

Abstract—Distributed nature of transactions arising at

different sites and needing resources from diverse locations
pose various operational problems, such as deadlocks,
concurrency and data recovery. A deadlock may occur when a
transaction enters into wait state that request resource from
other blocked transactions. Deadlock detection and resolving is
very difficult in a distributed database system because no
controller has complete and current information about the
system and data dependencies. In this paper, an enhanced
technique for deadlock resolution is presented, which minimizes
the abortion or waiting of the selected victim transactions. The
proposed system includes the use of fuzzy logic by creating a set
of fuzzy rules in order to deal with criticalness and similarity
attributes of transactions. By using these rules, fuzzy logic will
try to provide an easy conflict resolution method between
transactions to diminish transactions wasted restart, and
guaranteeing temporal consistency of data and transactions.
Furthermore, the presented deadlock handling algorithm does
not detect any false deadlock or exclude any really existing
deadlocks. Experimental results show performance of the
recommended system benefits such as increase in commit rate
and decrease in re-execution or waiting of the transactions.

Index Terms—Fuzzy logic, deadlock resolving, transactions
conflict, concurrency control.

I. INTRODUCTION
Deadlock is one of the most serious difficulties in

multitasking concurrent programming systems. The deadlock
problem becomes further complicated when the underlying
system is distributed and when tasks have timing limitations.
Deadlock is a system state in which every process in some
group requests resources from other processes in the group,
and then waits indefinitely for these requests to be satisfied
[1]. Deadlock is an undesirable situation; some of the
consequences of deadlock are: throughput of the system is
affected; utilization of the involved resources decreases to
zero; deadlock increases with deadlock persistence time; and
deadlock cycles do not terminate by themselves until
properly detected and resolved [2], [3]. The deadlock
problem is intrinsic to distributed database system which
employs locking as its concurrency control algorithm.
Concurrency control and deadlock handling are the most
important problems that must have a powerful attention when
sharing information in distributed systems [1].

Deadlock resolution requires at least one of the

Manuscript received July 25, 2014; revised October 10, 2014.
Saad M. Darwish and Adel A. El-Zoghabi are with the Department of

Information Technology, Institute of Graduate Studies and Research,
Alexandria University, 163 Horreya Avenue, El-Shatby 21526, P.O. Box
832, Alexandria, Egypt (e-mail: saad.saad@alexu.edu.eg,
zoghabi@gmail.com).

Marwan H. Hassan is with the College of Imam Aladham, Branch Anbar
province, The Sunni Endowment Diwan, Iraq (e-mail:
marwanhh80@yahoo.com).

transactions causing the deadlock to release locks. This
involves a partial rollback, lock de-escalation, or most
commonly a transaction termination [3]. The throughput of
the entire database system depends on the efficiency and
accuracy of the deadlock detection and resolution algorithms.
The correctness of a deadlock algorithm depends on two
conditions. First, every deadlock must be detected eventually.
This constitutes the basic progress property in which any
solution must have. Second, if a deadlock is detected, it must
indeed exist (safety property) [4]. Incorrectly detected
deadlocks due to message delays and out-of-date
wait-for-graphs (WFGs) have been termed phantom
deadlocks. The main disadvantage of deadlock detection
schemes is the additional overhead incurred due to detection
of cycles in the graph and abortion and restart of transactions
upon detection of deadlocks. The distributed detection
strategies may have additional overhead due to the inter site
message transfers. Selection of the transaction to be aborted
adds to the complexity of the scheme.

There are four techniques regularly engaged to deal with
deadlocks in database systems: ignore the problem, deadlock
detection, deadlock prevention and deadlock avoidance.
Ignoring deadlocks is the easiest scheme to implement.
Deadlock detection attempts to locate and resolve deadlocks.
Deadlock avoidance describes techniques that attempt to
determine if a deadlock will occur at the time a resource is
requested and reacts to the request in a manner that avoids the
deadlock. Deadlock prevention is the structuring of a system
in such a manner that one of the necessary conditions for
deadlock cannot occur. Each solution category is suited to a
specific type of environment and has advantages and
disadvantages, see [4], [5] for more details.

