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Abstract—In this paper, several existence results of positive 

solutions are obtained for a class of multi-point boundary value 

problems with p -Laplacian. By applying a monotone iterative 

method, not only we obtain the existence of positive solutions for 

the problem, but also establish the corresponding iterative 

schemes. 

 

Index Terms—Successive iteration, positive solutions, 

boundary value problem, p -Laplacian. 

 

I. INTRODUCTION 

In this paper, we will consider the positive solutions to the 

following multi-point boundary value problem with 

p -Laplacian 

 

( ( ( ))) ( , ( )) 0, (0,1),p u t f t u t t                  (1) 
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where 2( ) | |  p

p s s s , 1p , (0,1)i  

with
1 2 20 1    n   , 

and , ,i i f   satisfy 

( 1)H :  0 , 1( 1, 2, , 2)    i i i n   satisfy 
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( 2)H :  ( , ) ([0,1] [0, ) [0, ))    f t u C . 

 

The study of positive solutions on second-order boundary 

value problems for ordinary differential equations has 

aroused extensive interest, one may see [1]-[5] and 

references therein. 

Among the substantial number of works dealing with 

nonlinear differential equations we mention the boundary 

value problem (1) and (2). One thing to be mentioned is that 

the monotone iteration scheme is an interesting and effective 

technique for investigating the existence of solutions of 

nonlinear problems.  

 However, most of papers studied the existence of the 

positive solutions of various boundary value problems by 
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various fixed point theorems, one may see [1]-[4], [6], there 

are only a few papers which concern with the computational 

methods of boundary value problems, for example in [5], [7] . 

Then, it comes to us a question that “How can we find the 

solutions when they are known to exist?” Motivated by this 

question, and what mentioned above, the aim of this paper is 

to establish some simple criteria for the iteration and 

existence of positive solutions for the problem (1) and (2).  

We emphasize that the construction of the monotone 

iterative schemes in our work does not require the existence 

of lower and upper solutions for the problems we will study 

and it starts off with known simple functions. It is worth 

stating that our work give a way to find the solutions which 

will be useful from an application viewpoint. 

 

II. PRELIMINARIES 

In this section, we present here two generally definitions 

from cone theory. 

Definition 1.  Let E  be a real Banach space. A nonempty 

closed set P E  is said to be a cone provided that 

( )i   au bv P  for all , u v P  and all 0a , 0b  and  

( )ii  , u u P  imply 0u . 

Definition 2.  The map   is said to be concave on [0,1], if 

( (1 ) ) ( ) (1 ) ( )    tu t v t u t v    

for all , [0,1]u v  and [0,1]t . 

Let the Banach space [0,1]E C  be endowed with the 

norm  

0 1
: max | ( ) | .

 


t
u u t  

 We denote   

[0,1] { | ( ) 0, [0,1]},     E C u E u t t  

and define the cone P E  by  

{ | ( ) 0, [0,1]}.  P u E u t u is concave and nonincreasing on

Throughout, it is assumed that ( 1)H  and ( 2)H  hold. 

Lemma 1. Suppose 
1[0,1]y C  with 1( ( ( ))) [0,1]  p y t C  

satisfies 

( ( ( ))) 0, (0,1),p y t t    
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y y y y   
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Then, ( )y t  is concave and ( ) 0y t , i.e., y P , and 

( ) 0 y t  on  [0,1].              

For any [0,1]x C , suppose u  is a solution of the 

problem 
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then we have     
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where 
xW  satisfy  
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Lemma 2.  For any 1[0,1],x C  there exists a unique 

xW  satisfies (3) and 
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Proof.  For any 
1[0,1]x C , define  
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x p i p
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H c c c f r x r dr



        

then ( ) (( , ), )  xH c C R  and (0) 0xH .  

In what follows, we will prove ( ) 0xH c  has a unique 

solution on ( , ),   which means there exists a unique 

( , )  xW  satisfying (3) firstly. 

Case i.  If (0) 0,xH  then 
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Obviously, there exists a unique 0c  satisfying 

( ) 0.xH c  So in this case, this lemma is proved. 

Case ii. (0) 0,xH  then (0) 0.xH  

1)  When (0, ), c  
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Denote 
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then we obtain that  

 1( ) ( ) ( ).x pH c c H c  

Obviously, ( )H c  is strictly decreasing on (0, ).  
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then 0,c  and we have ( ) 0.H c   

So 

 1( ) ( ) ( ) 0. x pH c c H c   

To take into account (0) 0,xH  by the mean value theorem 

we obtain that there exists a 
0 [ ,0) ( ,0),  c c  such that 

0( ) 0xH c . 

 If there are two constants ( ,0)( 1,2)  ic i satisfying 

1 2( ) ( ) 0, x xH c H c  then 
1 2( ) ( ) 0, H c H c  so 

1 2c c   

since ( )H c  is strictly decreasing on ( ,0).   

