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Abstract—With the advancement of technology and industry, 

customer demands have become increasingly complex, making 
it more challenging to anticipate and meet their needs. In this 
context, Industry 4.0 has introduced essential tools that facilitate 
the simulation of various scenarios, enabling manufacturers to 
anticipate customer needs without relying on highly advanced 
or expensive technologies. In response to this need, the concept 
of the Digital Twin (DT) has emerged, aiming to create a 
simulation that closely mirrors real-world scenarios. Its primary 
function is to accurately replicate, based on a set of real-life data, 
a piece of equipment or an industrial process without requiring 
physical acquisition. In this study, DT software was utilized to 
simulate the manufacturing process of coils for a generator rotor, 
in order to detect production bottlenecks, and recommend 
optimal solutions to improve efficiency. The main objective is to 
develop a scenario that accurately reflects the current state of 
the production line, identify critical points, and subsequently 
redesign the workflow to eliminate inefficiencies and improve 
overall productivity. 
 

Keywords—digital twin, simulation, optimization, industry 
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I. INTRODUCTION 

The implementation of DTs has proven to be highly 
effective in tackling the challenges of Industry 4.0, including 
growing process complexity, the need to minimize downtime, 
and the pursuit of enhanced product quality [1]. 

Scientific literature has increasingly highlighted the 
adoption of DTs in the manufacturing industry. For example, 
an analysis conducted by Fantozzi et al. enhances a 
production line’s operational efficiency by demonstrating the 
accuracy of replicating a production line model in the 
pharmaceutical industry through the implementation of a DT, 
identifying bottlenecks and inefficiencies on the production 
line. Furthermore, the primary impact of their study was to 
demonstrate the use of a DT as a decision-support tool, 
through the integration of real-time data and the execution of 
detailed simulations. This approach enabled managers to 
explore various operational strategies and select the most 
efficient ones, thereby improving production flow, reducing 
risks, and optimizing resource utilization [2]. 

To accurately replicate a production line and develop a DT 
that closely approximates the real existing system, the initial 
and essential step involves the systematic collection of 
databases or the comprehensive mapping of the targeted 
process. Value Stream Map (VSM) is one of the most 
recognized and widely used mapping methodologies in both 

lean manufacturing and industrial applications. 
VSM specifically enables the visualization of information 

and material flow, facilitating the identification and analysis 
of inefficiencies and activities that do not add value [3]. 
Moreover, it enables the identification of areas that need 
process improvements, thereby enhancing overall efficiency 
and effectiveness. A compelling example is a case study 
conducted by Costa in which they successfully implemented 
a VSM  for a production line in a luxury metal piece 
manufacturing company [3]. The results demonstrated a 
reduction in lead time from 336.45 h to 318.14 h, along with 
an increase in value-added time and overall process 
efficiency. The most significant improvement came from 
eliminating approximately 14 h of time that does not add 
value through flow optimization and the development of an 
inventory. Additionally, the study suggests future research to 
evaluate the applicability of VSM in similar industries and to 
analyze the impact of Single-Minute Exchange of Die 
(SMED) actions, as well as the implementation of First In, 
First Out (FIFO) and Kanban systems. 

Chiscop et al. [4] studied a manufacturing architecture 
diagnosis designed meant to identify solutions for enhancing 
productivity while maintaining an optimized product cost. 
The economic validation was conducted based on the Cost-
to-Use Value ratio. 

While previous studies have addressed the individual 
application of  DT technology or VSM in manufacturing, this 
research introduces a novel and integrative framework that 
combines both approaches in a fully operational, high-
precision industrial setting. The study applies DT and VSM 
to the rotor coil manufacturing line of high-power generators. 
This is underrepresented in existing literature due to its 
standardization and low tolerance for variability. Moreover, 
the digital model was constructed using WITNESS Horizon 
software and validated with real production data, achieving a 
relative error of only 0.00425%. This exceptionally high 
accuracy reinforces the model’s applicability for real-time 
performance diagnostics and scenario testing. Additionally, 
the research outlines a step-by-step, reproducible 
methodology that includes field data collection, simulation 
model calibration, bottleneck detection, and optimization 
scenario validation. These contributions demonstrate both 
scientific and practical novelty, offering a robust and 
generalizable framework for applying DT technology in 
structured manufacturing environments. Furthermore, the 
study provides a concrete demonstration of using DT as a 
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diagnostic and optimization tool for production bottlenecks 
in a highly structured industrial setting, a use-case that 
remains underrepresented in peer-reviewed literature. 