In general, database deadlock resolution involves the
following nontrivial steps [6]-[9]: 1) Select a victim (the
transaction to be aborted) for the optimal resolution of a
deadlock (this step may be computationally tedious). 2)
Abort the victim, release all the resources held by it, restore
all the released resources to their previous states, and grant
the released resources to deadlocked processes. 3) Delete all
the deadlock detection information concerning the victim at
all sites. Execution of the second step is complicated in
environment where a process can simultaneously wait for
multiple resources because the allocation of a released
resource to another process can cause a deadlock. The third
step is even more critical because if the information about the
victim is not deleted quickly and properly, it may be counted
in several other (false) cycles, causing detection of false
deadlocks. To be safe, during the execution of the second and
third steps, the deadlock detection process (at least in
potential deadlocks that include the victim) must be halted to
avoid detection of false deadlocks.

Efficient resolving of a deadlock requires knowledge of all

Soft Computing for Database Deadlock Resolution

Saad M. Darwish, Adel A. El-Zoghabi, and Marwan H. Hassan

15

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

DOI: 10.7763/IJMO.2015.V5.429

the process involved in the deadlock and all resources held by
these processes [3]. When a deadlock is detected, the speed
of its resolution depends on how much information about it is
available, which in turn depends on how much information is
passed around during the deadlock detection phase. In
existing distributed database, deadlock resolution is
complicated by at least one of the following problems [1]: 1)
A process that detects a deadlock does not know all the
processes (and resources held by them) involved in the
deadlock. 2) Two or more processes may independently
detect the same deadlock.

One of the most commonly used technique for deadlock
resolution is timestamp based approach for selecting the
victim [4]. In this approach, a timestamp is allocated to each
process as soon as it enters the system. The timestamp of the
younger process is greater than the timestamp of older
process. According to this approach, the victim is selected on
this timestamps, the process with the higher timestamp is
aborted, that is the youngest process is selected as the victim
and is aborted in order to break the deadlock cycle. The goal
behind choosing the youngest process as victim is that the
youngest process would have used less resources and less
CPU time as compared to older process. One problem with
this technique is that it can cause starvation problem because
every time a younger process is aborted which can starve the
younger process from completion.

In recent years, many algorithms are proposed that support
dynamic adjustment of serialization order found from
transaction object attributes to deal with database'
transactions conflicting and to resolve deadlocks [9]-[11].
These methods use importance of transaction and operation
similarity and can ensure a very well real-time performance
by minimizing transactions wasted restart, under
circumstances of guaranteeing logical and temporal
consistency of data. In general, using importance or
criticalness of the transaction in place of the priority in the
conflict resolution of existing methods avoids the dilemma of
priority based conflict resolution, because transactions with
very short deadline (i.e. very high priority) are not
necessarily more critical than transactions with high
importance [12]. However, these approaches do not take the
fuzziness of transaction object attributes into consideration,
and meet trouble with false positives and errors in deadlock
detection. Another problem is that these approaches do not
discuss the priority of all potential deadlocks, and it is hard to
determine that deadlock is more baleful and need to be solved
first.

Fuzzy logic systems are widely recognized to be successful
at modeling uncertainty in a large variety of applications.
Basically, it provides an effective means of capturing the
approximate, inexact nature of the real world [13]. The use of
fuzzy logic is essential at decision making processes where
the description by algorithms is very difficult and criteria are
multiplied. The fuzzy logic measures the certainty or
uncertainty of membership of element of the set. The solution
of certain case is found on the principle of rules that were
defined by fuzzy logics for similar cases.

The main contribution of this paper is to propose a new
priority based scheme for deadlock resolution that depends
on fuzzy logic to deal with uncertainty of transaction's

attributes. This scheme uses dynamic adjustment of
transactions operation similarity and importance for
resolving deadlock between transactions whenever conflict
arises, thereby decreasing transaction re-executions or
waiting and current load of the database server. To the best of
our knowledge, this is the first research effort to explore the
adaptation of the fuzzy logic for deadlock resolution
technique to database systems.

The remainder of this paper is organized as follows: in
Section II we review the most important existing deadlock
control methods proposed in the literature. Afterward,
Section III introduces the proposed method by presenting and
explaining in detail the task of each step of this method. In
Section IV, we present performance evaluation of proposed
method. Finally, Section V includes the conclusion of our
works and our future perspectives.

