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Abstract—Control charts, one of the important tools of 

quality control, are also known as Shewhart charts or process 

behavior charts. Page (1954) was the first, who introduced the 

Cumulative Sum (CUSUM) control charts for detection of 

process shifts and claimed that these  charts are more efficient 

compared to Shewhart chart to detect small shifts in the 

process average. Various schemes of the CUSUM chart for 

autocorrelated data for sample size of 4 are developed and 

compared with the schemes of the Shewhart X  chart for 

autocorrelated data. It is found that CUSUM chart 

outperforms the Shewhart X  chart for all the shifts and at all 

the levels of correlation (Φ) for sample size (n) of four. So, the 

CUSUM control chart is much better option for faster 

detection in the process mean.  

 

Index Terms—CUSUM chart, autocorrelated data, in-

control ARLs and Out-OF control ARLs. 

 

NOMENCLATURE 

Following symbols have been used in this paper: 

μo = Target mean  

xi = Observation, i  

 n =  Sample size 

ARL = Average Run Length 

UCL = Upper control limit = Shi(i) 

LCL = Lower control limit = Slo(i) 

Φ = Level of correlation 

h= decision interval for CUSUM chart 

k = slack variable for CUSUM chart  
 

I. INTRODUCTION 

Several types of control charts and their combinations are 

evaluated for their ability to detect changes in the process 

mean and variance, since two decades. The performance of 

a chart is usually measured in terms of the average run 

length (ARL), which is the average number of samples 

before getting an ‘out-of-control’ signal. The main effect of 

autocorrelation is reduction of ‘in-control’ ARL, leading to 

a higher false alarm rate. It has been studied by many 

researchers that autocorrelation among the observations has 

a significant effect on the performance of all the types of 

control charts. 

Page [1] introduced the CUSUM control charts for 

detection of process shifts and claimed that CUSUM charts 

are more efficient compared to Shewhart chart to detect 
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small shifts in the process average. In CUSUM chart, the 

decision is based upon cumulative sum of a number of 

observations and in an implicit manner the process history 

for arriving at a final decision is considered. The ARLs of 

CUSUM chart depend upon the parameters h and k.  

One of the assumptions in implementing the chart is that 

the process outputs must be independent and identically 

distributed (IID) but usually there is some correlation 

among the data. When this correlation builds up 

automatically in the entire process, this phenomenon is 

called autocorrelation. 

The observations from the process output are usually 

positively correlated in most of the cases.  

 

II. THEORY OF CONVENTIONAL CUSUM CHART 

In CUSUM chart, the cumulative sums of deviations of 

successive sample means from a target specification are 

plotted. So the permanent shifts in the process mean will 

eventually lead to a sizable cumulative sum of deviations. 

Thus, CUSUM chart is particularly well-suited for detecting 

such small permanent shifts that may go undetected when 

using the X chart. The control limits for tabular method are 

calculated as: 

 

Shi(i) = max[(0, Shi(i-1) + xi –μo - k)] 

Slo(i) = max[(0, Slo(i-1) + μo - k - xi)] 

 

where the h is called the decision interval and mostly its 

value is taken from 4 to 5. The parameter k is known as the 

reference value or slack variable and its value is taken to be 

half the delta shift. Initially the values of Shi(0) and Slo(0) 

are set to 0.0. Fig. 1 shows the sample CUSUM chart. 

 

 
Fig. 1. Sample CUSUM chart. 

 

For two sided CUSUM, when either Shi(i) or Slo(i) 

exceeds the value, h, the process is said to be out of control. 

If one sided or upper sided CUSUM is considered then only 

the Shi(i) is compared with h. 
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When conventional CUSUM chart is applied to the 

autocorrelated data, it leads to more frequent false alarms.  

 

III. LITRETURE REVIEW 

Various researchers examined the performance of 

CUSUM charts with and without autocorrelation as 

discussed in this section. 

Lucas [2] proposed parabolic CUSUM scheme by 

inserting a parabolic section in V mask. The parabolic 

section suggested by the author modifies the control action 

for a number of points until the parabolic section and V 

mask coincide. Westgard et al. [3] proposed modified 

CUSUM scheme and obtained the results by simulation. 