Therefore, ( ) 0xH c  has a unique solution on ( ,0).  

Combining those cases above, we obtain ( ) 0xH c  has a 

unique solution on [ ,0]c , which means there exists a unique 

[ ,0].xW c   The proof is completed.  

 

III. MAIN RESULTS 

For notational convenience, we denote 
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Theorem 1.   Assume that  (H1) and (H2) hold, and there 

exist 0 b a , such that 

( 3)H :  
1 2( , ) ( , )f t x f t x  for any 

1 20 1, 0    t x x a ; 

( 4)H :   
0 1
max ( , ) ( )
 

 p
t

a
f t a

A
 ; 
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( 5)H :   
0 1
min ( , 0) ( )
 

 p
t

b
f t

B
 ; 

Then the boundary value problem (1)  and (2)  has at least 

one positive, concave and nonincreasing solution 
w  or 

v , 

such that 

0, lim lim 

 
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b w a and w T w w  
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 
   n

n
n n

b v a and v T v  
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 The iterative scheme in Theorem 1 is  

0 ( ) w t a , 

1 0 , 0,1, 2    n

n nw Tw T w n   

which starts off with a simple known constant function or 

 
0 1 0( ) (1 ), , 0,1, 2     n

n nv t b t v Tv T v n   

which starts off with  a simple known linear function. 

Proof.   We define an operator : T P E  by (4), then it is 

easy to obtain that, for each u P , there is 1[0,1]Tu C  is 

nonnegative and satisfies (2) . Moreover, by Lemma 1 we 

have, Tu is concave. So, : T P P .  

And a standard argument shows that : T P P  is 

completely continuous, and each fixed point of T  in P  is a 

solution of problem (1)  and (2) . We can also obtain that T is 

nondecreasing about u  on [0, ) . 

We denote 

 [ , ] { | }   P b a u P b u a .  

We now firstly show that : [ , ] [ , ]T P b a P b a . 
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So, . b Tu a   

Thus we get  

 b Tu a ,  

which means 

 : [ , ] [ , ]T P b a P b a . 

Next, we will establish iterative scheme for approximating 

the solution.  

Let  

0 ( ) , 0 1  w t a t , 

 then  

0 ( ) [ , ]w t P b a .  

We denote  

1 0 , 0,1,2    n

n nw Tw T w n  

Since : [ , ] [ , ]T P b a P b a , we have 

[ , ] [ , ], 1,2,   nw TP b a P b a n   

Since T  is completely continuous, we assert that
0{ }n nw  

is a sequentially compact set and it has convergent 

subsequence 
1{ }kn kw , then there exists [ , ] w P b a  such 

that 
knw w . 

Because    

1 0 0 00 ( ) ( ) ( ), 0 1,      w t Tw Tw t a w t t  
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Moreover    

2 1 0 1( ) ( ) ( ) ( ), 0 1.    w t Tw t Tw t w t t  

Hence, by the induction, then   

1( ) ( ), 0 1, 0,1,2     n nw t w t t n   

Thus, there exists [ , ] w P a b  such that nw w . 

Applying the continuity of T  and 
1 n nw Tw , we get 

 Tw w . 

Another way to approach this is to start off with a simple 

linear function.  

Let  

0( ) (1 ), 0 1   v t b t t ,  

Then 

 
0 ( ) [ , ]v t P a b . 

 We denote 

 
1 0 , 0,1,2    n

n nv Tv T v n   

It is similar to the earlier arguments, we assert that 
0{ }n nv  

has convergent subsequence
1{ }kn kv , and there exists 

[ , ] v P a b  such that 
knv v . 

Because 

1 0 0

0

( ) (1 ) ( )

(1 ) ( ), 0 1,

v t Tv t Tv t

b t v t t

  

    
  

Moreover  

2 1 0 1( ) ( ) ( ) ( ), 0 1.    v t Tv t Tv t v t t  

By an induction argument similar to the above we obtain 

1( ) ( ), 0 1, 0,1,2n nv t v t t n     
 

Thus, there exists [ , ]v P a b  such that nv v . 

Applying the continuity of T  and 
1 n nv Tv , we get 

 Tv v .  

It is well known that each fixed point of T  in P  is a 

solution of problem (1)  and (2) . Hence, we assert that 
w  

or
v  is a positive, nonincreasing and concave solutions of 

the problem (1)  and (2) . 

Furthermore, if lim lim
 

n n
n n

w v , then 
w  and 

v  are two 

positive, nonincreasing and concave solutions of the problem 

(1)  and (2) .  

And if lim lim
 

n n
n n

w v ,then  w v  is a positive, 

nonincreasing and concave solution of the problem (1)  and 

(2) . 

 Anyway, the problem (1)  and (2)  has at least one 

positive concave solution. 

The proof is completed. 
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