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An Accurate 3-D Netted Radar Model for Stealth Target
Detection Based on Legendre Orthogonal Polynomials and
TDOA Technique
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Abstract—Normally, it is very difficult to statistically model
a real stealth target by theoretical models which have
analytical probability density function (pdf) expressions,
because there are very few parameters which can be used to
approximate the pdf of stealth target radar cross section (RCS)
in conventional target models. A novel non-parametric
detection technique for stealth target model F-117A based on
time difference of arrival (TDOA) and legendreorthogonal
polynomials methods is proposed. TDOA is applied for an
accurate localization of stealth target based on the real stealth
RCS data which predicted by Physical Optics (PO)
approximation method to improve the performance of netted
radar, while the L egendre orthogonal polynomials are used to
reconstruct the pdf of stealth target RCS data. The proposed
scheme improves RCS measurement accuracy and computes
the stealth target position based on maximum — likelihood (ML)
estimation. Simulations demonstrate that the new detection
method gives much higher estimation accuracy of stealth
target model and reduces location errors comparing to the
traditional TDOA that using theoretical model which have
analytical expressions.

Index Terms—Stealth RCS, TDOA, netted radar, legendre
orthogonal polynomials, PO.

I. INTRODUCTION

The threat of electronic jamming to military radar is well
known. But in the event of future wars, there are two serious
threats to radar: stealth target and antiradar missiles
(ARM).The goal of stealth technology is to make an
airplane invisible to radar. In other words, whenever the
aircrafts Radar Cross Section area (RCS) isvery small, the
returned signals received by the radar cannot be
differentiated from the clutter/interference and noise; the
refore, it will be undetectable by a normal radar system
reliably .The overall result is that a stealth aircraft like anF-
117A can have the radar signature of a small bird rather
than an airplane. The anti-stealth radar can be divided into
two types. The first one is raising the capability of radar
detection to stealth target with RCS reduced by increasing
the power-aperture product of radar (PA), this is not a good
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way that will pay investment which is almost directly
proportional to the PA. The second kind of counteracting
stealth is making RCS of aircraft hardly reduce to expected
level by selecting lower

The second kind of counteracting stealth is making RCS
of aircraft hardly reduce to expected level by selecting
lower radar carrier frequencies and using the biostatic
(multistatic) or netted radar system. These two kinds of
measures are alternative or mixed to be realized [1].

Netted radar employs several spatially distributed
transmitters and receivers for information retrieval. This
system topology offers many advantages over traditional
monostatic and bistatic systems which use a single
transmitter and a single receiver. For example, it provides
better utilization of reflected energy, more flexible system
arrangement and enhanced information retrieval capability.
Therefore, the netted radar system is of emerging interests
among radar researchers [2].Several researches deal with
improving the Radar detection and tracking by using the
netted radar systems based on the localization techniques
such as time difference of arrival (TDOA), frequency
difference of arrival (FDOA), angle of arrival (AOA) [3]-[5]
etc. These researches didn't study an important evaluation
criterion of aircraft’s stealth performance, only using the
conventional theoretical target fluctuation models (i.e.,
Swerling’s case I—IV, chi-square, log-normal and Rice
model etc.,) to the statistical analysis and modeling of areal
target RCS based on the simple consideration of using flat
RCS (0.025 m? ) [6]-[11]. However, in practice, the
scattering of electromagnetic energy from a stealth target is
a rather complicated phenomenon, which depends on a
number of factors (stealth target geometry, size, shape,
orientation (aspect), altitude with respect to radar antenna
etc.).The stealth target parameters are often practically
unknown and even time-varying. In this case, the
probability density function (pdf) of the stealth target RCS
cannot be approximated well by any existing theoretical
models which have analytical expressions. Therefore, the
parametric method is not suitable for the application of
stealth target modeling [12], [13].

Generally, the localization techniques need to be
combined with a non-parametric method for statistical
modeling of stealth target detection, which using an
approximation methods to predict the real stealth target RC
Sdata, such as Method of Moments (MoM),Finite Element
Method (FEM), Geometrical optics (GO) and Physical
Optics (PO) [14].This paper proposes a new non-parametric
technique for stealth target detection using a novel
combination of statistical Legendre orthogonal polynomials
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model to reconstruct the pdf of the stealth target RCS and
TDOA localization technique. This combination based on a
real RCS data predicted by PO approximation method to
achieve high location accuracy of the stealth target.