II. RELATED WORKS
As mentioned earlier deadlock occurs whenever waiting

transactions want access to the resources held by each other
and none of them is able to complete their execution [2].
Most of the reviewed algorithms imply rollback/abort as the
solution to deadlocks. The only ways in which they differ is
how they select the victim. Most of the strategies of victim
selection have been reviewed in the literature, the only
drawback of such strategies is that it leads to abort of the
victim, or they restart the victim which leads to wastage of
resources, wastage of the work done by the aborted process,
low throughput of system and it makes execution time of
processes unpredictable.

Some authors introduced an optimization technique for
deadlock detection that minimizes the abortion of the
selected victim transactions. Their technique used TQ
(Transaction queue) to store the priority for all transactions
which are in local or global deadlock cycles. Based on the
priority, the youngest transactions are aborted to free the
system from deadlock cycles. The presented technique aborts
the transaction’s requests which are really to blame for the
formation of many deadlock cycles. Also the algorithm does
not detect any false deadlock or exclude any really existing
deadlocks. In this technique global deadlock is not dependent
on the local deadlock system [14].

P. Sapra et al., in [4] introduced a deadlock detection and
resolution technique using the concept of priorities. This
algorithm maintains a list of all the transactions, and
whenever a deadlock cycle is detected, the priorities of the
transactions constituting the deadlock are checked. The
transaction with the least priority is aborted so that the
resources held by it can be set free and can be granted over to
the waiting transactions. But it has been found that if the
order of the priorities is changed this algorithm fails to detect
deadlocks. In the same direction, the authors in [15]
presented a new deadlock resolution algorithm which doesn't
cause any aborts /roll backs. It is based on the mutual
cooperation of transactions and a random number
representing time duration for which the process holding the
resource will be suspended. In this algorithm the distributed
system's site coordinator manages its own transactions and
resolves any deadlock when detected.

16

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

Differing with above researchers, M. Ghodrati et al., [16]
used neighbor replication on grid to resolve deadlock. The
solution provided for selecting a victim to break the deadlock
cycle in addition to the ID of priority importance for
transaction systems is also considered. In this model, the new
rules for mapping transaction WFG to colored Petri nets
modeling for the detection and resolve deadlock are
elaborated. In [12] the authors proposed an optimistic
concurrency control with the capability of predicting the
correctness of the transactions history in case it is
rescheduled. Furthermore, the authors used the concept of
similarity between conflicting operations to obtain a better
real-time performance, and the transaction importance
criterion in order to favor transactions with higher
importance in data conflict resolution. In addition, they
relaxed serializability criterion by introducing data similarity
and operation similarity, by allowing two conflicting
operation to commit if they meet operation similarity that
means when they are slightly different we consider them as
acceptable. The method resolved conflicts using time
intervals of the transactions. Every transaction must be
executed within a specific time slot.

Fig. 1. Proposed fuzzy based deadlock resolution approach.

.
Built on top of the work suggested in [12], a similar type of

approach is adopted here to resolve deadlocks based on
fuzzification of the transaction's attributes to build a new
rules-based priority for conflict resolution between
transactions. Design of fuzzy logic or rule based non-linear
controller is easier since its control function is described by
using fuzzy sets and if-then predefined rules rather than
cumbersome mathematical equations or larger look-up tables;
it will greatly reduce the development cost and time and

needs less data storage in the form of membership functions
and rules. The properties of this solution are locality of
transactions, and asynchronous operation. We elaborate our
simulation results and justify performance gain of the
proposed scheme for achieving deadlock management in
database environments by eliminating limitations of the
existing schemes, increasing commit rate and decrease in
re-execution rate of the transactions.

III. DEADLOCK RESOLUTION WITH FUZZY LOGIC
In order to overcome shortcomings of the deadlock

resolution methods discussed above to certain contain, by
using transaction's features, a robust resolving scheme using
both transaction's features-based and fuzzy logic is proposed
as shown in Fig. 1. The suggested system utilizes fuzzy logic
technique by creating a set of fuzzy rules that will form the
fuzzy logic engine in order to deal with the criticalness and
the similarity attributes of transactions. By using these rules,
fuzzy logic will try to provide an easy conflict resolution
method between transactions. The algorithm attempts to
outperform the previous methods by reducing the number of
transaction waiting and increasing the concurrency level
while maintaining the data valid as much as possible. Table I
shows the different terms and parameters applied in the
proposed system.