The primary objective of this article is to map the rotor coil 
manufacturing process for generators using a VSM and based 
on this mapping to implement a DT. This approach aims to 
identify critical points in the production flow, detect idle 
times, and explore optimization strategies for the overall 
process. 

The proposed methodology includes the following steps: 
 Develop a VSM incorporating equipment Cycle Times 

(CT). 
 Build a DT based on the previously developed VSM. 
 Simulation of the material flow real existing system to 

identify vulnerabilities and bottlenecks. 
 Redesign the flow to mitigate idle times and optimize the 

overall process. 
A DT is generated using the developed methodology that 

closely replicates the tangible system, providing several 
optimization possibilities, as follows: A substantial reduction 
in lead time for customer deliveries; More efficient allocation 
of operators across workstations, improving overall 
productivity; Simplified analysis of potential future scenarios, 
allowing for targeted actions to achieve specific goals (e.g., 
reduced lead time, increased operational capacity, etc.); 
Improved product quality by pinpointing areas with the 
highest rejection rates, enabling timely interventions to 
reduce raw material waste. 

II.  MATERIALS AND METHODS 

As previously outlined, DTs serve as virtual 
representations of products, processes, or services. This 
technology enables the simulation, prediction, and 
optimization of operations by using real-time data, 
positioning it as a critical component of Industry 4.0 [5, 6]. 
The integration of DTs with technologies such as the Internet 
of Things (IoT) and Big Data has led to notable advancements 
in product lifecycle management, a reduction in downtime, 
and improvements in predictive maintenance strategies [7, 8]. 

The literature indicates that, although DT technology is 
acknowledged for its transformative potential in industrial 
operations, its implementation frequently lacks a thorough, 
systematic approach that encompasses the entire lifecycle of 
production processes. This issue is especially prominent in 
sectors such as manufacturing, where most studies tend to 
concentrate on the capabilities of DTs in predictive 
maintenance and isolated optimizations, rather than on the 
comprehensive integration of processes [9]. 

The methodology proposed in this article seeks to bridge 
existing gaps by establishing a rigorous framework for the 
implementation of DTs, specifically designed to maintain 
optimal alignment between digital and real-world  systems. 
Unlike traditional methods that focus mainly on specific 
study cases, this framework adopts a systematic strategy 
encompassing data collection, digital model development, 
identification of critical points, and comprehensive 
optimization of the production process [10]. 

By integrating these components, the proposed solution 
overcomes the limitations identified in the existing literature 
and introduces a scalable model applicable across multiple 
industries. This highlights the significance of a structured 

methodology for DT implementation, as it enables 
organizations to fully capitalize on its benefits, improve 
operational efficiency, and boost their competitiveness in the 
context of Industry 4.0. 

The case study followed a structured methodological 
approach, divided into four main phases: (1) field observation 
and data collection, (2) process mapping using VSM, (3) 
digital modeling and simulation, and (4) validation and 
optimization. 

Phase 1 — Field Observation and Data Collection: 
Data was collected directly from the production line of a rotor 
coil manufacturing facility. A mixed-methods approach was 
used, combining direct time studies, operator interviews, and 
consultation of production logs. Cycle times for each station 
were measured using stopwatch techniques across multiple 
shifts to capture variability. Batch sizes, waiting times, and 
changeover durations were also recorded. The goal was to 
obtain representative and statistically stable averages for each 
process parameter. 

Phase 2 — Value Stream Mapping (VSM): 
Based on the collected data, a detailed VSM diagram was 
created to visualize material and information flows. The 
mapping followed standard lean manufacturing conventions, 
identifying process steps, inventory buffers, lead times, and 
processing times. This diagram served as the foundation for 
identifying bottlenecks and setting up the digital twin 
structure. 

Phase 3 — Digital Modeling Using WITNESS Horizon: 
The digital twin model was developed using WITNESS 
Horizon, a discrete-event simulation platform selected for its 
capacity to replicate time-dependent industrial processes. The 
choice of WITNESS Horizon was based on its ability to 
model resource constraints, queueing behavior, and batch 
processing rules—critical features in coil manufacturing. 
Model inputs were calibrated using real-world measurements 
from Phase 1. 

Phase 4 — Validation and Optimization: 
To ensure the model's accuracy, a validation step was 
conducted by comparing the simulated lead time to actual 
system performance, using relative error as the metric. Once 
validated, a series of what-if optimization scenarios were 
tested, including reductions in bottleneck station times. The 
impact of these interventions on overall throughput and 
process efficiency was analyzed quantitatively. 