The rest of this paper is organized as follows. In Section
I, we present the proposed detection scheme through a
review PO, TDOA methods and illustrate the Least Square
(LS) position estimation technique adopted for proposed
scheme. In this section we also discuss the non-parametric
method for statistical modeling of stealth target detection
based on Legendre orthogonal polynomials to reconstruct
the pdf of the stealth target RCS. The performance of the
proposed scheme is evaluated via computer simulation in
Section 111, followed by the conclusion in Section I'V.

II. PROPOSED SCHEME

This section reviews the physical optics (PO) method to
calculate RCS of stealth model based on F-117A, the time
difference of arrival (TDOA) localization technique and
presents the proposed netted radar scheme to estimate the
accurate position for stealth model.

A. The Physical Optics (PO) Formulation to Predict RCS
of Stealth F-1174 Mode

The physical optics (PO) approximation is a well-known
technique used to analyze very large conducting structures.
In scattering problems and radiation of large reflectors, the
PO technique provides acceptable accuracy, for some
applications. This technique allows avoiding the hard
solution of the MoM linear system by approximating this
solution by the explicit PO current [15]. In the presence of a
perfectly conducting surface, the total electromagnetic field
of a source may be expressed as superposition of the
incident fields (E;, H;)and the fields (E,, H) which are
scattered by the surface. The scattered fields can be
expressed in terms of the radiation integrals over actual
currents induced on the surface of the scatterer.The PO
assumes that the induced surface currents on the scattered
surface are given by the geometrical optics (GO) currents
over those portions of the surface directly illuminated by the

incident magnetic ﬁeld,ﬁi, and zero over the shadowed
sections of the surface:

—
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where fi denotes the out ward unit normal vector on a
surface.

The authors in this paper use the PO method to predict
the RCS of a geometry model of stealth target based onF-
117A, which are modeled with the use of triangular facets.
To calculate the PO-scattered field, the surface of the
scatterer is approximated using planar facets. The geometry
model of stealth target based on F-117A is approximated by
a model consisting of many triangular facets is described in
terms of the Cartesian coordinates of a large number of
points on the surface. This surface is then approximated by
planar triangular facets connecting these points. An arbitrary
midpoint (p)of the triangle surface is assigned the
coordinates (7, 0,, ¢,), the observation point is assigned
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the coordinates (7, 65, ¢s) and the unit vectors (7, 5, Ps).
Normal vector 7 is a unit vector with its tip at the midpoint
of the triangle. Then i can be expressed as the cross product
of the vectors ﬁ, AC. Once these vectors are found,fican
directly be foundby, %= AB x AC / |ﬁ||ﬁ| .These
parameters are depicted in Fig. 1.

RX

z (1,0, )
TX
(5,05, ;) H, \

N
Ts

H;
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Fig.1. Vector definitions of an approximation of a stealth F-117A model
using triangular facets on the surface.

Thus far, the discussion has involved the calculation of
the scattered field from a single facet. Superposition is used
to calculate the scattered field from the stealth target. First,
the scattered field is computed for each facet. Then, the
scattered field from each facet is vector summed to produce
the total field in the observation direction.

If the source is at a great distance from the target, it will
illuminate the target with an incident field which is
essentially a plane wave. The incident electric field intensity
is given by, fi = (Eieéi + Ei(aéi)e_jkiﬁ.fb, where Ei@ rEi¢
are the orthogonalcomponents in terms of the variables 8
and ¢, (1;, 6;, ¢;)are the spherical coordinates of the source
and (#;,0;,$;)are the unit vectors, so the magnetic field
intensity of the incident field is given by:

