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Abstract—Challenges arise when it comes to identifying flaws 

in small-scale electronic components swiftly during quality 

inspections. While Convolutional Neural Networks (CNNs) are 

effective at detecting defects in Automatic Optical Inspection 

(AOI) systems, their primary focus is on individual samples and 

lacks the ability to provide real-time information about the 

production process for process control and monitoring. To 

address this, a combination of CNNs and statistical process 

control models can be employed to enable proactive quality 

inspection in high-speed production lines. By combining a 

control chart with CNNs, the system showcases outstanding 

detection performance for even slight variations in quality, as 

evidenced by the average run length falling within a specific 

range of shifts. This control chart has been effectively 

implemented in the manufacturing process of electronic 

conductors, allowing for systematic quality inspection of minute 

electronic components on a high-speed production line. The 

integration of the CNN-based AOI model and the residual mixed 

multivariate Cumulative Sum-Exponentially Weighted Moving 

Average (CUSUM-EWMA) model control chart enables 

simultaneous quality assessment at the individual product level 

and process monitoring at the system level, leading to efficient 

detection of defects. The novelty of this research lies in the 

innovative process control framework that merges the CNN-

based AOI model with a residual-based mixed multivariate 

cumulative sum and exponentially weighted moving average 

control chart. This integration facilitates real-time monitoring 

of multivariate autocorrelated processes and enables effective 

identification of defects. 

 
Keyword—autocorrelated process, automatic optical 

inspection, deep learning, residual control chart 

I. INTRODUCTION 

The complexity and interconnectedness of product 

qualities have increased over time, particularly in the case of 

electronic components produced through modern high-speed 

continuous automation. This complexity poses challenges for 

product quality inspection. Multivariate quality attributes and 

autocorrelated quality data further complicate the production 

process. Statistical Process Monitoring (SPM) is commonly 

used in manufacturing cycles to ensure quality control, 

particularly for independent serial samples. To effectively 

manage production and product qualities, it is crucial to have 

a reliable SPM model. However, conventional SPM 

encounters difficulties when dealing with autocorrelated and 

multivariate quality data.  

Woodall and Montgomery [1] suggest that using a 

univariate mixed Cumulative Sum (CUSUM) and 

Exponentially Weighted Moving Average (EWMA) control 

chart, referred to as Motion Control Engineering (MCE), for 

independent measurement of various quality characteristics 

improves the false alert rate. According to research by  

Zaman et al. [2], multivariate MCE control charts such as 

Hotelling’s T2, Multivariate Cumulative Sum (MCUSUM), 

multivariate Exponentially Weighted Moving Average 

(MEWMA), and their combinations outperform existing 

charts in detecting small mean variations. Despite the 

availability of multivariate control charts for simultaneous 

quality monitoring, SPM remains challenging when applied 

to multivariate variables with autocorrelation. 

The concept of objective observation is challenged by 

accumulated knowledge over time, but this issue can be 

addressed by using residual-based control charts, as 

mentioned by Wang and Asrini [3]. Researchers have 

explored control charts for monitoring autocorrelated 

activities in response to this challenge. Thaga and  

Yadavalli [4] found that the residual Max-EWMA chart 

outperforms the residual Max-CUSUM chart when it comes 

to detecting moderate to significant shifts in the process mean. 

Khusna et al. [5] noted that the residual Max-MCUSUM 

control chart is more effective in detecting mean changes in 

autocorrelated multivariate processes rather than changes in 

covariance.  

In recent times, identifying defects in tiny-scale 

components with high-speed throughputs, including 

electronic components, remains a challenge for quality 

inspection, as highlighted by Ojer et al. [6]. Automated 

Optical Inspection (AOI) is preferred over human inspection 

due to variations in assessment speed among human 

inspectors, as discussed by Huang and Pan [7],  

Hung et al. [8], and Prieto et al. [9]. However, Convolutional 

Neural Network (CNN)-based modern AOI technology, 

despite its application in object/defect detection, can generate 

excessive false alarms or miss early detections of quality 

decline, as it struggles to recognize signals from certain 

processes. Simultaneously, there is potential for applying 

statistical process monitoring to multivariate and 

autocorrelated process control in large-scale manufacturing 

lines. Although CNNs have renewed interest in AOI for 

defect detection, this renewed interest does not address the 

system’s control state or the connection between various 

approaches and process control models, as pointed out by  

Lin et al. [10], Mai et al. [11], and Wang and Asrini [12].  

The primary focus of this research is to combine image 

detection models with the AOI system in order to classify 
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products into two categories: defect and non-defect. However, 

these integrated systems lack the capability to provide real-

time information or monitoring of the production process. 

