncBlock model compound block C 

output: Ptolemy II model P 

for each input/output port pi∈C do 

pi is transformed to Ptolemy II’s input/output port 

end 

for each relation Ri between sub-blocks do 

 Ri is transformed to relation in Ptolemy II 

end 

for each sub-block Si∈C do 

if Si is atomic block do 

call the algorithm 1 

end 

if Si is compound block do 

call the algorithm 2 

end 

end 

 

V. CASE STUDY  

We conduct some experiments on a sub-module of train 

communication control system that is used in real world 

subway to show how to transform SyncBlock model to SR in 

Ptolemy II.  The train control system is a safety-critical 

embedded system consisting of two controllers: 

multifunction vehicle bus(MVB) controller which 

interconnects devices within a vehicle, and wire train 

bus(WTB) controller which interconnects the vehicles of a 

train. 

 

 

 
Fig. 9. An atomic block case FPGA submodule senddevicestatus. 

 

 
Fig. 10. Top level of the transformed model in Ptolemy II. 

 

 
Fig. 11. submodule senddevicestatus transformed to Ptolemy II. 

 

We focus on FPGA of the MVB controllers. As presented 

in the Fig 9, submodule senddevicestatus is modeled as an 

atomic block in SyncBlock. It has six input ports and three 

output ports, and two parallel automatons are inside it. in 

particular, the self-loop automaton has a transition with IF 

ELSE statement. So when transforming the model, the 

transition need refinement in Ptolemy II. The transformed 

model is presented in the Fig. 10. 

We give SyncBlock 9 cycles’ input value of every port 

with dr{true, false, false, true, true, false,f alse, true, true}, 

dstatuschange{true, true, true, true, true, true, true, true, true}, 
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dstatus{4369,4369,4369,4369,4369,4369,4369,4369,4369},

daddresschange{true, true, true, true, false, false, false, false, 

false}, address{34952, 34952, 34952, 34952, 34952, 34952, 

34952, 34952, 34952}, and we get the output value of every 

output port with devicechange{true, true, true, true, true, true, 

true, true, true},devicechangeflag{ false, true, true, true, false, 

false, false, false, false} devicedataout {0, 0, 0, 34952, 34952, 

0, 0, 4369, 4369} 

 

 
Fig.12. Automaton inside the ModalModel MM0. 

 

 
Fig.13. Automaton inside the ModalModel MM1 at the left. 

 

 
Fig. 14. Refinement inside the place0. 

 

 
Fig.15. add input actor Sequence and output actor File Writer to transformed 

SR model. 

 

As presented in the Fig. 15, we add the same input value 

and input cycle to the SR model, and we get the same output 

value as the original SyncBlock model. So we think our 

transformation is right. 

 

VI. CONCLUSION 

In this paper we present a strategy for heterogeneous 

model merging based on model transformation from 

SyncBlock to SR model of computation in Ptolemy II. 

Through transformation we can model synchronous 

embedded system by SyncBlock, simulate the pure 

synchronous model by SyncBlock, further more simulate the 

designed model coupling with modeling of external 

environment of embedded system by Ptolemy II, and finally 

generate code by using SyncBlock. This way combines the 

advantages of the two modeling tools for heterogeneous 

model merging. 

In the future, we will prove the correctness of the 

conversion by bisimulaiton [15] verification.  
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