_ kxE 1

i 7 Z (EioB; — Eigp;)e’*im

(2)

where( k = ZTH ), Ei is the propagation vector is defined

aSEi = —k(Xsinb;cos ¢; + ysin0;sinp; + 2 cos0;), Z,is
the intrinsic impedance of free spaceand h =7;-
7, = x,Sin 6; cos ¢; + y, sin 6; sin ¢; + z, cos 6; Since
radiation integral for the scattered field is calculated by
employing a GO approximation for the currents induced on
the surface, it can be concluded that PO is a high frequency
method, which implies that target is assumed to be
electrically large. For the scattered field, the vector

potential is given by [16]:
e—JkTs ffj’sejkfsﬂ’p ds
S

U
41ry

where u is the permeability of a specific medium. For a

far-field observation point, the following approximation

holds

A
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p p Yp Sin 0 sin g +
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However, it is not possible to obtain an exact closed form

solution for § with this integral. Given that the incident
wave front is assumed plane and that the incident field is
known at the facet vertices, the amplitude and phase at the
interior integration points can be found by interpolation.
Then, the integrand can be expanded using Taylor series,
and each term integrated to give a closed form result.
Usually, a small number of terms in the Taylor series (on
the order of 5) will give a sufficiently accurate
approximation with unit amplitude plane wave (|Eij=1) [17].

S A W e’Pp
S = (i) |AB x AC| e/Po{ | ———
Dp(Dq - Dp)

) o
Dq(Dq - Dp) Dy Dy
where
D, = k[(xp — x4) X sin s cos ¢s + (y5 — Ya)
X sin O sin ¢g + (z5 — 2,4) X cos O | (62)
Dy = k[(x¢ — xa) X sin 05 cos ¢s + (e — ¥a)
X sin O sin ¢s + (z¢ — 24) X cos 6] (6b)

Dy = k[x4 sin 0, cos ¢s + y, sin O, sin g + z, cos 65](6¢)

It is now possible to write the formula of PO current as,
Jo = Usx ®+J5y 9 +J5z2)e™ . In the general case, the
local facet coordinate system will not be aligned with the
global coordinate system. In the local facet coordinate
system (x,y",z), the facet lies on the x'y" plane, with 2"
being the normal to the facet surface, hence A = 2".For any
arbitrary oriented facet with known global coordinates, its
local coordinates can be obtained by a series of two
rotations. First, the angles o and f, are calculated from a =
tan"[n,/n,] and B =cos™}(Z-f1) , where A=
N, X +n, ¥ + n,2.The local coordinates can be transformed
to global coordinates [18]:

cos,B 0 —smﬁ cosa sina 0
—sma cosa 0 [ ] N
sm,[? 0 Cos,B
However, in facet local coordinates, the surface current

does not have a 2" component, since the facet lies on the
x'y" plane. Hence the local surface current is given

by, J, = ' & +]" 9l the surface current
components are[18]:

E';pcos¢ cosf’ E'psing’ .
] = 10 05 - ig SIn ¢ cos@" (8a)

2R+ Zycos®"  2R;cos8" + Z,
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E'gsing cosf’
2Rs + ZycosB"

E'ipcose’

: 0"
2Rscos8 + Z, cos

Jy, = (8b)

where E g, E ;5 are the components of the incident field in

the local facet coordinates ,0",¢ are the spherical polar
angles of the local coordinates and R being the surface
resistivity of the facet material. When R, = 0, the surface is
a perfect electric conductor and let’s assume the surface is
smooth. To obtain the total scattered field, simply replace
Eq. (8a), Eq. (8b) in the radiation integral for the triangular
facet, which was determined in Eq. (5), the total number of
facets (m=20), so

—jkZye I (krs=Doy)

(]usmxje +]”5myy )

ejDPm

DPm(D‘Im - DPm)]
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E(r,6,¢) =
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Once the scattered field is known, the RCS in that
direction is computed in terms of the incident and scattered
electric field intensities, The RCS is given by [19]:

|E,(r,0,0)|"
- 2

i

RCS(r,6,¢) = lim 4R (10)

where R is distance between the radar transmitter and the
target. For most objects, radar cross section is a three-
dimensional map of the scattering contributions, which vary
as a function of aspect angles (azimuth and elevation) and
polarization. The scattering matrix describes the scattering
behavior of a target as a function of polarization, normally
contains four RCS values (66,0¢,p0andpp), where the
first letter denotes the transmission polarization, the second
letter is the polarization at receive. Therefore, the RCS can
be derived at any polarizations:

|59¢|2

|Spol

|See?