Apart from detecting faults, an effective AOI system for 

defect detection should also be able to estimate the likelihood 

of defects occurring during continuous production. On the 

other hand, a control chart system is necessary to proactively 

assess whether the production process is under control and 

establish a threshold for defect likelihood. In a continuous 

manufacturing process, particularly in a production line of 

significant scale, the integration of the CNN model into the 

AOI system holds great importance for the effectiveness of 

the control chart system. Hence, the combination of the CNN-

based AOI model with a suitable process control chart is not 

only necessary but also holds promising potential. This study 

recognizes the need to monitor even subtle changes in the 

mean values of autocorrelated multivariate quality attributes 

within a production process. To address this, the proposed 

approach involves incorporating a residual-based 

multivariate MCE control chart alongside the deep learning 

model in the AOI system. By doing so, the aim is to enhance 

the overall monitoring capabilities and achieve more accurate 

and reliable quality control within the manufacturing process. 

II. LITERATURE REVIEW 

A. Statistical Process Control of Multivariate Auto-

Correlated Processes 

Continuous and batch operation processes often exhibit 

autocorrelation, which poses a challenge that researchers 

have been trying to address [13, 14]. One approach to tackle 

autocorrelation is to use residuals from a control chart and 

apply a time series model to filter out the autocorrelation. 

According to Psarakis and Papaleonida [15], if a change is 

detected in the mean or variance of the residuals, it implies 

that there has been a corresponding change in the mean or 

variance of the underlying process. Plotting the residuals on 

a control chart is a method used to detect such process 

changes. The underlying idea of using residual charts is that 

if the appropriate time series model is applied to the data, the 

residuals will follow independent and identically distributed 

random variables, aligning with traditional quality control 

theories. Building a Vector Autoregressive (VAR) model for 

multivariate autocorrelated data is crucial in this procedure. 

Let 𝑌(𝑖) = [𝑌(1𝑖) , 𝑌(2𝑖) , 𝑌(3𝑖) , ⋯ , 𝑌(𝑝𝑖) ]  represent the i-th 

sample of p quality attributes, where i ranges from 1 to n, and 

n is the total number of observations. The quality attributes 

correspond to a multivariate normal distribution with a given 

in-control mean vector 𝜇0 and variance-covariance matrix Σ, 

denoted as 𝑌(𝑖) ∼ 𝑁(𝜇0 , Σ). It is important to mention that the 

mixed multivariate CUSUM-EWMA control chart was 

developed by Zaman et al. [2, 16] for the purpose of 

monitoring process mean variation or shifts. This control 

chart incorporates the 𝑆(𝑖)  vector obtained from the 

MCUSUM chart as an input vector in the MEWMA control 

chart. MCUSUM, introduced by Crosier [17], can be 

represented as Eqs. (1) and (2). 

 𝑪(𝒊) = √(𝑺(𝒊−𝟏) + 𝒀(𝒊) − 𝝁𝟎)
𝑻

𝚺−𝟏(𝑺(𝒊−𝟏) + 𝒀(𝒊) − 𝝁𝟎) (1) 

 𝑺(𝒊) = {

𝟎 ,                                             if  𝑪(𝒊) ≤ 𝒌

(𝑺(𝒊−𝟏) + 𝒀(𝒊)) (𝟏 −
𝒌

𝑪(𝒊)
) ,  if  𝑪(𝒊) > 𝒌 

 (2) 

In the given context, where 𝑆(0)  is a non-negative p-

dimensional vector, Σ−1 represents the known inverse of the 

variance-covariance matrix of 𝑌(𝑖), and k is a positive constant 

reference value. The mixed multivariate CUSUM-EWMA 

control chart can be expressed by the following statistics. 

 𝑍(𝑖) = (1 − 𝜆)𝑍(𝑖−1) + 𝜆𝑆(𝑖) (3) 

 Σ𝑍 =
𝜆

(2−𝜆)
Σ𝑆 (4) 

 𝑀𝑀𝐶𝐸(𝑖) = √𝑍(𝑖)
𝑇Σ𝑍

−1𝑍(𝑖) (5) 

In this scenario, where 𝑍(0)  is a non-negative p-

dimensional vector, Σ𝑍
−1  represents the inverse of the 

variance-covariance matrix Σ𝑍, and Σ𝑆 denotes the variance-

covariance matrix of the 𝑆(𝑖) vector. If the value of 𝑀𝑀𝐶𝐸(𝑖) 

is greater than the Upper Control Limit (UCL) of the mixed 

multivariate CUSUM-EWMA control chart, then it indicates 

that the process is out of control. Conversely, if the value is 

below the UCL, it signifies that the process is in control. The 

UCL of the mixed multivariate CUSUM-EWMA control 

chart represents the upper boundary limit for control.  