The methodology ensures repeatability, transparency, and 
adaptability to other structured manufacturing contexts. The 
structured approach also allows clear traceability from raw 
observations to simulation-based decision support. 

III.  METHODOLOGY 

The methodology outlined is summarized in Fig. 1, which 
presents a structured representation of the fundamental 
phases and critical steps involved in the development of a DT. 

The initial phase in the development of a DT entails a 
comprehensive analysis of the process to be digitally 
replicated. 

The first step involve gathering process data that includes 
equipment CTs, required batch sizes at each workstation, and 
the raw materials processing capacity . The next step involves 
systematically mapping the production process and 
constructing a VSM. This mapping serves as a foundational 
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framework for developing a simulation that closely replicates 
real-world conditions. Once both the real existing system and 
digital model have been established, a comparative analysis 
is conducted to assess their level of similarity, ensuring the 
accuracy and reliability of the digital representation. 

 

 

Fig. 1. Graphical representation of the method. 

 
To validate the digital model, mathematical formulations 

will be utilized to quantify the accuracy of the simulation. 
Furthermore, a critical evaluation will be performed to 
determine whether the bottleneck identified in the VSM 
remains consistent within the simulation, thereby reinforcing 
the validity of the proposed model. 

In a production system or process chain, the bottleneck 
refers to the workstation or operational phase that determines 
the maximum production rate, characterized by the longest 
CT.Mathematically, the bottleneck can be defined as the 
process 𝑖 ∗ such that: 

𝑖 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑇𝑖,  where  𝑖 ∈ {1, 2, … , 𝑛}   (1) 

Furthermore, the time associated with the bottleneck, 
denoted as  𝐶𝑇ெ௔௫ , can be expressed as: 

   𝐶𝑇ெ௔௫  = 𝑚𝑎𝑥 𝐶𝑇௜ , where 𝑖 ∈ {1, 2, … , 𝑛}     (2) 

For the validation of the DT, the relative error formula was 
used, defined as: 

 𝐸𝑟𝑟𝑜𝑟(%) =  ቀ
஽௥௘௔௟ି஽௦௜௠

஽௥௘௔௟
ቁ × 100                (3) 

where 𝐷௥௘௔௟   represents the experimentally measured values, 
and  𝐷௦௜௠  is the value simulated by the DT. This formula 
provides an assessment of the difference between the values 

obtained through simulation and the real values expressed as 
a percentage.  

Small errors (below 5%) indicate a good alignment 
between the theoretical models and the real-world system 
behavior, suggesting proper validation of the DT. Conversely, 
large errors (above 10%) may signal shortcomings in the 
simulation model, indicating the need for adjustments to 
better reflect reality. 

IV.    CASE STUDY 

Following a detailed overview of the methodology, we will 
demonstrate its applicability within a manufacturing 
environment. The focus will be on the production line 
specifically designed for the fabrication of rotor coils utilized 
in high-power generators. 

We initiated this process by gathering data related to the 
Cycle Times (CTs) for each piece of equipment involved, 
along with information on the work batches and the aggregate 
time necessary for process execution at each workstation. 
This data has been compiled in Table 1 below. 

 
Table 1.  CT for each workstation 

Equipment Name 
Cycle Time 

per 
Coil(min) 

Batch 
Size(pcs) 

Total 
Processing 
Time(min) 

Horizontal_CNC_milling 23.15 624 144.456 
Cleaning_and_Deburing 28 624 174.72 

Vertical_CNC_milling 27 624 168.48 

Banding_90 58 624 361.92 

Anneling 24 624 149.76 

Cleaning_turns 30 624 187.20 

Packing 36 624 224.64 

 
To facilitate a thorough analysis of the production 

processes, a detailed flow chart has been developed, as 
depicted in Fig. 2. 

Following the comprehensive collection and aggregation 
of requisite data, the process was meticulously mapped out, 
leading to the construction of the Value Stream Mapping 
(VSM) for the manufacturing workflow. This analysis 
revealed a total lead time of 141,117.6 m, equivalent to 
235,196 working hours. The resultant VSM, informed by the 
process mapping, is presented in Fig. 3. 

 
Fig. 2. The process flow chart. 

 
Fig. 3. VSM  for the rotor coil manufacturing process. 
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With the process mapped, the bottleneck of the 
manufacturing process can now be identified to determine 
whether the results of the theoretical model aligns with those 
of the digital model in the next simulation. 