RCS(r,6,¢) = lim 4nR? Sl
(L]

(11

The s,,denote the scattering parameters, where the first
index specifies the polarization of the receive antenna and
the second refers to the polarization of the incident wave.
The elements of the scattering matrix are complex quantities
and in terms of the RCS [19].

Ime)
)

RCS,, = 4mR%S,,° e /Vra, 1, = tan™?

(12)

B. The Time Differences of Arrival (TDOA) Method

The most widely used position location technique for
radar detection is the hyperbolic position location technique,
also known as the time difference of arrival (TDOA)
position location method. This technique utilizes cross-
correlation process to calculate the difference in time of
arrival (TOA) of a target signal at multiple (two or higher)
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pairs of stations. This delay defines a hyperbola of constant
range difference from the receivers, which are located at the
foci. Each TDOA measurement yields a hyperbolic curve
along which the target may be positioned. When multiple
receivers are used, multiple hyperbolas are formed, and the
intersection of the set of hyperbolas provides the estimated
location of the target. The TOA is dependent on the target-
radar geometry and medium characteristics. With three
stationary receivers, an intersection of hyperbolic curves
corresponds to a possible target in two-dimensional (2-D)
position localization, while with four or more stationary
receivers, hyperbolic curves intersect at a target in (3-D)
position-localization [20].

x

qm=mmmmmbkem oY

Fig. 2. The TDOA method based on netted Radar system.

The proposed model consists of one transmitter and four
receivers are demonstrated in Fig. 2. Benson [21]
investigates modeling method to optimize the location of
receivers in order to achieve maximum coverage of aircraft
moving around Cape Town International Airport. Due to
this method the optimum spacing between radar stations is
constant for our system geometry. The 3-D coordinate
system must be converted for each radar station according
to the following equations as shown in Table L.

In the case of a constant velocity medium as assumed in
the following study, the TOA is function of the target-radar
ranges. Assume each radar is capable of performing TOA
observation, t; , then TDOA observation is defined as
T,=t;—t, (i=2,..,N) .Expressing (3-D) TDOA
observation as a function of stationary receiver co-ordinates,
a hyperbola has the form:

CTy = (x = x)? + (y = y)? + (z — 2)?
Vo =x)?+ @ —y)?+(z-2z)?  (13)

where C is the speed of light, (xq,y1,2,) and (x;,y;, z;) are
the co-ordinates of d;and d;, respectively, and (x,y,z) is
the unknown stealth target position. Consequently, the
stealth target position is determined by solving the
intersections of a set of N — 1 hyperbolas.

The least-squares estimation is a common technique to
solve TDOA equations line a razed by using the first two
terms of their Taylor series [22]. Denote the initial guess of
the stealth target position as(xg, ¥y, Zo), the linearization of
Eq. (13) is given by:

My X + My y +Myiz = CTy — fi + My X My Y01 My 20
(14)
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where
. = (x0 — x;)
m Vo = x)% + (o — y)? + (20 — 2))?
(x0 — x1)
— 15
\/(xo —x1)%+ (Yo —y1)? + (20 — 21)? (152)
S Go — )
T G = x)ZF (o — ¥ + (20 — 2)?
(Yo — 1)
- 15b
\/(xo —x1)% + (Yo —y1)? + (20 — 21)? (155)
_ (2o — 2;)
my =
Vo = %)% + (o — y)? + (20 — 2)°
(zo — 21)
(15¢)

G =22+ (o — Y2 + (2o - 21)?

fi= \/(xo - xi)z + (3’0 - yi)z + (Zo - Zi)z)
—J (o — %)% + (¥ — ¥1)? + (2o — 2)2(154d)

Expressing the set of linearized equations in matrix form:

AX =B, (16a)
where
My myz My,
At = |My3 My3 mz3l (16b)
Mys Myy My,
CTy = f2 + MyaX04My2Y01+M 5220
B, = |CT3 = f3 + My3X01My3Y04M 5320 (16¢c)

CTy — fo + Myp X4 My Y01 MzaZ0

X =[xyz]" is the vector of the unknown variables
x,y and z.
TABLE I: 3-D COORDINATES OF THE SYSTEM GEOMETRY
No X-direction Y-direction Z-direction
dy | dycos ¢, sinb, dy sin ¢ sin 6, d, cos B,
dy | dycospysinf, —2a | dysing,sinf, —2a dy cos 6,
d; | dycospysinfy—a dy sin ¢ sin 6, dy cos 0,
d3 | dycos¢ysinf,—2a | doSing,sinb, dy cos 0,
dy | dycospysinfy—a dy sin ¢, sin 6, — 2a dy cos 0,

