
  

 

Abstract—Epidemics bursts have been sometimes observed in 

recent years, whose examples include, SARS (Severe Acute 

Respiratory Syndrome) and Ebola virus disease, and so on. For 

global companies which insure these epidemics, it is important 

and necessary to estimate the effect of events. Here we introduce 

a simple stochastic model for pricing such a kind of risks, which 

involves the Kermack-Mckendrick epidemic model combined 

with a stochastic trigger variable. The computations of our 

model are also given.  

 

Index Terms—Epidemic outbreaks, risk for an insurer, 

stochastic process, threshold theorem.  

 

I. INTRODUCTION 

Epidemics outbreaks have been sometimes observed in 

recent years, whose examples include, to name a few, SARS 

(Severe Acute Respiratory Syndrome) and Ebola virus 

disease, and others. Such phenomena are really a challenging 

issue for modern society.  

In order to manage the risk originating from these 

epidemics, it is without doubt that the first important step 

should be based on scientific researches. Apart from this 

aspect, insurance companies, which provide the insurance of 

epidemics, would want to estimate the extent of the risk. One 

of positive functions of insurance, in its own nature, certainly 

stabilize and mitigate the influence of tragedy events.  

Here we introduce a simple stochastic model for 

estimating the above mentioned epidemics bursts.  

Mathematical modelling of diseases has been developed 

and investigated over 300 years. Much progress has been 

made from various points of view; empirical approaches, 

deterministic models, stochastic models, and so on. In the 

present article, we employ the classical deterministic model 

due to Kermack-Mckendrick, whose important conclusion is 

the so-called threshold theorem; it becomes a benchmark for 

later researches. By this, we can tell the criterion that a major 

outbreaks occurs, and furthermore, obtain a rough estimate of 

ultimate numbers of infected and removed.  

Our idea is that we combine a stochastic process with this 

epidemic model. The stochastic process is intended to model 

the trigger variable of the occurrence of epidemic outbreaks, 

which is somewhat similar to the modelling of catastrophic 

 

 

events such as a big earthquake, a typhoon disaster, an 

eruption of volcanos, and so on (observe [1] for instance). 

From the financial standpoints, similarity between 

catastrophic events and epidemic outbreaks is very strong. As 

is well known, in catastrophic events, several financial 

products have been already invented to mitigate the relevant 

disaster. For instance, we recall catastrophic options. Our 

wish is to use some of its establishments.  In addition to this, a 

market risk should be also considered. In anyway, we are 

then able to estimate the risk of the considered epidemics 

bursts by taking the expectation, which an insurer may find 

an interest.  

The organization of the paper is as follows: In Section II, 

basic issues of our classical epidemic model as well as 

stochastic process are recalled. Our model for the estimation 

of risk is explained in Section III. Section IV is devoted to the 

computation of risk. Section V concludes with discussion.  

 

II. PRELIMINARY 

A. Epidemic Model 

We first recall the classical deterministic epidemic model 

of Kermack-Mckendrick. For background issues and other 

details, see for instance, nice monographs by Dalley and Gani 

[2], Murray [3].  

Let      denote the number of susceptibles,      
infectives,      removals, which are counted according to the 

disease status. Here removals mean dead, isolated, or 

immune individuals. The total size of the population 

                 is assumed to be fixed for all    .  

The system of ordinary differential equations due to 

Kermack-Mckendrick is then expresses as follows:  

 

                            
     

  
                                                   

                          
     

  
                                           

                    
     

  
                                                          

 

The equations is subject to the initial conditions 

                           with        . Here,   

denotes the infection parameter representing the strength of 

epidemics, and   is the removal parameter indicating the rate 

of infectives becoming immune. We define the critical 

parameter       as the relative removal rate. It is easy to 

see that      is monotone non-increasing, and      is 

non-decreasing. If     , then      is monotone decreasing 

for all    .  

Now the well-known Kermack-Mckendrick threshold 
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theorem is summarized as follows, whose way of formulation 

is essentially taking from [2]. For further details and other 

surrounding information, we refer to a comprehensive book 

of Murray [3].  

Theorem (Kermack-Mckendrick). (i) Let    
           and              . Then, when infection 

ultimately ceases spreading, it follows that  

                                      
 
  
                   

where              .  

1) A major outbreak occurs if and only if      .  

2) If         with small     and    is small 

relative to  , then the total number of susceptibles left in 

the population and    are approximately     and   , 

respectively.  

Here we just exhibit a sketch of proof, since the theorem 

itself is well-known. For the detailed proof, we refer to before 

mentioned [2], [3].  

