



Abstract—The system design and development of embedded

software is under a lot of challenges. Model-based software

systems are drawing more and more attentions. In our previous

work we proposed a system level design language named

SyncBlock and developed a toolset for the design of

synchronous embedded system. Although our toolset is superior

for building synchronous models, it is difficult to model the

external environment of embedded system ideally, and does not

support asynchronous modeling functionalities or the merging

of heterogeneous models of computation. Ptolemy II is a

well-known modeling platform which supports many

well-defined heterogeneous models of computation. In this

paper we propose a series of rules and mechanisms on model

transformation from SyncBlock to the SR model of

computation in Ptolemy II for heterogeneous model merging.

Using our method, we can model and simulate synchronous

embedded systems by SyncBlock, and then simulate the

designed model further coupling with external environment

modeled by other models of computation in Ptolemy II like

Discrete Event Domain, and finally generate codes by the

SyncBlock modeling tool. Through heterogeneous model

merging by model transformation, we combine the advantages

of the two modeling tools.

Index Terms—Heterogeneous model merging, model

transformation, simulation, SyncBlock, Synchronous Reactive

model.

I. INTRODUCTION

In order to address the challenges in modeling, simulation

and implementation of the applications of synchronous

embedded systems, we have designed a synchronous

modeling language SyncBlock [1], which is a system level

language based on automata and block diagrams. It has

several advantages. Both the operational semantics and

formal semantics of SyncBlock are precisely described, so

that it can be used for modeling, simulation, verification and

code generation. In SyncBlock, a system is modeled as a

combination network of compound blocks and atomic blocks.

SyncBlock supports hierarchical decomposition and

concurrent process execution. Furthermore, code generation

to both hardware, e.g., VHDL, and software, e.g., C is well

Manuscript received August 28, 2015; revised December 23, 2015. This

research is sponsored in part by NSFC Program (No. 61202010,

No.91218302), Tsinghua university Initiative Scientific Research Program

(20131089331) and MIIT IT funds (Research and application of TCN key

technologies) of China.

H. T. Ma is with the School of Software of Tsinghua University, Beijing,

China (e-mail: hongtian1991@foxmail.com).

H. H. Zhang and M. Gu is with the School of Software of Tsinghua

University, Tnlist, Kliss, Beijing, China (e-mail:

zhanghehua@tsinghua.edu.cn, guming@tsinghua.edu.cn).

supported, which can enable automatic generation of the

efficient implementation of SyncBlock models. SyncBlock is

superior in modeling of synchronous systems, but it can

hardly model asynchronous systems and the external

environment of embedded systems. On the other hand,

Ptolemy II [2], [3] defines many models of computation like

Synchronous Reactive (SR), Discrete Event (DE), and

synchronous dataflow (SDF) etc. [4] It is effective for

modeling the external environment and equipment

information.

Fig. 1. A simple traffic light model in Ptolemy II.

Fig. 2. Top-level model of the traffic light controller.

Fig. 3. The implementation of the normal state.

Let us introduce an example to denote the faithfully

simulating of embedded systems by heterogeneous model

fusion in Ptolemy II. Fig. 1. [5] depicts a model of traffic light.

This model illustrates a typical design pattern where the top

level is a DE model of the physical environment for a system

Heterogeneous Model Merging Based on Model

Transformation

Hongtian Ma, Hehua Zhang, and Ming Gu

39

International Journal of Modeling and Optimization, Vol. 6, No. 1, February 2016

DOI: 10.7763/IJMO.2016.V6.500

under design. Opening the TrafficLight actor, we can see its

implementation as presented in the Fig. 2. And looking inside

the normal state, we can see the implementations as presented

in the Fig. 3. The PoissonClock actor occasionally injects an

Error signal. The Error condition then lasts 5 seconds, as

determined by the TimedDelay actor. However, the traffic

light model in SyncBlock as presented in the Fig. 4 does not

contain any physical environment like the clock signal in

Ptolemy II. The model should get the values of the input ports,

which may be manual or file input, when a new iteration

starts.