In this case, the maximum CT is determined to identify the 
bottleneck time and the process index, allowing for the 
identification of the slowest equipment. 

 
𝐶𝑇ெ௔௫  = max ( 23.15, 28, 27, 58, 24, 30, 36) = 58 

𝑖 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶𝑇1, 𝐶𝑇2, … , 𝐶𝑇7) = 4 
 
Thus, based on the calculations, we conclude the following: 
Maximum CT (bottleneck time): 58 
Bottleneck process:  𝐶𝑇ସ  (the fourth process) 
Therefore, Process 4 is the constraining factor in the 

system’s flow and must be optimized to enhance overall 
performance. 

With everything well-structured and systematized, at this 
point, the development of the DT for the digital model 
represents the next essential step in creating an accurate 
virtual replica of the process or system, which will allow for 
real-time monitoring, simulation, and optimization. This way, 
any changes or issues can be anticipated and managed more 

efficiently, leading to a positive impact on overall 
performance and efficiency. 

The digital model was created using Witness Horizon 
software and is illustrated below in Fig. 4. 

 

 
Fig. 4. Production line modeling. 

 
For the manufacturing of a rotor coil with 6 poles, which 

consists of 26 conductors per half-coil, a total of 624 
conductors need to be processed. The information regarding 
the amount of raw material to be processed was the necessary 
input, followed by the definition of the processing rules for 
the machines and the CTs according to the VSM. The result 
of the simulation obtained is highlighted in Fig. 4. 

As a result of simulating the digital model of the 
production line, information is obtained regarding the 
equipment load level, as well as the lead time for executing 
the entire process. The lead time obtained is 141,123 working 
hours. 

 
Fig. 5. Production line simulation. 

To verify the actual physical model, it will be evaluated 
using the relative error formula. 

𝐸𝑟𝑟𝑜𝑟(%) =  ൬
141117 − 141123

141117
൰ × 100 =  0.00425% 

 
The results indicate a relative error of only 0.00425%, 

demonstrating an almost perfect alignment between the actual 
values and those simulated by the DT model. This 
exceptionally low value confirms the model's validity and 
suggests that it can be reliably used for analysis and 
predictions. The high accuracy achieved shows that the 
differences between the theoretical model and experimental 
data are negligible, requiring minimal further adjustments. 
However, for comprehensive validation, testing the model 
under various scenarios is essential to assess its robustness 

across different operating conditions. 
The bar chart divides machine states into multiple 

categories, such as Working properly (green), Waiting for 
elements (yellow), Thus, in the report shown in Fig. 5, the 
waiting and operating times of the equipment can be observed. 
According to the analysis, the bottleneck is represented by 
Banding_90, as the upstream and downstream equipment 
experience reduced operating times due to the processing 
carried out by this machine, the machine's downtimes vary 
based on shift time. The report confirms that the critical point 
identified in the VSM corresponds with the one in the 
simulation. This indicates again that the real world system 
aligns perfectly with the digital model. 

Horizontal_CNC_milling operates 10.24% of the time, 
remains idle for 89.76%, 

International Journal of Modeling and Optimization, Vol. 15, No. 2, 2025

57



 

Cleaning_and_Deburring operates 12.38% of the time, 
remains idle for 87.62%. 

Banding_90 operates 25.65% of the time, remains idle for 
74.35%. 

Cleaning_turns operates 13.26% of the time, remains idle 
for 86.74%. 

Annealing operates 10.61% of the time, remains idle for 
89.39%. 

Vertical_CNC_milling operates 11.94% of the time, 
remains idle for 88.06%. 

Packing operates 15.92% of the time, remains idle for 
84.08%. 

Having conducted a thorough analysis of the entire process 
and having identified the bottleneck as well as the key critical 
point obstructing the efficient operation of the system, the 
next step involves optimizing and enhancing the system's 
efficiency. This will be achieved by evaluating whether the 
proposed solution effectively reduces waiting times and, 
consequently, improves overall delivery time. 

Thus, for the equipment with the highest processing time, 
Banding 90, a 10% reduction in processing time will be 
applied, lowering its CT from 58 minutes to 52.2 m. The 

functional remodeling new obtained flow can be seen in  
Fig. 6, while the updated report on processing times is 
presented in Fig. 7. 

 

 

Fig. 6. Production line simulation. 

The delivery time was improved by 2.56% as a result of 
lowering the total processing time from 141,117.6 m to 
137,504 m. 

 
Fig. 7. Report for Equipment (RF). 

 

Fig. 8. Production line simulation (RF). 