They simulated the probability of an out of control signal in 

series of N samples (1 ≤ N ≤ 30). Tseng and Adams [4] 

proved that the traditional control charts such as the 

Shewhart chart, cumulative sum (CUSUM) chart and 

exponentially weighted moving average (EWMA) chart 

have the adverse effect on the presence of autocorrelation in 

data. Monitoring schemes which used these traditional 

control charts in conjunction with time series based 

forecasts are proposed and shown to have properties 

superior to schemes based on traditional charts alone. 

Walter and Peter [5] investigated that the cumulative sum 

(CUSUM) technique is well-established in theory and 

practice of process control. For a variant of the CUSUM 

technique, the cumulative score chart, authors investigated 

the effect of serial correlation on the in-control ARL. Using 

the fact that the cumulative score statistic is a correlated 

random walk with a reflecting and an absorbing barrier, 

authors derived an approximate but closed-form expression 

for the ARL of a control variable that follows a first-order 

autoregressive process with normally distributed 

disturbances. Apley and Shi [6] presented an on-line SPC 

technique, based on a Generalized Likelihood Ratio Test 

(GLRT), for detecting and estimating mean shifts in 

autocorrelated processes that followed a normally 

distributed autoregressive integrated moving average 

(ARIMA) model. The GLRT is applied to the uncorrelated 

residuals of the appropriate time-series model. Kim et al. [7] 

presented a new CUSUM chart for monitoring shifts in the 

mean of autocorrelated data. The monitoring statistic is the 

plain cumulative sum of differences between the 

observations and a target value, and the derivation of the 

control chart is based on an approach popular in the 

simulation literature rather than the classical CUSUM chart.  

They proposed a method which is completely model-free 

and valid asymptotically in the sense that it detects a shift 

and the direction of the shift correctly with a pre-specified 

average run length. Wu et al. [8] proposed a VSSI WLC 

scheme, which is a weighted-loss-function-based CUSUM 

(WLC) scheme using variable sample sizes and sampling 

intervals (VSSI). This scheme detects the two-sided mean 

shift δμ and increasing standard deviation shift δσ based on a 

single statistic WL (the weighted loss function). Mertens et 

al. [9] monitored the livestock production processes by 

means of statistical control charts. The non-stationary and 

autocorrelated characteristics of most data originating from 

such processes impeded the direct introduction of these data 

into control charts. To deal with these characteristics 

Engineering Process Control strategies can be applied. 

Stationary is achieved by modeling and subtracting the time 

dependent trend, using a non-linear model. The 

autocorrelation structure in the residual data is modeled and 

corrected for by means of an ARMA model. Liu and Wang 

[10] investigated the autoregressive process with the 

measurement error. For detecting the step shift of the 

autoregressive process mean with measurement error, a 

CUSUM chart based on the maximum log-likelihood ratio 

test is obtained. The simulation results showed that this new 

CUSUM scheme works well when the process is negatively 

autocorrelated. Lee et al. [11] formulated and evaluated 

distribution-free statistical process control (SPC) charts for 

monitoring shifts in the mean of an autocorrelated process 

when a training data set was used to estimate the marginal 

variance of the process and the variance parameter. Two 

alternative variance estimators were adapted for automated 

use in DFTC-VE, a distribution-free tabular CUSUM chart, 

based on the simulation-analysis methods of standardized 

time series and a simplified combination of autoregressive 

representation and non-overlapping batch means. Kiran et al. 

[12] carried out a study on training algorithms for control 

charts pattern recognition and selected the best two patterns 

with their optimal structure for both Type I and Type II 

errors for generalization with and without early stopping 

and proposed the best one. Chang and Wu [13] observed 

that it is difficult to find the run length distribution and the 

average run length. They developed a general and unified 

approach, based on the use of discretization and the finite 

Markov chain imbedding technique to investigate the run 

length properties for various control charts, when the 

process observations are autocorrelated.   

Lee and Apley [14] investigated that the residual-based 

control charts for autocorrelated processes are sensitive to 

time series modeling errors, which can seriously inflate the 

false alarm rate. They proposed a design approach for a 

residual-based EWMA chart that mitigates this problem by 

modifying the control limits based on the level of model 

uncertainty. Using a Bayesian analysis, they derived the 

approximate expected variance of the EWMA statistic, 

where the expectation is with respect to the posterior 

distribution of the unknown model parameters. They 

compared their approach to two other approaches for 

designing robust residual-based EWMA charts and claimed 

that their approach generally results in a more appropriate 

widening of the control limits. Snoussi [15] discussed the 

development of a multivariate control charting technique for 

short-run autocorrelated data manufacturing environment. 