TABLE I: LIST OF PARAMETERS USED IN THE PROPOSED APPROACH

Parameter Definition
D Transaction's data object
T Transaction
t Current time

Ta Active conflicting transaction
Tv Validating conflicting transaction

RS Data read set (The adjustment of timestamp of an
active transaction iterates through the read set)

WS Data write set (The adjustment of timestamp of an
active transaction iterates through the read set)

S(T) Start time of transaction T
A(T) Arrival time of T
Ct(T) The estimated completion time of T at time t
Et(T) The estimated remaining execution time of T at time t
D(T) Deadline of transaction T

T(Opi, D) Transaction 's operation sharing with D
f(x;a,b,c,d) Trapezoidal membership function

entering the transaction, the initial timestamp will be
determined. The timestamp of all other concurrently running
and conflicting transactions must be adjusted to reflect the
serialization order. At the start of the execution, the
timestamp interval of a transaction T is initialized
as)].(),([TdTS whenever the serialization order of the
transaction is induced by its data operation or the validation
of other transactions, its timestamp interval is adjusted to
represent the dependencies [12].

In the suggested system, each transaction has a unique
identifier. Many deadlock detection algorithms require a total
ordering on transactions for deadlock resolution and assume
that the transactions’ identifiers can be used for this purpose,
e.g., to determine the youngest transaction. However, after a

17

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

Step 1. Input transaction (read phase): at the stage of

transaction is aborted, it has to be restarted with a new
identifier, otherwise information regarding the aborted and
the restarted execution of the transaction could not be
distinguished, possibly leading to inconsistencies. Still,
changing the identifier could alter the ordering of
transactions, e.g., an old transaction might become the
youngest. To avoid this, in the introduced system, a
transaction is associated with a timestamp (additionally to the
identifier), indicating the time it has entered the system,
which is not modified after an abort, and can therefore be
used for transaction ordering. For simplicity reasons, in the
rest of the paper, we use identifiers for the ordering of
transactions and assume that they contain such a timestamp
[17].

In general, there are three phases for database's transaction:
(1) Read phase: The transaction reads the values of all data
items it needs from the database and stores them in local
variables. In some methods updates are applied to a local
copy of the data and announced to the database system by an
operation named pre-write. (2) Validation phase: The
validation phase ensures that all the committed transactions
have executed in a serializable fashion. For a read-only
transaction, this consists of checking that the data values read
are still the current values for the corresponding data items.
For a transaction that has updates, the validation consists of
determining whether the current transaction leaves the
database in a consistent state, with serializability maintained.
(3) Write phase: This follows the successful validation phase
for update transactions. During the write phase, all changes
made by the transaction are permanently stored into the
database [14].

the same objects Di both T v invalidating and active T a
transactions and at least one of the operations is a write
operation, then we have a conflict (deadlock is detected). In
practice, deadlock detection often assumes a simplified
resource model; the system contains only reusable resources
and there is only a single unit of every resource. This model
makes deadlock detection simple to implement, but at the
cost of detecting fewer types of deadlock.

The proposed system follows Single Request Model for
static deadlock detection in which a process can have at most
one outstanding request for only one unit of a resource. Since
the maximum out-degree of a node in a WFG for the single
resource model can be 1, the presence of a cycle in the WFG
shall indicate that there is a deadlock. The rationale of
choosing this request model is that it simplifies the problem
of detecting the deadlock and easy to implement [18].
Formally, conflict can occur when [12]:

 φ≠∩∈))()((T vWST aRSDi (read-write conflict) (1)
 φ≠∩∈))()((T vRST aWSDi (write-read conflict) (2)
 φ≠∩∈))()((T vWST aWSDi (write-write conflict) (3)

Here, to reflect the new developments, the attempt is to use
transactions' features to solve the conflict between them
through employing fuzzy controller to handle uncertainty
associated with these features that affecting to the
transactions' priority .