B. Convolutional Neural Network (CNN) for AOI System 

Object recognition is a fundamental component in the 

realm of Automatic Optical Inspection (AOI) activities as it 

enables the detection and categorization of objects within an 

image [18, 19]). AOI techniques can be broadly classified 

into three subcategories: referential, non-referential, and 

hybrid approaches [20]. Referential techniques, including 

image subtraction [21], feature matching or template 

matching [22], and compression code comparison [23], are 

commonly utilized. However, these techniques often 

encounter limitations in performance due to challenges such 

as image misalignment and variations in ambient conditions 

during the image acquisition process. These factors can 

significantly impact the accuracy and reliability of the object 

recognition process. 

The You Only Look Once (YOLO) model, proposed by 

Redmon et al. [24], has revolutionized object recognition by 

integrating multiple components into a single neural network. 

YOLO is a streamlined and efficient one-stage object 

detection Convolutional Neural Network (CNN) that divides 

the input image into a predetermined grid. Through 

regression techniques, YOLO accurately predicts the 

coordinates of bounding boxes and calculates class 

probabilities for a fixed number of anchor boxes within each 

grid cell. This innovative approach has showcased 

exceptional performance in terms of both average precision 

and real-time detection [24]. In an effort to overcome 

YOLO’s limitations concerning localization accuracy and 

recall, Redmon and Farhadi [25] introduced Darknet-19, a 

custom network that serves as the underlying feature 

extractor. Additionally, they implemented various strategies 

to enhance YOLO’s performance, resulting in an upgraded 

version referred to as YOLOv2. 

A subsequent enhancement named YOLOv3 was 
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introduced by incorporating Darknet-53, which includes 

additional convolutional layers and a residual network 

compared to Darknet-19 [26]. YOLOv3 offers improved 

detection precision while maintaining real-time performance. 

It can handle objects with various sizes and aspect ratios by 

estimating bounding boxes across multiple scales [26]. 

Consequently, YOLOv3 represents one of the most advanced 

object recognition techniques, providing a combination of 

high accuracy and speed, making it suitable for real-time 

monitoring system deployments. 

III. METHODOLOGY 

In the present study, a novel approach is proposed, 

combining a CNN-based AOI model with a residual-based 

mixed multivariate CUSUM-EWMA control chart. The 

utilization of YOLOv3, a CNN model, enhances the 

capabilities of the AOI system by enabling the detection of 

multiple defects on a single product while providing precise 

information about their locations. Each defect is represented 

as a likelihood value, ranging from 0 to 1, indicating the 

probability of the presence of an “object”. The CNN model 

operates in real-time, enabling simultaneous identification of 

various classes or types of defects. To measure the 

multivariate auto-correlated data in this research, a Multi-

output Least Squares Support Vector Regression (MLS-SVR) 

model developed by Xu et al. [27] is employed. This 

combination of advanced models and techniques offers an 

effective and comprehensive solution for defect detection and 

process control in the manufacturing industry. 

Let e𝑖 = (ei1, ei2, … , eij, … , eim) represent the 𝑚 × 1 vector 

of residuals for the i-th observation. The residual vectors e𝑖 

are assumed to have two types of means. The good mean 

μ
𝑒(𝑖𝑛)

 is derived from the in-control processes, while the bad 

means μ
𝑒(𝑜𝑢𝑡)

 are obtained from the out-of-control processes. 

The residuals e1j, e2j, … , eij, … , enj  correspond to the j-th 

output of the MLS-SVR with n observations. Additionally, it 

is assumed that the vectors of residuals e𝑖 have an identified 

in-control variance-covariance matrix Σ𝑒(𝑖𝑛). The proposed 

control chart is developed based on the mixed multivariate 

CUSUM-EWMA statistics for independent processes [28] 

using the residuals from the MLS-SVR model. 