The improvements following the optimization are as 
follows: 

Horizontal_CNC_milling now operates 10.51% of the time, 
compared to 10.24% previously, showing an improvement of 
0.27%. The waiting time has decreased from 89.76% to 
89.49%. 

Cleaning_and_Deburring now operates 12.71% of the time, 
compared to 12.38% previously, showing an improvement of 
0.33%. The waiting time has decreased from 87.62% to 
87.29%. 

Banding_90 now operates 23.69% of the time, compared 
to 25.65% previously. However, the waiting time has 
increased from 74.36% to 76.31%. 

Cleaning_turns now operates 13.61% of the time, 
compared to 13.26% previously, showing an improvement of 
0.35%. The waiting time has decreased from 86.74% to 
86.39%. 

Annealing now operates 10.89% of the time, compared to 
10.61% previously, showing an improvement of 0.28%. The 
waiting time has decreased from 89.39% to 89.11%. 
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Vertical_CNC_milling now operates 12.25% of the time, 
compared to 11.94% previously, showing an improvement of 
0.91%. The waiting time has decreased from 88.06% to 
87.75%. 

Packing now operates 16.34% of the time, compared to 
15.92% previously, showing an improvement of 0.42%. The 
waiting time has decreased from 84.08% to 83.66%. 

Most of the processes have shown a decrease of the waiting 
time and an increase in the operating time, with the exception 
of Banding_90, which saw a slight increase in waiting time. 
These improvements suggest a more efficient operation 
overall. 

V. LIMITATIONS AND FUTURE WORK 

While the proposed methodology for implementing a DT 
in the rotor coil manufacturing process demonstrates high 
accuracy and practical viability, several limitations must be 
noted. The current DT model, built on a static representation 
of the production environment, does not reflect real-time 
variations such as operator availability, equipment failures, or 
supply chain disruptions. Although the relative error is very 
low (0.00425%), the simulation assumes constant processing 
conditions and uniform CT, which may not be realistic in 
dynamic contexts. Scalability is also a concern, as applying 
the approach to other systems—particularly those with high 
variability—would require extensive reparameterization. 
Moreover, the model’s fidelity depends heavily on the 
availability and accuracy of real-time data, which may not be 
feasible in all manufacturing settings. Maintaining the DT 
over time is another challenge, as it must be continuously 
updated to reflect changes in equipment, workflows, or 
business objectives. Future work should address these issues 
by integrating dynamic IoT-based sensor data and adaptive 
machine learning algorithms to enhance real-time 
responsiveness and predictive accuracy. 

VI.   CONCLUSION 

This study demonstrates the efficiency of implementing 
the Digital Twin (DT) concept in optimizing rotor coil 
manufacturing for high-power generators within the Industry 
4.0 paradigm. DT technology enables the creation of a virtual 
replica of a real system which, by integrating real-time data, 
supports simulation, forecasting, and optimization of 
industrial processes with minimal costs and resources. Using 
the VSM method and a digital model of the production line, 
bottlenecks and inefficiencies were identified, offering a clear 
view of processes that generate downtime and waste. This 
mapping served as the basis for developing the DT and 
simulating the coil manufacturing process to optimize 
performance. 

The created digital model was validated by comparing 
experimental data from the real system with simulation 
results, yielding an extremely low relative error of 0.00425%, 
which confirms an excellent match between model and reality. 
Through simulations, the “Banding_90” process was 
identified as the main bottleneck, having the highest CT. 
Reducing its CT by 10% resulted in a 2.56% improvement in 
delivery time. 

Implementing the DT not only revealed process 

weaknesses but also allowed testing of future scenarios and 
assessing the impact of changes on system performance. This 
led to better resource allocation, reduced operational risks, 
and improved product quality, contributing to a faster and 
more sustainable production flow. In the long term, applying 
the presented methodologies can significantly impact the 
manufacturing industry, enabling more efficient and flexible 
processes. Combining DTs with other Industry 4.0 
technologies, such as IoT and Big Data, could transform 
industrial process management, ensuring stronger alignment 
between digital and physical systems. 

In conclusion, DT is a powerful tool for optimizing 
industrial processes—identifying and eliminating 
inefficiencies, shortening delivery times, improving resource 
utilization, and boosting overall performance. This research 
highlights the value of a clear methodological framework for 
DT implementation to address modern production challenges 
and advance digital transformation in industry. Certain 
operational parameters and layout details were anonymized 
to preserve confidentiality without affecting the accuracy or 
validity of the results. 
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