temporal data items that takes into account transaction's
operations such as read, write, and shared resources and
criticalness that takes into account the estimated completion
time of T as transaction's attribute which uses information
about the importance of the transactions that will be fed into
fuzzy logic engine for conflict handing. These two features
were selected for ease of application and ease of calculations
inside fuzzy logic engine. Suppose tm and t n are a pair of

concurrent transactions, tmOpi ∈ , tnOpi ∈ , Opi and Op j

operate on the same non-critical data object D (conflicting
operations). If the following condition is satisfied [12]:

 ≤∝−),(),(DOp jTDOpiT (4)

∝ is the threshold value whose value depends on the
application semantics, then Opi

 and Op j
are said to be

operation similarity, notated by Op jOpi ≈ . Furthermore D is

critical trueDTCt =),(if:

),(),(TdDTCt ≤
)(),(TEttDTCt += (5)

Criticalness measures how critical it is that a transaction
meets its timing constraints. Different transactions have
different criticalness. Furthermore, criticalness is a different
concept from deadline because a transaction may have a very
tight deadline but missing it may not cause great harm to the
system. Here, expected execution time is very hard to predict
but can be based on estimate or experimentally measured
value of worst case execution time.

adaptive in nature and can also exhibit increased reliability,
robustness in the face of changing transaction's features. The
first step in the design of a fuzzy logic controller is to define
membership functions for the inputs; three fuzzy levels or
sets are chosen and defined by the following library of
fuzzy-set values for the similarity (non-similar, similar, very
similar) and critical attributes (very critical, critical,
non-critical) of transaction as shown in Fig. 2a,2b. For a
given crisp input, fuzzifier finds the degree of membership in
every linguistic variable. The number of fuzzy levels is not
fixed and depends on the input resolution needed in an
application. The larger the number of fuzzy levels, the higher
is the input resolution. The fuzzy controller utilizes
trapezoidal membership functions on the controller input
[13].

Membership functions allow us to graphically represent a
fuzzy set. The x axis represents the universe of discourse,
whereas the y axis represents the degrees of membership in
the [0,1] interval [19]. Simple functions are used to build
membership functions. Because we are defining fuzzy
concepts, using more complex functions does not add more
precision. The trapezoidal membership function is chosen
due to its simplicity. All of membership' parameters are
numerically specified based on the experiences to handle
transactions. In our case, all fuzzy levels have the same space
on the number line. The trapezoidal curve is a function of a
vector, x, and depends on four scalar parameters a, b, c, and d,

18

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

Step 2. Deadlock detection: When access has been made

Step 3. Transaction' attributes extraction: The proposed
method employs the concept of similarity for non-critical

 Step 4. Fuzzy logic controller: Fuzzy logic controller is

as given by [13]:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<

≤≤
−
−

≤≤

≤≤
−
−

<

=

xd

dxc
cd
xd

cxb

bxa
ab
ax

ax

dcbaxf

0

1

0

),,,;(
 (6)

(a)

(b)

Fig. 2. Membership function for (a) Similarity (b) criticalness.

Fuzzy control rules are obtained from the analysis of the
system behavior. The control rules that associate the fuzzy
output to the fuzzy inputs are derived from general
knowledge of the system behavior. However, some of the
control actions in the rule table are also developed using “trial
and error” and from an “intuitive” feel of the process being
controlled. The derivation of the fuzzy control rules is
heuristic in nature and consists of the following rules:

 If (similarity is non-similar) and (criticalness is
non-critical)

 Then (wait).
 If (similarity is non-similar) and (criticalness is very critical)
 Then (commit).
 If (similarity is similar) and (criticalness is non-critical)
 Then (wait).
 If (similarity is very similar) and (criticalness is very critical)
 Then (commit).
 If (similarity is very similar) Then (commit).
 If (criticalness is very critical) Then (commit).

The results of the inference mechanism that include both
of similarity and criticalness factors of the individual rule is
obtained by Mamdani’s min or max fuzzy implications of

)}(),({ xBxAMin μμ or)}(),({ xBxAMax μμ , where)(),(xxA Bμμ

are membership degrees for similarity and criticalness
respectively. Conservation of the fuzzy to crisp or non-fuzzy
output is defined as defuzzification. In the defuzzification
operation a logical sum of the inference result from each of
the six rules is performed [19].