C. The Range-Measurement Accuracy of Proposed

Scheme Based on the Real RCS Stealth Data Predicted by

PO Method

It is desirable to know the accuracy of the estimated
stealth target position, for example, in order to properly
initialize the covariance matrix in a tracking filter. Usually,
the accuracy of the measurement of the bistatic parameters
is known (it can be estimated from the size of the range
resolution cell and the signal-to-noise ratio). Our aim is to
calculate the accuracy of the position estimate based on the
known accuracy of the bistatic parameters. Denote the
variance of the bistatic range error corresponding to the i
receiver as OR,; .The covariance matrix W of the

measurement error ofthe bistatic parameters is given by

T
W= [0R1,20R1,30R1,4] (17a)

The range-measurement accuracy is characterized by the
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root mean square measurement error(RMSE), ap ,
computedbythree error components [23].

or = (Opn? + Ogp? + ogp?)'/? (17Db)

whereopyis SNRdependent random range measurement
error,ogpis range fixed error, the rss (root-sum-square) of
the radar range fixed error and the range fixed error from
propagation andogpis range bias error, the rss of the radar
range bias error and the range bias error from propagation.
The SNR-dependent error usually dominates the radar range
error. It is random, with a standard deviation given by:

AR c
J2(SNR)  2B\/2(SNR)

where B is waveform bandwidth, C is the speed of light and
AR is Range Resolution.By the subscripts correspond
tod;, d; in Eq. (13), the accuracy of the radial length

OpN =

(18a)

. 1/2
— 2 2
measurements given by, OR,; = (O'RNi + Orw, ) .From

Eq. (18a), the accuracy of the radial length measurement
depending on the SNR is given by:

C
2V2B

SNR; + SNRN\Y?
( SNR,SNR, ) » t=2., N (18b)
l

ORy; =

The netted form of radar equation is developed here to
evaluate netted radar sensitivity properties. A fully coherent
radar network is considered, which means that the radars
comprising the whole network have a common and highly
precise knowledge of time and locations. The whole radar
network is composed of mtransmitters and n receivers. It is
assumed that the whole network is well synchronized to
achieve the common awareness of frequency and phase and
works cooperatively such that each receiver is capable of
receiving echoes due to any transmitters in the network.
Precise synchronization method is required in a spatially
coherent netted radar system to achieve the common
awareness of frequency and phase. A possible way to keep
the satisfactory coherency of radar network is to use Global
Positioning System (GPS) as reference signals. It is also
assumed that the target is anon-isotropic (stealth) radiator,
giving a fluctuation RCS in all directions. Under these
assumptions, it is reasonable to calculate the overall radar
sensitivity by summing up the partial signal to noise ratio is
given by [24]:

SNR _ ZZ P;G;G;RCS;;2;°
tted —
nere = (4m)3KT,B;R;;* Ry’ Ly

(19)

where P,;isthe " ™

transmitter gain, G,is the j
the target for /" transmitter and ;" receiver,
transmitted wavelength, B;isBandwidth for the i
transmitted waveform, kis Boltzmann’s constant, T; is
receiving system noise temperature, L;; is System loss for i"
transmitter and j” receiver, Ryis distance from ;i transmitter
to target and R,;is distance from target to j receiver. Most
of the previous research in netted radar system only
considered the simplest case of netted radar sensitivity that
the radar parameters for every transmitter and receiver are

peak transmitted power, Gyis the i
™ receiver gain, RCS;jis RCS of

- th
A;isi
th
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the same and an isotropic radiator, giving a constant RCS in
all directions except for the distance from transmitters and
receivers to target, this assumption is given by [6 -10].