They proposed an approach which is a combination of the 

multivariate residual charts for autocorrelated data and the 

multivariate transformation technique for IID process 

observations of short lengths. The proposed approach 

consists in fitting adequate multivariate time-series model of 

various process outputs and computes the residuals, 

transforming them into standard normal N (0, 1) data and 

then using standardized data as inputs to plot conventional 

uni-variate IID control charts. Lin et al. [16] stated that the 

presence of autocorrelation in the process data can result in 

significant effect on the statistical performance of control 

charts. They presented the economic design of ARMA 

(autoregressive moving average) control chart to determine 
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the expected total cost per hour. Singh and Prajapati [17] 

studied the effect of correlation on the performance of 

CUSUM and EWMA charts for the positively correlated 

data. The ARLs at various set of parameters of the CUSUM 

and EWMA charts are computed, using MATLAB software. 

The behavior of the CUSUM and EWMA charts at the 

various shifts in the process mean is studied, analyzed and 

compared at different levels of correlation (Φ). Mahadik [18] 

presented Hotelling's T2 charts with variable sampling 

interval and warning limit (VSIWL) and concluded that 

VSIWL T2 chart yields different out-of-control 

performances for the same in-control statistical performance 

depending on the choices of values of its warning limit. 

 

IV. FORMULATION OF SERIES OF AUTO CORRELATED 

OBSERVATIONS 

The series of normal distributed IID numbers is generated 

using the MATLAB. The positively correlated series of 

observations is obtained using the coefficient of correlation 

(Φ) in the series. Assuming N pairs of observations on two 

variables, x and y. The correlation coefficient between x and 

y is given by equation (1). Some authors use coefficient of 

correlation (Φ) instead of “r”. 
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where, the summations are over the N observations.  

The series generated are positively correlated in nature. 

For each level of correlation (Φ), various schemes of   chart 

are developed, using MATLAB. The procedure to 

implement the CUSUM chart is given in the following 

section. 

 

V. PROCEDURE TO IMPLEMENT THE CUSUM CHARTS 

In this paper, data are simulated with the help of 

MATLAB software. The autocorrelated numbers are 

generated from the series of data taken from the standard 

normal distribution with mean of zero and standard 

deviation of one. Initially the process is assumed to be under 

control, at the given mean and standard deviation. The 

following procedure may be adopted to calculate the ARLs 

of the CUSUM charts at various shifts in the mean. 

Step 1. Take the observations from industry at random 

basis. 

Step 2. Observations may also be generated randomly at 

given mean and standard deviation. 

Step 3.  For simulation, 10,000 observations are 

generated with a sample size of 4.   

Step 4. The observations are generated in such a way that 

there should be positive correlation with their previous data.  

Step 5. Those sets of parameters of the control chart 

which gives the Average Run Lengths (ARL) of 

approximately 400 are considered for comparison. 

Step 6. For the selected combinations of CUSUM 

schemes, the ARLs are calculated at various shifts in 

process mean, at different values of h and k = 0.5, for 

different level of correlation (Φ).  

Next section deals with the computation of ARLs of the 

conventional CUSUM chart at different levels of correlation 

(Φ) for sample size of 4.     

 

VI. VARIOUS SCHEMES OF CUSUM CHART 

The performance of the CUSUM chart is measured in 

terms of Average Run Lengths (ARLs). The ARLs at 

different levels of correlation (Φ) are calculated by keeping 

the in-control ARL of approximately 371. Control limits are 

adjusted in such a way that the in-control ARL of 

approximately 371 may be maintained. Table I shows the 

various schemes of the CUSUM chart at the level of 

correlation (Φ) of 0.00 and 0.20. 

 
TABLE I: ARLS CUSUM CHART FOR SAMPLE SIZE OF FOUR AT Φ = 0.00       

AND 0.20 

ARLs of CUSUM chart for n = 4 

Shift         

(in mean) 

Φ = 0.00 Φ = 0.20 

h = 5.0 

and 

k=0.5 

h =4.9 

and 

k=0.5 

h = 5.1 

and 

k=0.5 

h=6.9 

and 

k= 0.5 

h=6.8 

and 

 k = 0.5 

h=7.0 

and 

k=0.5 

0.0 371.0 
370.4 372 

372 
372.4 371 

0.5 36.1 
38.8 41.5 

54.9 
52.2 

48.9 

1.0 10.4 
11.5 12.3 

12.3 
12.4 

12.0 

1.5 4.6 
4.6 4.7 

5.1 
5.3 

5.1 

2.0 3.2 
3.3 3.5 

4.3 
4.5 

3.8 

2.5 2.5 
2.6 3.0 

3.0 
3.0 

2.8 

3.0 1.8 
1.8 1.9 

1.9 
2.1 

1.9 

       