The statistical values of residual mixed multivariate 

CUSUM-EWMA model control chart are derived by 

generating random variables according to Eq. (3). The vector 

𝑆(𝑖) in Eq. (3) is computed using Eqs. (1) and (2), replacing 

the vector 𝑌(𝑖) with the vector e𝑖. Therefore, in this study, the 

composition of the vector 𝑆(𝑖) is defined based on the residual 

vector, as shown in Eq. (6): 

 𝑆𝑒(𝑖) = {

0 ,                                               if  𝐶𝑒(𝑖) ≤ 𝑘

(𝑆𝑒(𝑖−1) + e(𝑖)) (1 −
𝑘

𝐶𝑒(𝑖)
) ,  if  𝐶𝑒(𝑖) > 𝑘 

  (6) 

𝐶𝑒(𝑖)

= √(𝑆𝑒(𝑖−1) + e(𝑖) − μ
𝑒(𝑜𝑢𝑡)

)
𝑇
Σ𝑒(𝑜𝑢𝑡)

−1  (𝑆𝑒(𝑖−1) + e(𝑖) − μ
𝑒(𝑜𝑢𝑡)

) 

Residual mixed multivariate CUSUM-EWMA chart can be 

exhibited as the following statistics. 

 𝑍𝑒(𝑖) = (1 − 𝜆)𝑍𝑒(𝑖−1) + 𝜆𝑆𝑒(𝑖)  (7) 

 Σ𝑍𝑒
=

𝜆

(2−𝜆)
Σ𝑆𝑒

 (8) 

 𝑅_𝑀𝑀𝐶𝐸𝑟(𝑖) = √𝑍𝑒(𝑖)
𝑇Σ𝑍𝑒

−1𝑍𝑒(𝑖)  (9) 

In the described framework, the p-dimensional vector 𝑍(0) 

is constrained to be greater than or equal to zero. The matrix 

Σ𝑆𝑒
 represents the variance-covariance of the 𝑆𝑒(𝑖)  vector, 

while Σ𝑍𝑒
−1  is the inverse of the variance-covariance matrix 

Σ𝑍𝑒
. The parameter λ serves as a smoothing factor for the 

MEWMA component, taking on constant values between 0 

and 1. Additionally, the reference value k for the MCUSUM 

component is a positive real number. When the value of 

𝑅_𝑀𝑀𝐶𝐸𝑟(𝑖) exceeds the upper control limit, it indicates that 

the process is out of control. Conversely, if 𝑅_𝑀𝑀𝐶𝐸𝑟(𝑖) 

remains below the limit, the process is considered to be in 

control. The upper control limit, denoted as 𝑈𝐶𝐿𝑅_𝑀𝑀𝐶𝐸𝑟
, 

defines the threshold for the residual mixed multivariate 

CUSUM-EWMA model control chart. Moreover, the 

proposed process control framework, depicted in Fig. 1, 

illustrates the integration of the CNN-based AOI model with 

the residual mixed multivariate CUSUM-EWMA model 

control chart. This integration enables the monitoring of 

multivariate autocorrelated processes and efficient defect 

detection. 

 
Stage 1: 

Substitute 
the rule-

based 

AOI 

 

Stage 2: 

Substitute 

the 
inspection 

by 

operator 

Stage 3: 
CNN by 

YOLOv3 

Stage 4: 

Statistical 

Process 
Control 

Fig. 1. Flowchart of proposed model. 

 

IV. RESULT AND DISCUSSION 

In order to showcase the extensive functionalities of the 

suggested model, a total of four simulated data sets are 

generated. These data sets are derived from the VAR (1) 

model using Eq. (10), allowing for a comprehensive 

evaluation of the proposed model’s performance. 

  (

𝑦1(𝑖)

𝑦2(𝑖)

𝑦3(𝑖)

𝑦4(𝑖)

) = (

0.30 0.05 0.05
0.05 0.50 0.05
0.05 0.05 0.40
0.05 0.05 0.05

0.05
0.05
0.05
0.30

) (

𝑦1(𝑖−1)

𝑦2(𝑖−1)

𝑦3(𝑖−1)

𝑦4(𝑖−1)

) + (

𝑎1(𝑖)

𝑎2(𝑖)

𝑎3(𝑖)

𝑎4(𝑖)

) (10) 

where 

(

𝑎1(𝑖)

𝑎2(𝑖)

𝑎3(𝑖)

𝑎4(𝑖)

) ~𝑁4(𝟎, I). 
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A total of 150 data samples are selected for the purpose of 

training the MLS-SVR model, enabling the determination of 

the optimal hyper-parameters. The remaining 50 samples are 

allocated for testing, where they are fitted with the 

aforementioned optimal hyper-parameters. Subsequently, 

residuals are computed based on the training and testing data 

sets, and control charts are constructed utilizing these 

residuals obtained from the MLS-SVR model. 

Fig. 2 illustrates the monitoring capability of proposed 

control chart for each dataset. Dataset 1, which does not 

exhibit any mean vector shift or covariance matrix shift, does 

not trigger any out-of-control signals according to residual 

mixed multivariate CUSUM-EWMA model control chart, 

indicating that it is within control. This demonstrates the 

effectiveness of residual mixed multivariate CUSUM-

EWMA model control chart in detecting in-control processes. 