Fig. 4. TrafficLight modeled by SyncBlock.

Thus, by transforming the models to Ptolemy II, we

combine the comprehensive advantages of SyncBlock with

Ptolemy II's extended modeling capabilities, and the model

simulation becomes more faithful for the system design.

To analyze and design synchronous embedded systems,

SyncBlock is convenient and effective for modeling and

simulation. It supports concurrency and code generation.

However, it is infeasible to do simulation coupling with other

heterogeneous modules, e.g., coupling FPGA design models

with ARM programming models. After the model

transformation from SyncBlock models to Ptolemy II models,

the combination of simulation becomes feasible, because

Ptolemy II contains models of computation, which is able to

model heterogeneous modules, like DE. Through the

simulation of coupling the source model and heterogeneous

environment model, we can check up the completeness of the

functionality and the timing correctness of the system-design

model in a more faithful way. Afterwards, we use SyncBlock

tool to generate reliable code, which can be synthesized and

loaded into the FPGA processor directly. In the field of

synchronous embedded system modeling, we put forward a

complete set of solutions from modeling, simulation,

validation, code generation in SyncBlock. Furthermore, we

realize more faithful simulation in Ptolemy II merging the SR

models and the DE models, which can model the system

external information and physical environment. And we

present the implementation of the transformation tool

SyncToPtolemy integrated in the Tsmart platform. We can

directly use SyncToPtolemy to transform the SyncBlock

models to the Ptolemy II models for simulation coupling the

synchronous embedded system model with the

heterogeneous external environment model.

The paper is organized as follows: related work is

presented in Section 2. The proposed transformation rules are

presented in Section 3, including the compound blocks and

atomic blocks. Section 4 presents the transformation

algorithm. Case studies are given in Section V, and we

conclude the paper in Section VI.

II. RELATED WORK

A large amount of work has been contributed to reduce the

complexity of the design of synchronous embedded systems.

In many papers, the formal language based approach is

attractive because it provides a unified basis for formal

analysis to achieve expected correctness. The formal

synchronous languages mainly contain Esterel [6], Lustre [7],

Statecharts [8]. The Esterel and Statecharts are suitable for

specifying control-oriented systems. They are easy for

modeling of the complex decision control logic. But They are

difficult for modeling of the signal flow and the data

processing because the data communication among modules

are realized by signal broadcast. The Lustre is good for

specifying data-oriented systems. It is easy for modeling of

the signal flow and data processing modules. But it’s difficult

for modeling of the decision control logic.

Based on the above system level design language, there are

many corresponding tools supporting modeling, simulation

of real-time, concurrent, embedded systems. The Esterel

studio [9] and CEC [10] supports the design of digital

systems. But the two tools are limited in code generation,

many basic structures are not supported, and the simulation is

not visual. The signal communication is hard to present

clearly and visually. Simulink [11] is now widely used and

the stateflow [12] has great modeling and simulation

capability. But they have no formal semantics. Furthermore,

the operational semantic of the parallel execution of automata

is too complex and dependent on the relative position of the

module. They are simulated in a sequence mode, from left to

right, up to down. This kind of preemption is not fit for

synchronous embedded system.

The Ptolemy project studies heterogeneous modeling,

simulation, and design of concurrent systems. The focus is on

embedded systems [13], particularly those that mix

technologies, including for example analog and digital

electronics, hardware and software, and electronics and

mechanical devices. The focus is also on systems that are

complex in the sense that they mix widely different

operations, such as signal processing, feedback control,

sequential decision making, and user interfaces. However, it

is primarily used as a simulation environment and cannot be

verified and synthesized. The semantic is based on the event

queue, which may be different from the real execution of

some synchronous systems.