TABLE II: ARLS CUSUM CHART FOR SAMPLE SIZE OF FOUR AT Φ = 0.05       

AND 0.70 

ARLs of CUSUM chart for n = 4 

Shift        

(in mean) 

Φ = 0.50 Φ = 0.70 

h = 8.0 

and 

k=0.5 

h = 8.1 

and 

k=0.5 

h = 8.2 

and 

k=0.5 

h=8.9 

and  

k= 0.5 

h=9.0 

and     

k=0.5 

h=9.1 

and 

k=0.5 

0.0 372 
372 371 

372 
372.4 371 

0.5 58.2 
68.8 70.5 

73.2 65.2 75.2 

1.0 15.2 
18.5 19.3 

35.1 30.2 37.2 

1.5 5.9 
6.6 7.4 

7.7 7.6 8.5 

2.0 4.6 
5.3 5.5 

5.7 5.5 6.3 

2.5 3.3 
3.6 3.5 

3.6 3.5 4.2 

3.0 2.1 
2.1 2.1 

2.3 2.3 2.4 

 

The ARLs of various schemes of CUSUM chart for 

International Journal of Modeling and Optimization, Vol. 5, No. 2, April 2015

137



 
 

sample size of four at the levels of correlation (Φ) of 0.50 

and 0.70 are shown in Table II.   

The ARLs of various schemes of CUSUM for sample 

size of two at the levels of correlation (Φ) of 1.00 are shown 

in Table III.   

 
TABLE III: ARLS OF CUSUM CHART FOR SAMPLE SIZE OF FOUR AT 

Φ = 1.00 

Schemes of conventional  CUSUM chart 

Shift         

(in mean) 

Φ = 1.0 

h=9.2 and 

k= 0.5 

h=9.3 and   

k=0.5 

h=9.4 and 

k=0.5 

 

 

0.0 370.6 371 372 

0.5 80.9 85.6 89.4 

1.0 35.1 39.5 41.2 

1.5 8.5 8.5 8.7 

2.0 6.9 7.0 7.3 

2.5 3.6 3.7 3.9 

3.0 2.5 2.5 2.6 

    

 

Out of above suggested schemes, those schemes which 

are having the in-control ARLs of approximately 370 and 

having the out-of-control ARLs consistently lower than 

other schemes are selected as the optimal schemes. Other 

possible schemes of the CUSUM chart have also been tried 

but their in-control ARLs are not near to 370, that’s why 

those schemes have not been included in this paper. Table 

IV shows the optimal schemes of the conventional CUSUM 

chart for n = 4 for various levels of correlation (Φ).  

 
TABLE IV: ARLS OF OPTIMAL SCHEMES OF CUSUM CONTROL CHART 

FOR SAMPLE SIZE OF FOUR 

    Shift         

(in mean) 

ARLs of  CUSUM chart at n=4 

Φ= 0.00 Φ = 0.20 Φ= 0.50 Φ=0.70 Φ=1.00 

h = 5.0 

and  

k=0.5 

h=7.0 

and 

k=0.5 

h=8.0 

and 

k=0.5 

h=9.0 

and     

k=0.5 

h=9.2 

and  

k= 0.5 

0.00 371.0 
371 

372 
372.4 

370.6 

0.50 36.1 48.9 58.2 65.2 80.9 

1.0 10.4 12.0 15.2 30.2 35.1 

1.5 4.6 5.1 5.9 7.6 8.5 

2.0 3.2 3.8 4.6 5.5 6.9 

2.5 2.5 2.8 3.3 3.5 3.6 

3.0 1.8 1.9 2.1 2.3 2.5 

 

Following facts are summarized from the Tables I to V: 

1) The false alarm rate (in-control ARL) of 

approximately 370 is maintained, for all the optimal 

schemes of conventional CUSUM chart. 

2) When the level of correlation (Φ) increases, the 

sensitivity of the conventional CUSUM chart to detect 

shift in the process mean decreases. For sample size of 

four and level of correlation (Φ) of zero, the CUSUM 
chart detects 0.5σ shift in the process mean after about 

10 samples, whereas; at level of correlation (Φ) of one, 

the same shift in the process mean is detected after 35 

samples. 