ZZRUZR 2

(20a)

PrGrGrA2RCS
(47)3KT,ByLyLy

SNRnetted (T’ 9' ¢) =

But this is not an accurate consideration to calculate the
SNR of stealth target because the RCS value varies with
elevation angle and azimuth angles. Therefore the accurate
Formula of netted radar sensitivity dependent on real
Bistatic RCS of stealth target should be written as:

RCS;;(r, 6, ¢)
SNRuctrea(r,0,4) = M ZZ . (200)
i=1j= Rtl r'
PrG:G /12
_ TbrlpR (200)
(47)3KT,B,LpLy

where the other parameters such as Pr, Gy, Gg, A, Lp and Ly
still constant during the detection process.

In practice, however, the range measurement accuracy is
always present in the TDOA
measurements,thereforetheRCS measurement accuracy is
characterized by the RMSE measurement, we can express
the formula of TDOA depending on the(RMSE) of RCS
measurement accuracy between receiver’s i and laccording
to Eq. (18b) and Eq. (20)as:

1
2)}
(21
According to the physical optics (PO) method to calculate
the RCS usingEq.(12),the accurate Formula ofTDOA

between receiver’s i and 1base onthescattering RCS can be
written as:

1
8M

CTi = (dl—d

RCS; d,* + RCS, d;
1) + BZ t

RCS,RCS;

1
4/2mM B2
dleize_iji + dizslze_zjwl
5,28, 2e~2iWit¥1)

CT,: = (dl - dl) +

1
2

(22)

Then re-arranging Eq. (16) in a matrix form with the
covariance matrix of the measurement error which consist
of the range measurement accuracy between receiver’s i and
1,W using Eq. (22) and (i=4) we have:

AX+W =B, (23)

It is desired to estimate the target location that best fits
TDOA measurements. In particular, to find the X that
minimizes the sum of squares of difference between the
measurements and the estimated functions by the following
weighted (LS) calculation is a natural choice for a
goodness-of-fit criterion as:

X = argymin||W/2(B, — A,./X)”2
= (a"wa,) (4 WB,) (24a)

The estimate position of stealth target (X, ¥, Z) can be
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picked out by pre-multiplying the both sides of Eq. (24) by a
3x4 matrix composed mostly of zeroes. Denote the variance
of the bistatic range error corresponding to the i” receiver as
Og 1,i2 which expresses the covariance matrix, W of the
measurement error of the bistatic parameters, then the
position estimation using a maximum — likelihood (ML)
estimate can be written as [25]:

%] [1 0 00 B
H:lo 1 00|(A"W™4,) (A, W~B,) (24b)
2

0 0 10

For radar network system that adopts plot fusing in radar
intelligence processing, radar network system detection
probability can be calculated with the principle of OR rule.
That is:

n
Panee = 1= | [ = Pad 25)
i=1
where P;; is the probability of detection for single radar.

In [13] the authors introduce a new method of statistical
modelling, where the first n central moments of the RCS
data for real targets are combined through the use of
Legendre orthogonal polynomials to reconstruct the pdf of
the target RCS. In our paper, we use this statistical model to
achieve the accurate estimation for stealth target detection.
Assuming a stealth RCS random variable ¢ with the mean &,
the subtraction of minimum RCS from maximum RCS
180}, = Omax — Omin-The Legendre polynomials formula to
reconstruct the pdf of ¢

()_1 (0—5)_1i L(o—&) 26

Pal0) = O_Lpd o, - o, Anln o, ( )
n=0

where L, is the expression of the Legendre

polynomialwhich given byand the coefficients a,, are to be
determined from the kth central moments of o, M((,k) as

L (a - 6)
n O_L

[n/2]

- (—1)*(2n — 2k)! <0’ - 5)n—2k -
C L2k (=Rl =20\ o, (27)
[n/2] )
_2n+1 nz (=Dk(2n = 2k)! MtS'n 2k) .
nT L 20! (n = k)t (n = 2k)! 0,72k (28)
where

M® = j+00(0-_5)kpa(a')da', (k =0,1,2,...) (29)

—00

From the above expression we can calculate the accurate
probability of detection for stealth target P,;based on the
real stealth RCS data by using PO approximation method,
and then calculate the netted radar probability of detection
for stealth target by using Eq. (25).

Fig. 3 shows the flow chart of proposed scheme. Which
describe the steps of stealth target detection based on the
combination of PO, Legendre orthogonal polynomials and
TDOA methods, staring from using PO method to calculate
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RCS of stealth model by reading the coordinates and its
facets then Legendre orthogonal polynomials to reconstruct
the pdf of the stealth target RCS, finally estimate the
accurate position of stealth model depending on netted radar
sensitivity and TDOA detection method.