III. TRANSFORMATION RULES

The SyncBlock model is a network of blocks designed in

the modeling language. The control-oriented behaviors can

be captured in the parallel automata in an atomic block, and

the dataflow behaviors can be captured in the data port

connections among atomic blocks and compound blocks. The

transformation rules from SyncBlock to Ptolemy II SR MoC

is designed recursively in a top-down way. The basic

elements, e.g., input and output ports, of compound blocks

are transformed first, and then the communication

mechanisms between sub-blocks at the same level are

transformed. We then transform sub-blocks. If a sub-block is

another compound blocks, we repeat this transformation

40

International Journal of Modeling and Optimization, Vol. 6, No. 1, February 2016

process from the first step. If it is an atomic block, the parallel

automata are transformed. The advantages of our

transformation strategy are: 1) the transformation process

keeps the original structure of source model, which ensures

the readability of the transformed model. 2) It keeps the

semantics consistent with source model. The transformation

rules of compound blocks and atomic blocks are presented in

detail as follows.

A. Compound Block

At the top level, a compound block can be refined into

several sub-blocks, each of which can be a compound block

or an atomic block. Communications between sub-blocks are

connected through ports. Note that the direct cycle

consideration of SyncBlock and Ptolemy II SR models are

different, so the semantic preserving transformation of this

mechanism is one key point of the transformation rules. In

the SyncBlock modeling language, the data transmission

between blocks are clear and visual. The cycle is broken by

the inner data communication principle that the values are

updated at the end of computation in an iteration, and the

updated values will be read at the start of computation in the

next iteration. During the transformation, keeping the

hierarchical structure is our original intention. From what has

been discussed above, there are two key aspects to be

manipulated.

First, we transform the block diagram of the hierarchy

mapping. To preserve the original hierarchical structure of

the source SyncBlock model and the readability of the

transformed model, we do not flatten the hierarchical

relationships in the source SyncBlock model or put all the

parallel automata at one level, although this is easier than

maintaining the structures. In order to achieve this goal, we

use nested TypedCompositeActor in Ptolemy II to achieve

the same hierarchy in the process of transformation.

Second, we transform the communications between

components. The communications between sub-blocks at the

same level are realized by port connections. Because of the

inner data communication principle in SyncBlock that the

output values are updated at the end of computation in the

current iteration, and because the updated values will be read

at the start of computation in the next iteration, the dataflow

transfer will delay one clock cycle. When transforming the

communications between sub-blocks, we add a

NonStrictDelay actor as presented in Fig 5 in front of every

output port of the dataflow sender so that the output value

transfer will be consistent with source model which has one

clock cycle delay.

Fig. 5. NonStrictDelay actor connected with output port in data

communication transformation.

B. Atomic Block

Parallel automata in atomic blocks are the most important

components to express the system behavior in SyncBlock

model. Thus, for the sake of equivalent conversion, we apply

the parallel Modal Models in Ptolemy II to achieve the same

ability of expression as parallel automata. Inside the modal

model is a finite-state machine controller, and inside each

state in the FSM is a refinement model. The controller is a

finite-state machine (FSM) [14], which consists of states and

transitions. In the process of transforming parallel automata

to the modal model, three important points need to be

considered specially:

First, in SyncBlock the transition actions support some

basic control structure such as IF ELSE statement. For

example, Fig. 6 presents two parallel automata, one of which

is a self-loop with a transition whose action has some IF

ELSE statements as presented in the Fig 7. However,

Ptolemy II does not support IF ELSE statement.

Fig. 6. two parallel automatons in SyncBlock.

Fig. 7. Action of the self-loop transition.

To maintain the readability of the transformed model, we

add refinement in the state which the transition’s arrow

points to. The basic control structure is show in the followed

sheet, among BCS, statement block A, B, C, D can be empty

and also be a nested BCS.

TABLE I: BASIC CONTROL STRUCTURE IN THE ACTION OF TRANSITION

Basic control structure BCS:

A

If () then

B

else

C

fi

D

The basic control structure can be refined as presented in

the Fig 8 in Ptolemy II’s FSM , and if A, B, C, D also contain

a BCS , we would perform recursive refinement .