3) The in-control and out-of-control ARLs of the optimal 

schemes of the conventional CUSUM chart also 

depends on the values of parameters, ‘h’ and ‘k’. 

 

VII. COMPARISON WITH SHEWHART X  CHART 

Shewhart [19] developed basic X  chart for independent 

and identically distributed (IID) data. Various schemes of 

the Shewhart X  chart for sample size of four at various 

levels of correlation (Φ) are developed by Singh and 

Prajapati [20]. Values of width of control limits (L) are 

adjusted in such a way that they generate the in-control 

average run lengths (ARLs) of approximately 370 in all the 

presented schemes. They also calculated the ARLs for 

sample size of four at various levels of correlation. The 

performance of the X  chart is compared with performance 

of CUSUM chart in terms of ARLs at various levels of 

correlation. The comparison of ARLs of optimal schemes of 

Shewhart X  chart with the ARLs of optimal schemes of the 

CUSUM chart for sample size (n) of four at the levels of 

correlation (Φ) of 0.00, 0.25 is presented in Table V.  

 
TABLE V: ARLS COMPARISON FOR SAMPLE SIZE OF FOUR AT Φ= 0.00, 

0.25 

  Shift           

(in mean) 

Φ = 0.00 Φ = 0.50 

Shewhart 

X  chart 

CUSUM 

Chart 

Shewhart 

X  chart 

CUSUM 

Chart 

0.00 370.4 371.0 
370.4 

372 

0.50 155.2 36.1 188.7 58.2 

1.0 44.0 10.4 51.5 15.2 

1.5 14.9 4.6 20.1 5.9 

2.0 6.3 3.2 8.4 4.6 

2.5 3.2 2.5 4.0 3.3 

3.0 2.0 1.8 2.1 2.1 

 

Similarly, the comparison of ARLs of optimal schemes of 

Shewhart X  chart with the ARLs of optimal schemes of the 

CUSUM chart for sample size (n) of four at the levels of 

correlation (Φ) of 1.00 is presented in Table VI. 

 Following facts are observed from the Tables V and VI: 

 All the schemes have the in-control Average run length 

(ARL) of approximately 370. 

 When autocorrelation exist in the observations, false 

alarm rate increases in all the shifts in the process 

mean. 

 CUSUM control chart outperforms the Shewhart X  

chart for all the shifts and at all the levels of 

correlation (Φ) for sample size (n) of four. 
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 The in-control and out of control ARLs also depend on 

the parameters of the Shewhart X  and CUSUM charts.  

 
TABLE VI: ARLS COMPARISON FOR SAMPLE SIZE OF FOUR AT Φ= 1.00 

  Shift          

(in mean) 

Φ = 1.00 

Shewhart X  chart CUSUM Chart 

0.00 370.4 370.6 

0.50 207.2 80.9 

1.0 75.0 35.1 

1.5 27.8 8.5 

2.0 11.8 6.9 

2.5 6.7 3.6 

3.0 3.3 2.5 

 

VIII. CONCLUSIONS 

Autocorrelation among the observations can have 

significant effect on the performance of a control chart. The 

detection of special cause/s in the process may become very 

difficult in such situations. A process is said to be in a state 

of statistical control, if it operates under common causes of 

variation and the probability distribution representing the 

quality characteristic is constant over time. If there are some 

changes over time in this distribution, the process is said to 

be out-of-control. 

In this paper, the performance of CUSUM chart has been 

studied at the various levels of correlation (Φ). Since 

CUSUM chart consider the past history of the data; that’s 

why its performance deteriorates for correlated data. The 

performance of the charts is measured in terms of the 

Average Run Lengths (ARLs). It is found that the CUSUM 

schemes show faster signals than the Shewhart schemes for 

various shifts in process mean at each level of correlation 

(Φ). The limitation of the CUSUM chart is that they can 

catch small shifts in the process mean more efficiently than 

Shewhart X  chart only when there is a single and sustained 

shift. If samples are not taken from same stream, these 

charts may not be able to catch the process shift quickly. 

Other limitation of CUSUM and EWMA charts is that they 

are not efficient to catch a larger shift in the process mean; 

that’s why various industries prefer to use the standard 

Shewhart X chart because of its inherent simplicity. 
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