First we note that  

                         
 

  
                                           

And hence 

                                                                             

For all    .  

Next we divide the Eq. (1) by (3) to obtain  

                               
  

  
  

 

 
   

 

 
                                   

where       denotes the relative removal rate. Integration 

directly gives  

                                           
 
    
                                        

In a similar way we find that 

                                    
  

  
    

 

 
                                        

And so that  

                                                 

Within the region considered where  ,   and   are positive, 

we easily deduce that                , which implies 

that the identity (3) holds.  

The properties (ii) and (iii) of the theorem will be deduced 

by a direct and an approximation argument. We may safely 

omit the details. 

We will utilize its outcomes to estimate the risk of 

epidemics.  

B. Doubly Stochastic Poisson Process 

As a time-dependent process for the trigger variable of 

epidemics, we here employ the so-called doubly stochastic 

Poisson process, or a Cox process (see [4]), which we recall 

briefly here.  

The reason why we prefer a doubly-Poisson process to a 

usual homogeneous Poisson process is that the latter has 

deterministic intensity and hence it is rather inappropriate for 

modelling the resulting claims for epidemics outbreaks. On 

the other hand, A doubly stochastic Poisson process or a Cox 

process are known to provide flexibility in modelling, since 

the intensity process is allowed to be stochastic. As a general 

reference of stochastic processes including above processes, 

we refer to, for instance, a comprehensive book of Rolski, 

Schmidl, Schmidt, and Teugels [5].  

Now we turn our attention to our process. Let   
       be an intensity process; namely, a nonnegative, 

measurable, and locally integrable stochastic process. A 

counting process            is called a Cox process or a 

doubly stochastic Poisson process with intensity   if for each 

sequence                 of nonnegative integers, and for 

                               , 

there holds  

 

                       

 

   

  

             
 

   
      

  

  

 

  

          
  

  

  

 

   

          

 

One typical example, which is favorably used to measure 

the effect of catastrophic events, and therefore suitable to 

epidemic bursts also, is the shot noise process.  See for 

examples, Cox and Isham [6], Dassios and Jang [7], 

Kluppelberg and Mikosch [8]. Suppose           are 

the points of a Poisson process with the intensity   and 

             are independently and identically distributed 

nonnegative random variables with        , then 

 

                          
        

          

       

                       

where    is the initial value and  denote the rate of 

exponential decay. In Dassios and Jang [7] it is generalized 

that parameters  ,   are allowed to be time-dependent. We 

clearly imagine that    corresponds to the time at which 

catastrophe   occurs and    supplies the jump size of the 

catastrophe  . However, we will not treat this shot noise 

process anymore in the sequel.  

   The next section is devoted to the introduction of a model 

for estimating the risk concerning epidemic outbreaks, which 

is performed by the use of a doubly Poisson process or a Cox 

process.  

 

III. MODEL 

Now we introduce a model for estimating the risk of 

epidemic outbreaks.  

The idea is direct and simple. We just combine risk factors 

of epidemics, market fluctuations, and others mentioned 

above; therefore, our model may possess the following 

features.  

1) The outbreak of epidemics is modelled to be governed 

by a doubly stochastic Poisson or a Cox process. 

This is due to the similarity between epidemics bursts and 

the occurrence of catastrophic events.  

2) Once the outbreak of epidemics begins, then the 

situation would be like one described by the threshold 

theorem. 
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Of course, this part can be modified so that other types of 

epidemic modelling may be employed.  

Anyway, in addition to these factors, we have to consider 

some kind of market movements.  

3) Since insurance companies are involved in real markets, 

the market risk should be included.  

This factor may be designed by the use of a stochastic 

process     :  
 

                          
  

 
                    

 

where     ,         and the volatility   are given 

positive constants. The process      is accompanied by the 

bond process          with constant interest rate  . This is 

just a well-known Black-Scholes-Merton model.       
       means a doubly stochastic Poisson process and      
denotes the standard one-dimensional Brownian motion, 

which is independent of     .  
4) Insurance companies should take a specific policy for 

the insured.  

Several such policies are known to be used. Here we 

appeal to the so-called stop-loss policy of the form  

 

                                                                                         

 

where   denotes the loss, and   is a retention level. Other 

policies are also possible.  

To summarize above considerations, we are lead to the 

following model for the risk      of an insurer:      is the 

discounted value of the payoff function at the maturity  . 

 

                                              (15) 

 

where     denote the threshold value, and   stands for the 

indicator function: 

                                      
                    
                  

                     (16) 

Here the factor           comes from the threshold 

theorem (iii), and the factor               may be 

interpreted that an insurer holds the strategy of the so-called 

stop-loss premium with a retention level  .  