41

International Journal of Modeling and Optimization, Vol. 6, No. 1, February 2016

Fig. 8. BCS modeled in Ptolemy II’s FSM.

The second point is the action of transition transitions.

Once a transition is chosen in SyncBlock, its actions are

executed in order. The format of an action is typically the

operand= expressions. No matter the operand is a port name

or variable name, all actions are specified by the action

parameters of the transition together. But in Ptolemy II the

output action is specified by the outputActions parameter of

the transition for ports and the set action are specified by the

setActions parameter of the transition for variables. So when

we transform the transition’s actions, the main idea is to

separate port actions from variable actions.

The final point is about priorities. The priority is defined

on the name of two transitions in a single automaton. Ptolemy

II does not support priorities between transitions.

IV. ALGORITHM DESIGN

algorithm 1: SyncBlock model atomic block to Ptolemy II’s Modal Model

input: SyncBlock model atomic block B

output: Ptolemy II model P

for each variable vi∈B do

vi is transformed to Ptolemy II’s variable

end

for each input/output port pi∈B do

pi is transformed to Ptolemy II’s input/output port

end

for each parallel automaton ai∈B do

ai is transformed to Ptolemy II’s Modal Model

end

algorithm 2: SyncBlock model compound block to Ptolemy II’s

TypedCompositeActor

input: SyncBlock model compound block C

output: Ptolemy II model P

for each input/output port pi∈C do

pi is transformed to Ptolemy II’s input/output port

end

for each relation Ri between sub-blocks do

 Ri is transformed to relation in Ptolemy II

end

for each sub-block Si∈C do

if Si is atomic block do

call the algorithm 1

end

if Si is compound block do

call the algorithm 2

end

end

V. CASE STUDY

We conduct some experiments on a sub-module of train

communication control system that is used in real world

subway to show how to transform SyncBlock model to SR in

Ptolemy II. The train control system is a safety-critical

embedded system consisting of two controllers:

multifunction vehicle bus(MVB) controller which

interconnects devices within a vehicle, and wire train

bus(WTB) controller which interconnects the vehicles of a

train.

Fig. 9. An atomic block case FPGA submodule senddevicestatus.

Fig. 10. Top level of the transformed model in Ptolemy II.

Fig. 11. submodule senddevicestatus transformed to Ptolemy II.

We focus on FPGA of the MVB controllers. As presented

in the Fig 9, submodule senddevicestatus is modeled as an

atomic block in SyncBlock. It has six input ports and three

output ports, and two parallel automatons are inside it. in

particular, the self-loop automaton has a transition with IF

ELSE statement. So when transforming the model, the

transition need refinement in Ptolemy II. The transformed

model is presented in the Fig. 10.

We give SyncBlock 9 cycles’ input value of every port

with dr{true, false, false, true, true, false,f alse, true, true},

dstatuschange{true, true, true, true, true, true, true, true, true},

42

International Journal of Modeling and Optimization, Vol. 6, No. 1, February 2016

dstatus{4369,4369,4369,4369,4369,4369,4369,4369,4369},

daddresschange{true, true, true, true, false, false, false, false,

false}, address{34952, 34952, 34952, 34952, 34952, 34952,

34952, 34952, 34952}, and we get the output value of every

output port with devicechange{true, true, true, true, true, true,

true, true, true},devicechangeflag{ false, true, true, true, false,

false, false, false, false} devicedataout {0, 0, 0, 34952, 34952,

0, 0, 4369, 4369}

Fig.12. Automaton inside the ModalModel MM0.

Fig.13. Automaton inside the ModalModel MM1 at the left.

Fig. 14. Refinement inside the place0.

Fig.15. add input actor Sequence and output actor File Writer to transformed

SR model.

As presented in the Fig. 15, we add the same input value

and input cycle to the SR model, and we get the same output

value as the original SyncBlock model. So we think our

transformation is right.

VI. CONCLUSION

In this paper we present a strategy for heterogeneous

model merging based on model transformation from

SyncBlock to SR model of computation in Ptolemy II.