TABLE II: RADAR TRANSMITTER PARAMETERS

Parameter value
P (Kwatt) 250
G;,G, (dB) 32
f(MHz) 3000
B, (MHz) 1
F. F 1
L, L.(dB) 5
optimum radar spacing a (km) 50

The radar transmitter and receivers parameters are
illustrated in Table II Suppose the range resolution, AR is
150m, the fixed error, ogr , is 3m and the bias
error, ogpis1Om.

PROPOSED SCHEME
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Fig. 3. The Flow chart of proposed scheme.

3D RCS Plot of Stealth F117-A Model
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RCS of Stealth target model F-117A
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Fig. 4. The 3 —D Bistatic RCS geometry model of stealthy target based
on F-117A.
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Fig. 5. Bistatic RCS of the stealth target in 2-D. (a) Bistatic RCS varying
with the azimuth aspect angle with constant elevation angle (6 =

110")inspherical coordinate system. (b)Inpolarcoordinate system.(c)
Bistatic RCS varying with the elevation aspect angle with constant azimuth

angle (¢ = 30%).

III.

A. Establishing the Stealth Target Model and RCS
Results

SIMULATION RESULTS

PO approximation is used to detect real RCS data of
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stealth target model, F-117A. The scientific computational
features of MATLAB and GUI functions provide an
efficient calculation. It provides a convenient tool for "first
cut" of the RCS with a complex model outline composed of
triangular facets. The simulation displays the Bistatic(3-D)
RCS of stealth target based onF-117Ageometry model using
the range of (0 < 6 < 360) and (0 < ¢ < 360) shows in
Fig.4(a).Fig.4(b)shows the Bistatic RCS of a stealth target
in 3-D. Fig.5 shows the Bistatic RCS of a stealth target in 2-
D, we further assume that the incident wave is (phi-
polarized), the frequency is 3GHz and elevation angle (6 =
110 degree) while the azimuth angle (¢ ) between the
horizon and observation direction varies from (0 to 360
degrees). (a) Using spherical coordinate plot and (b) using
polar coordinate plot.(c) Bistatic RCS varying with the
elevation aspect angle with constant azimuth angle (¢ =
307).
B. SNR Results for Proposed Model

Fluctuate Stealth RCS with constant altitude (17Km)
and azimuth angle (¢ = 30°)
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Fig. 6.The comparison between SNR of real stealth RCS data and the flat
RCS (0.025m?) with X-axis at constant altitude and azimuth angle where
(a=17Km) and (¢ =30). (b) 2-D SNR for Monostatic Radar.
(c) 2- D SNR for Netted Radar.
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To indicate an accurate values of SNR due to the real
stealth RCS data with (x, y-axis) Target-Radar range, in
Fig.6 (a), we assume the stealth target moving at constant
altitude and azimuth angle where (a = 17Km) and (¢ =
30"). The relation between the varying range of stealth
target and its elevation aspect angle can be obtained from
Table I, therefore when the range (x-axis) varying
from(250 — 0 km), also the elevation aspect angle varying
from (95" — 180°) similarly. In this case the fluctuation of
SNR exists referring to Eq. (20b) which calculate SNR
based on the real stealth RCS. A comparison between the
radar sensitivity of Real RCS data based on PO method and
the flat RCS (0.025m?) with x-axis are demonstrated in
Fig.6.

Fig. 6(b) shows a comparison between the SNR for
Monostatic Radar using the two cases, which refer to the
location of radar with regards to stealth target with constant
altitude and azimuth angle. Fig. 6(c) showsa comparison
between the SNR for Netted Radar model using the two
cases. It is clear that the netted radar sensitivity of proposed
scheme has been improved due an accurate estimation of the
real RCS data for stealth model comparing to flat RCS
(0.025m?) at almost all range. The 3-D Monostatic radar
sensitivity shows in Fig. 7,(a)using conventional flat RCS
(0.025m?). (b) Using proposed PO method with real stealth
RCS. The 3-D Netted radar sensitivity shows in Fig. 8, (a)
Using flat RCS (0.025m?), (b)Using proposed PO method
with real stealth RCS.