In the next section, we compute the discounted value of (1) 

under the risk neutral probability measure.  

 

  

A. Key Lemma 

Here we analyze our model and derive a pricing formula 

for the risk of epidemic bursts.   

In order to proceed, we need the next lemma, which is 

taken from [9]. See also [10].  

 

                                    
      

   
                         

                              
                                                   

Sketch of proof. Let   
                 We wish to 

show that for       
 

                    
          

   

                                                
                       

 

To ensure this, we firstly learn that 

                  
 

   

           

              
  
 

  

 

   

                 
                  

 

We then compute  

 

                    
          

   

                                 
          

  

                   
      

                          
          

   

                   
                   

         
            

   

                   
      

                    
         

 

This is what we wanted to know and the proof is 

completed.  

B. Pricing Formula 

Now we turn our attention to derive the risk pricing 

formula for an insurer.  

We observe that the expected discounted value of (14) 

should be calculated under the risk-neutral measure  . 

Precisely stated, our target is to evaluate  

                                                        

                                                   

Now we learn that  -mesaure is defined by  

                   
              

    

 
               

where the notation            is just used for the sake 

of avoiding a confusion. The Radon-Nikodym derivative 

process is  

                 
   

  
      

 

 
  

         

 
 

 

  
 

 

    

  
         

 
      

 

 

                        

(24) 
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IV. ESTIMATION FORMULA

        
Lemma. Let                 be a doubly stochastic 

Poisson process with intensity          . 

    Then the process gives a martingale, where        

and    
   denotes the moment generating function of the 

aggregated process         
 

 
; namely

 



  

Here                          
   .  

Consequently. in view of the key lemma, we see that the 

process          defined by gives a  -martingale. Thus we 

are able to compute the discounted value of (14) under 

 -measure in a similar way as in [6]. 

 

                                              
       

            
 

 
                                

 

To summarize, we have established our main theorem as 

follows.  

Theorem. The risk      for an insurer, whose payoff 

function at the maturity   is (14) can be expressed as  

 

             

 

     

     
                

    
    

                       

   
       

 

  
                                    

 

 

   
    

    
 

                         
    

     

 
 

 
                                                       

Here Φ    denotes the cumulative distribution function 

for the standardized normal distribution  

                                       
 

   
   

  

   
 

  

                        

It is easy to see that the quantities (25), (26) are 

modifications of the famous Black-Scholes option pricing 

formula for the vanilla European call options.  

The proof proceeds along the same line as in [9] and 

involves a calculation of relevant quantities; we may safely 

omit the details.  

C. Hedging Parameters 

For the real world applications, various hedging 

parameters are important, whose calculation is provided 

straightforwardly. We here just present the results without a 

proof, which may be directly performed through rather 

standard fashion.  

Proposition. Let the risk      for an insurer, whose 

payoff function at the maturity   is (14) be given by (25). 

Then the Delta, Gamma, Rho, and Vega of      are 

computed as the next expressions, respectively. 

                                                        
     

  
 

              
                

    
           

 

     

   
       

 

  
                                    

                                                
      

   
 

         
 
                

    

      
           

 

     

   
       

 

  
                                    

                           
     

  

                   

 

     

   
       

 

  
                                    

     
     

  
                         

 

     

   
       

 

  
                                    

where    is defined by (26) and     .  

 

V. CONCLUSION 

In this paper, we have developed a simple stochastic model 

for an insurer which takes part in mitigating the effect of 

unexpected sudden epidemic outbreaks. The onset of 

pandemic is modelled by a double stochastic Poisson process 

or a Cox process. After the trigger, the ongoing of epidemics 

follows the story described by the Kermack-Mckendrick  

threshold theorem.  

Additionally, we assume that the insurer is exposed to the 

market risk, which is governed by the mixture of above jump 

process and the usual Black-Scholes-Merton model.  

We then estimate the risk of an insurer subject to above 

mentioned risk factors. The method is based on a similar 

argument as employed in the case of catastrophic options. 

The closed form solution is obtained. It is to be noted that 

some empirical investigations should be undertaken, which 

will be our future project of researches.  

Despite of its importance, the study on insurance attitude 

against certain epidemics is not so popular in the literature; 

especially, on the basis of mathematical modelling. Observe 

for instance Tamura and Sawada [11] as an exceptional 

example of different viewpoint. We believe that the financial 

aspect of these unhappy events should be pursued further. We 

hope that our first step attempt will open a fairly wide area of 

both academic and practical researches.  
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