Through transformation we can model synchronous

embedded system by SyncBlock, simulate the pure

synchronous model by SyncBlock, further more simulate the

designed model coupling with modeling of external

environment of embedded system by Ptolemy II, and finally

generate code by using SyncBlock. This way combines the

advantages of the two modeling tools for heterogeneous

model merging.

In the future, we will prove the correctness of the

conversion by bisimulaiton [15] verification.

REFERENCES

[1] Y. Jiang. SyncBlock: Novel Model for the Design of Synchronous

Embedded System.

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, Ptolemy: A

Framework for Simulating and Prototyping Heterogeneous Systems,

1994.

[3] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.

Neuendorffer, S. Sachs, and Y. Xiong, "Taming heterogeneity-the

ptolemy approach," in Proc. the IEEE, vol. 91, no. 1, pp. 127–144,

2003.

[4] C. Ptolemaeus, “System design, modeling, and simulation using

ptolemy II,” Ptolemy, pp. 235-265, 2014.

[5] Ptolemy. [Online]. Available:

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolem

y/domains/sr/demo/TrafficLight/TrafficLight/

[6] F. Boussinot and R. De Simone, "The esterel language," in Proc. the

IEEE, vol. 79, no. 9, pp. 1293–1304, 1991.

[7] N. Halbwachs, F. Lagnier, and C. Ratel, "Programming and verifying

real-time systems by means of the synchronous data-flow language

lustre," Software Engineering, vol. 18, no. 9, pp. 785–793, 1992.

[8] D. Harel, "Statecharts: A visual formalism for complex systems," IEEE

Transactions on Software Engineering, vol. 8, no. 3, pp. 231–274,

1987.

[9] G. Berry, "Circuit design and verication with esterel v7 and esterel

studio," IEEE International on High Level Design Validation and Test

Workshop, pp. 133–136, 2007.

[10] S. A. Edwards, Cec: The Colombia Esterel Compiler, 2003.

[11] M. Simulink and M. Natick, The mathworks. Inc., Natick, MA, 1993.

[12] G. Hamon and J. Rushby, "An operational semantics for stateflow,"

Fundamental Approaches to Software Engineering, pp. 229–243,

Springer, 2004.

[13] E. A. Lee, "What’s ahead for embedded software?" IEEE Computer,

pp.18-26.

[14] E. A. Lee, "Finite state machines and modal models in Ptolemy II,"

Electrical Engineering and Computer Sciences University of

California at Berkeley, 2009

[15] G. Barrett and S. Lafortune, "Bisimulation, the supervisory control

problem and strong model matching for finite state machines," Discrete

Event Dynamic Systems: Theory and Applications, vol. 8, pp. 377–429

1998.

Hongtian Ma received the BS degree in software

engineering from the Xinjiang University, Urumchi,

China, in 2013. He is currently working toward the MS

degree in software engineering from Tsinghua

University, Beijing, China. His current research

interests include domain specific modeling, formal

verification and their applications in embedded

systems.

43

International Journal of Modeling and Optimization, Vol. 6, No. 1, February 2016

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/domains/sr/demo/TrafficLight/TrafficLight/
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/domains/sr/demo/TrafficLight/TrafficLight/

Hehua Zhang received the BS and MS degrees in

computer science from Jilin University, Changchun,

China, in 2001 and 2004, respectively. She received

the PhD degree in computer science from Tsinghua

University, Beijing, China, in 2010. She is currently a

lecturer in the School of Software at Tsinghua

University. Her current research interests include

domain specific modeling, formal verification and

their applications in embedded systems.

Ming Gu received the BS degree in computer science

from the National University of Defence Technology,

Changsha, China, in 1984, and the MS degree in

computer science from the Chinese Academy of

Science at Shengyang in 1986. Since 1993, she has

been working as a professor in Tsinghua University.

Her research interests include formal methods,

middleware technology, and distributed applications.

44

International Journal of Modeling and Optimization, Vol. 6, No. 1, February 2016