SNR of Monostatic Radar with flat RCS (0.025m2)
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Fig. 7. The 3-D Monostatic radar sensitivity with variation of the azimuth
and elevation angles (x-y axis). (a) Using flat RCS (0.025m?). (b) Using
proposed PO real stealth RCS data.

C. Simulation of Tracking a Stealth Target

Fig. 9 shows the comparison between the (RMSE) of
stealth target detection with proposed scheme and
traditional TDOA which using the conventional statistically
target models. It is clear that the RMSE of proposed
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scheme has been improved due to the real RCS data for
stealth model comparing to the conventional statistically
target model sat almost all range. We can find that
fluctuation of netted radar RMSE value under four cases
shows a tendency around the flat(RCS = 0.025 m?) value
along X-axis. Comparing the RMSE plots of four cases, the
RMSE curve is increasing with range changing when the
conventional statistically target models is applied. While, in
cases of using Legendre orthogonal polynomials, the RMSE
can be even less than the other cases due to obtaining real
stealth RCS. The netted RMSE have been improved, within
the maximum range, the netted RMSE just equals to50 —
100 m.

SNR of Ground-based Netted Radar with flat RCS (0.025m2)
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proposed PO real stealth RCS data.
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Fig. 10. The probability of detection for stealth target detection using
the proposed scheme with real stealth RCS and other traditional models.

Fig. 10a showsthe comparison of detection probability
between the traditional statistically target models and the
proposed scheme, which used Legendre orthogonal
polynomials to reconstruct the pdf of the stealth target RCS.
It is clearly that the probability of detection using proposed
scheme has been improved comparing to the conventional
statistically target models based on flat RCS (0.025m?) at
almost all range.For the same detection probability 0.8, the
required SNR of Legendre orthogonal polynomial is 5 dB
while the others method need 8 dB and more.

TABLE III: THE DETECTION PROBABILITY OF
DIFFERENTSTATISTICALLY TARGET MODELS

Pd of Receiver

Detection Inner contour Outer contour
methods Range Range
Value (Km) Value (Km)
TDOA-Chi-square 0.8 20 0.2 180
TDOA- Legendre 0.9 80 0.7 200
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Fig. 12. The comparison between location estimation error of stealth target
with proposed scheme and TDOA using chi-square (flat RCS) with time
interval.

The detection probability corresponding to different
statistically target models are shown in Fig. 10b-Fig. 10c.
The worst case occurs when using TDOA based on chi-
square statistically model, shown in Fig. 10b. In this case,
the detection probability around ground-based transmitter
and receivers is poor that the inner contour (0.8) is located
at 20 km and the outer contour (0.2) is located at 180 km
from Ground-based receiver (Rx4). The optimal case when
using TDOA based on Legendre orthogonal polynomials as
shown in Fig. 10c, the detection probability is optimized
that the inner contour (0.9) is located at 80 km and the outer
contour (0.7) is located at 200 km from the receiver (Rx4).
The results of Fig.10 are also summarized in Table II1.

In Fig. 11, the comparison between the tracking of
stealth target using proposed scheme and TDOA based on
chi-square statistically model. It is clear that the position
estimate error of stealth target model was reduced using the
proposed scheme. Fig. 12 shows the comparison between
the RMSE of two model with time intervals.

IV. CONCLUSION

New framework of 3-D netted Radar by using a new
scheme has been proposed for stealth target detection. This
proposed scheme applies a nonparametric method for
statistical model based on a real RCS data which predicted
by PO method, it improves the performance of netted radar
system against stealth technology. The Legendre orthogonal
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polynomials are used to reconstruct the pdf of a real stealth
RCS data. The comparison of accurate tracking stealth
target based on TDOA is done between proposed scheme
and conventional TDOA methods that using traditional
statistically target models. The results revealed that the
proposed scheme gives higher location accuracy than the
conventional model and demonstrate a high probability of
stealth detection. It is clear that the netted radar SNR and
RMSE of proposed scheme have been improved due to an
accurate estimation of the real data of stealth model
comparing to the conventional models. Finally the proposed
scheme has better performance at almost all time intervals.
The advantages of this hybrid technique are not only
specific for the stealth target, but applicable for any sort of
electrically tiny target with small RCSs.
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