∑

∑

=

==
6

1)(

6
1)('

i yB

i yByiy
μ

μ (7)

The system decides which transaction is waiting or

committing based on the output. If ≥∝y' then transaction is
committing else transaction is waiting. In our case 5.0∝= to
achieve systems robustness in terms of increase in commit
rate and decrease in re-execution or wait of the transactions.
In a DBMS, deadlock resolution means that one or more of
the participating transactions, the victim, is chosen to be
aborted, thereby resolving the deadlock. But when more than
one deadlock cycle is involved in any distributed site or
among the sites, it is required to optimize the request of the
transactions which are involved for the cause of the major
deadlock cycles.

IV. SIMULATION RESULTS
In this section, we conducted an extensive set of simulation

experiments using the above mentioned parameters in Table I
through MATLAB and PHP languages. Wait percentage
(Wait %) and Commit percentage (Commit %) were used as
measures for the performance metrics in our simulation
results. Wait % (how many transactions wait due to violation
of serializability before final commit from the total number of
transactions taken for concurrent execution) is the percentage
of input transactions that have non critical attribute and have
less than 0.6 in the similarity scale and Commit % (how many
transactions successfully committed execution from the total
number of transactions taken for concurrent execution) is the
percentage of input transactions that have very critical
attribute and have greater than 0.6 in the similarity scale
(according to fuzzy system rules). We conducted simulation
under normal and heavy loads with various settings of
workload parameters such as number of transactions,
transaction workload (simple or complex transaction) and
with other corresponding parameter values.

 Fig. 3. Performance graph of commit rate for simple transaction.

Fig. 4. Performance graph of commit rate for complex transaction.

simple transactions under fuzzy and non-fuzzy deadlock
resolution. In this experiment, we considered 25 transactions
with one SQL statement and other parameter values were

wit

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

N
o.

 o
f C

om
m

its
 %

Number of Complex Transactions

without fuzzy with fuzzy

19

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

Experiment 1. Comparison of waits % and commit % for

kept constant. The experimental results are shown in Fig. 3
for commit%. These results show that wait %s were low and
Commit %s high for fuzzy approach compared with
non-fuzzy approach. Commit %s for 25 transactions under
fuzzy and non-fuzzy approaches was 80% and 72%
respectively.

complex transactions under fuzzy and non-fuzzy deadlock
resolution. In this experiment, we considered transactions
with average 4 SQL statements and other parameter values
were kept constant. The experimental results are shown in
Fig. 4 for commit%. These results show that wait %s were
low and Commit %s high for fuzzy approach compared with
non-fuzzy approach. Commit %s for 10 transactions under
fuzzy and non-fuzzy approaches was 75% and 25%
respectively.

It is evident from the above graphs that the proposed
scheme effectively reduces the wait rate of the transactions.
This is because the proposed scheme gives more priority to
the transaction's features, which requested the data item first
in the execution while resolving conflict of data item access.
This ensures implicit serialization order of the concurrently
executing transactions, which is essential to maintain
consistency of the database. Both figures show that wait %s
were low and Commit %s, high.

(a)

(b)

Fig. 5. Performance graph of commit and wait rates for simple transaction
attributes (a) similarity, (b) criticalness.

fuzzy deadlock resolution for each transaction's attributes.
The goal of this experiment is to compare wait % and
Commit % of each simple transaction attributes. Results are
shown in Fig. 5a, 5b. In Fig. 5(a) we measure the number of
transactions commits and waits with related to transactions'
similarity. As illustrated from the first and second column,
the number of transactions is 20 in all and the number of
similar transactions is 9 that actually committed and the

number of non-similar transactions is 11; the proposed
algorithm adds 6 transactions to be committed from the
non-similar transactions, which means that that total number
of committed transactions is 15 and the number of waited
transactions is 5. It has been observed form the figure that
when the similarity of transactions is high the number of
transactions commits increases and the number of
transactions waits decrease.

In the same scenario, as shown in Fig. 5(b), we measure
the number of transactions commits and waits that are related
to critical transactions. As depicted from the first and second
column the number of critical transactions is 9 that actually
committed and the total number of non-critical transactions is
11, so the proposed algorithm appends 5 transactions to be
committed from the non- critical transactions thus the total
number of committed transactions is 14 and the total number
of waited transactions is 6. It has been observed form the
figure that when the number of critical transactions increases
the number of transactions commits increases and the number
of transactions waits ranges from 3 to 6.