For datasets 2 and 3, the first out-of-control signals are 

detected by proposed control chart at the 169th and 179th data 

points, respectively. These out-of-control signals, indicated 

as “m+”, occur when the statistical value of residual mixed 

multivariate CUSUM-EWMA model control chart surpasses 

the Upper Control Limit (UCL). The reason for these out-of-

control signals is the presence of a mean vector shift.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Residual mixed multivariate CUSUM-EWMA model control chart 
for simulated datasets. (a) in-control; (b) mean shifting after sample 150th; 

(c) mean and covariance are shifting after sample 150th. 

 

The proposed CNN-based AOI model is deployed for the 

purpose of monitoring the quality of real data within the 

manufacturing process of electronic connectors. This 

manufacturing process encompasses a series of stages, 

including stamping, electroplating, injection molding, 

assembling, and packaging, all of which occur on a high-

speed continuous production line characterized by properties 

that are both multivariate and autocorrelated. These stages 

involve complex characteristics that are both multivariate 

(involving multiple quality attributes) and autocorrelated 

(with interdependencies between consecutive measurements). 

To ensure the quality of the products and monitor the 

manufacturing process effectively, an AOI system is installed 

at the final stage of assembly. The proposed CNN-based AOI 

model is specifically designed to analyze and detect defects 

in the electronic connectors using deep learning techniques. 

By integrating this AOI system with a control chart system 

tailored for multivariate and autocorrelated processes, the 

company can achieve simultaneous product checking and 

process monitoring. The integration of the deep learning-

based AOI system with the control chart system brings 

numerous benefits. It reduces the reliance on manual 

inspection, as the AOI system can automatically analyze and 

classify the products based on their quality. Additionally, the 

control chart system can identify any deviations or 

abnormalities in the manufacturing process, allowing for 

timely corrective actions. By minimizing the need for manual 

inspection and reducing the number of products requiring 

rework, the company can improve efficiency, save costs, and 

enhance overall product quality. 

The likelihood data generated by the YOLOv3 model 

serves as input for the residual mixed multivariate CUSUM-

EWMA model control chart model. The data is divided into 

training and testing sets to evaluate the performance of the 

models. The MLS-SVR model, which is a multi-output least 

squares support vector regression model, requires input 

variables that are selected based on the partial autocorrelation 

function of the training data. In the case of electronic products, 

the appropriate time series model identified for the data is 

vector autoregressive, VAR (35), where lagged variables 

from the previous 35 time points are used as inputs. The 

training data is then used to train the MLS-SVR model, 

resulting in a mean squared error of 0.0012, indicating a good 

fit of the model to the training data. Fig. 3 visually represents 

the outcomes of monitoring the quality data of electronic 

components using the proposed CNN-based AOI model. 

Based on the residual mixed multivariate CUSUM-EWMA 

model control chart analysis, it is observed that an out-of-

control signal emerges from sample 4-th, suggesting a change 

in the production process that requires attention. This finding 

provides engineers with sufficient time to implement 

corrective measures and maintain the quality of the electronic 

components.  

 

 
Fig. 3. Outcomes of monitoring the quality data of electronic components 

by the proposed model. 
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The residual mixed multivariate CUSUM-EWMA model 

control chart model proves to be effective in detecting these 

quality defects, making them easily identifiable for further 

analysis and improvement. 

V. CONCLUSION 

This research presents a new and innovative CNN-based 

AOI model that incorporates the residual mixed multivariate 

CUSUM-EWMA model control chart, utilizing MLS-SVR 

residuals for monitoring multivariate autocorrelated 

processes in a high-speed production line. The successful 

implementation of the proposed control chart in both 

simulated data and an actual electronic component 

manufacturing process has demonstrated its effectiveness in 

facilitating simultaneous product inspection and process 

monitoring. By integrating deep learning-based defect 

detection with the control chart system, this study has 

successfully bridged the gap between deep learning and 

process control models. The CNN-based AOI model allows 

for real-time quality inspection in the high-speed production 

line, utilizing online defect images, a capability that 

conventional AOI systems lack. This integration has proven 

to be a significant advancement in the field. The utilization of 

the residual mixed multivariate CUSUM-EWMA model 

control chart provides valuable insights into the quality of the 

production process. This empowers quality engineers to 

conduct detailed analysis and take proactive measures to 

address any detected deviations or defects. With the 

combination of the CNN-based AOI model and the control 

chart system, quality engineers now have the tools they need 

to ensure consistent and high-quality production in the fast-

paced manufacturing environment.  
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