In summary, our results show that the proposed system can
resolve deadlock quickly and that it introduces little
performance overhead to normal applications that do not
deadlock. Furthermore, our extensive experiments
demonstrate that fuzzy technique substantially improves
transaction throughput. Together, our resolution manager
achieves up to 30x better throughput than non-fuzzy
resolution algorithm for both sample and complex
transaction. The complexity of the system depends on
number of transactions and average query statements in each
transaction besides computations of fuzzy inference engine.
We measure the time that takes about to detect a deadlock,
which is the duration from the time that the system enters the
detection mode to the time it finishes the resolution and prints
out the results. It takes 1.5 seconds in the Apache web server.
For application developers, this system can be viewed as
another tool to add to the deadlock resolution toolbox. When
the suggested and the existing tools are used together, they
can provide the best coverage of deadlocks.

V. CONCLUSION
Deadlock can occur in any concurrent system and is often

difficult to debug. Existing deadlock resolution techniques
are either impractical for large software database systems or
over-simplified in their assumptions about
deadlock-sensitive resources. In this paper, we propose
fuzzy-based deadlock resolution, a novel database system
mechanism that dynamically handles deadlock in database
applications with the capability of predicting the correctness
of the transactions history in case it is rescheduled. The
proposed system improves the drawbacks of the existing
schemes by prioritizing the transactions based on their
features. The suggested system increases the overall commit
rate of the system and decreases the rate of waits.

The system employs the concept of similarity between
conflicting operations to obtain a better real-time
performance, and the transaction criticalness criterion in
order to favor transactions with higher importance in data
conflict resolution. Furthermore, the system exploits fuzzy

20

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

Experiment 2. Comparison of waits% and commit% for

Experiment 3. Comparison of wait% and Commit% under

logic approach as the famous artificial intelligence technique
to merge transaction's features to provide an easy conflict
resolution method between transactions. The advantages of
proposed scheme are 1) transactions data item access priority
is maintained to ensure serializability without aborting the
transactions. 2) the cost of waiting time of the transaction to
execute is less than the cost of re-execution of the transaction.
Hence, transaction can wait little more to acquire a data item
than to access and get aborted 3) the transaction, which has
done more work, is given higher priority, as it will finish
early if given more privilege. Finally 4) the overall through
put of the system increases by sacrificing a small amount of
waiting time and overhead is conserved.

Also, a simulation implementation and a performance
comparison between fuzzy and non-fuzzy real-time deadlock
control methods show that our method can ensure a very well
real-time performance while guaranteeing temporal
consistency and can even outperform non-fuzzy method in
many cases. Moreover, we can try to implement our proposed
method on a real-time database test platform and on a real
database management system to obtain more accurate results.

REFERENCES
[1] P. Sapra, S. Kumar, and R. Rathy, "Deadlock detection and recovery in

distributed databases," International Journal of Computer Applications,
vol. 73, no. 1, pp. 32-36, July 2013.

[2] S. Singh and S. Tyagi, "A review of distributed deadlock detection
techniques based on diffusion computation approach," International
Journal of Computer Applications, vol. 48, no. 9, pp. 28-32, June 2012.

[3] S. Selvarai and R. Ramasamy, "An efficient detection and resolution of
generalized deadlocks in distributed systems," International Journal of
Computer Applications, vol. 1, no. 19, pp. 1-7, 2010.

[4] P. Sapra, S. Kumar, and R. Rathy, "Detection and Resolution of
Deadlocks in Multi-Level Secure Databases," International Journal of
Engineering and Technology (IJET), vol. 5, no. 3, pp. 3001-3006,
June-July 2013.

[5] B. Hossain and M. Grechanik, "REDACT: preventing database
deadlocks from application-based transactions," in Proc. ACM
Symposium on the Foundations of Software Engineering, 2013, Russia,
pp. 591-594, 2013.

[6] A. Soleimany and Z. Giahi, "An efficient distributed deadlock
detection and prevention algorithm by daemons," International
Journal of Computer Science and Network Security, vol. 12, no. 4,
pp.150-155, April 2012.

[7] T. Li, C. Ellis, A. Lebeck, and D. Sorin, " Pulse: a dynamic deadlock
detection mechanism using speculative execution," in Proc. the Annual
Technical Conference, pp. 31-44, USA, 2005.

[8] S. Srinivasan and R. Rajaram, "Message-optimal algorithm for
detection and resolution of generalized deadlocks in distributed
systems," Academic Journal of Informatica, vol. 35, no. 4, pp. 498-489,
2011.

[9] M. Goswami, K. Vaisla, and A. Singh, " VGS algorithm: an efficient
deadlock prevention mechanism for distributed transactions using
pipeline method," International Journal of Computer Applications, vol.
46, no. 22, pp. 1-9, May 2012.

[10] S. Gupta, "Deadlock detection techniques in distributed database
system," International Journal of Computer Applications, vol. 74, no.
21, pp. 41-45, July 2013.

[11] F. Tanga, I. Youb, S. Yuc, C.-L. Wangd, M. Guoa, and W. Liue, " An
efficient deadlock prevention approach for service oriented transaction
processing," International Journal of Computers and Mathematics
With Applications, vol. 63, no. 2, pp. 458-468, 2012.

[12] M. Walid, K. Nicolas, and H. Mohamad, "An optimistic concurrency
control approach applied to temporal data in real-time database

systems," Journal of WSEAS Transactions on Computers, vol. 11, no.
12, pp. 419-434, 2012.

[13] T. Govindaraj and R. Rasila, "Development of fuzzy logic controller
for dc–dc buck converters," International Journal of Engineering
Technoscience, vol. 2, no. 2, pp.192-198, 2011.

[14] Chahar and S. Dalal, "Deadlock resolution techniques: an overview,"
International Journal of Scientific and Research Publications, vol. 3,
no. 7, pp. 1-5, 2013.

[15] B. Alom, F. Henskens, and M. Hannaford, "Optimization of detected
deadlock views of distributed database," in Proc. International
Conference on Data Storage and Data Engineering, pp. 44-48,
Bangalore, 2010.

[16] M. Ghodrati and A. Harounabadi, "A new method for optimization of
deadlock resolution of distributed database with formal model,"
International Journal of Electronics Communication and Computer
Engineering, vol. 5, no. 1, pp. 220-228, 2014.

[17] H. Grover, "A distributed algorithm for resource deadlock detection
using time stamping," International Journal of Engineering Research
and Technology, vol. 2, no. 11, pp. 4124-4132, Nov. 2013.

[18] V. Geetha, N. Sreenath, and A. Kumar, "Deadlock elimination of AND
model requests in distributed systems," in Proc. IEEE International
Conference on Recent Trends in Information Technology, pp.
1154-1157, China, 2011.

[19] C. Wagner and H. Hagras, "Novel methods for the design of general
type-2 fuzzy sets based on device characteristics and linguistic labels:
surveys," in Proc. the 9th Conference of the European Society for Fuzzy
Logic and Technology, pp. 537-543, Portugal, 2009.

Adel A. El-Zoghabi received his B.Sc. in computer
engineering from Alexandria University in 1987, he
received his M.Sc. and Ph.D. in information
technology from Alexandria University and Old
Dominion University in 1991 & 1994 respectively.
His research and professional interests include
intelligent systems and machine learning, inter
networking and routing protocols, and distributed
systems. He has published many papers in
international journals and conferences worldwide

during the past three decades. Currently he is a professor of Computer
Science and IT and the head of Dept. of Information Technology since
August 2012.

Saad M. Darwish received his Ph.D. degree from
the Alexandria University, Egypt. His research and
professional interests include image processing,
optimization techniques, security technologies, and
machine learning. He has published in journals and
conferences and severed as TPC of many
international conferences. Since Feb. 2012, he has
been an associate professor in the Department of
Information Technology, Institute of Graduate
Studies and Research, Egypt.

Marwan H. Hassan received the B.Sc. degree in
computer science from Department of Computer
Science, College of computer, University of
Alanbar, Iraq in 2004. Currently he is a M.Sc.
student in the Department of Information
Technology, Institute of Graduate Studies and
Research, Alexandria University, Egypt. His
research and professional interests include
databases processing, concurrency control, and

distributed systems .

21

International Journal of Modeling and Optimization, Vol. 5, No. 1, February 2015

