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Abstract—GNSS/INS Integrated Navigation systems 

mechanized for Land based applications face certain challenges 

especially near skyscraper, mountainous regions and high 

foliage environments wherein GNSS signals get interrupted. 

While Inertial Navigation System (INS) and Global Navigation 

Satellite System (GNSS) are widely used in augmentation but 

the integrated navigation solution can get compromised in 

GNSS-denied environments. This research work explores the 

integration of GNSS with low-cost Micro-Electromechanical 

System (MEMS) Inertial Measurement Unit (IMU) and Zero 

Update Position and Timing (ZUPT) rendering a robust 

navigation solution for land applications. ZUPT is used to 

mitigate accelerometers and gyroscope biases and resultantly it 

alleviates the errors in position, velocity and attitude especially 

in a GNSS-denied scenario. ZUPT is enabled when the host 

vehicle stops and velocity of the host vehicle becomes zero. 

ZUPT corrections employing Kalman Filter algorithms 

significantly contains the accumulated errors in position, 

velocity and attitude. The study investigates the impact of 

different types of errors (random, fixed and growing errors) in 

GNSS including complete unviability on the INS/GNSS 

integrated solution. It has been observed that, when time 

growing errors are introduced in GNSS output, it has the worst 

effect on its overall accuracy. To counteract potential 

degradation in position computation ensuing from GNSS denial 

or interruption, this work corroborates the efficacy of ZUPT. 

ZUPT updates strengthen the system's robustness and accuracy 

of INS/GNSS Integrated solution. The proposed scheme can be 

employed for any land application including autonomous 

commercial land vehicles, navigation in tunnels, mining work 

and pedestrian navigation system etc. 

Keywords—Inertial Navigation System (INS), Global 

Navigation Satellite System (GNSS), Kalman Filter, integrated 

navigation, GNSS errors, zero velocity correction, zero velocity 

update 

I. INTRODUCTION

In the past few decades the commercialization of 

autonomous land vehicles has brought a profound interest in 

design of robust navigation systems. Inertial Navigation 

System (INS) and Global Navigation Satellite System 

(GNSS) are the most eminent systems in the field of 

navigation in all mediums including land, air, space and 

submarine applications [1–3]. INS offer a distinctive 

advantage as a self-contained system, providing all-inclusive 

navigation solutions encompassing position, velocity, 

acceleration, attitude and attitude rates. However, relying on 

dead reckoning computations, INS is prone to unbounded 

error growth over time, due to the inherent biases in the 

sensors.  

In contrast, GNSS maintain its accuracy within a bound 

mitigating the issue of error growth associated with INS. 

Therefore, when INS and GNSS are synergistically 

integrated, an optimal navigation solution is obtained, 

especially when uninterrupted availability of GNSS signals is 

ensured [4]. However, real world challenges such as signal 

jamming, spoofing, and obstruction of clear view of sky pose 

challenge to GNSS reliability [5]. This is particularly 

troublesome for land vehicle navigation applications in 

environments including tunnels, skyscrapers, mountains and 

dense forests. Resultantly, for longer duration applications, 

there is high probability of encountering the segments, where 

the availability of GNSS is compromised.  

The zero velocity correction techniques can significantly 

improve the overall accuracy of land vehicle navigation. This 

is achieved by stopping the vehicle at certain periodic 

instances or at instances of user discretion. As the velocity 

becomes zero, this known information is fed as a correction 

to the INS and INS/GNSS Integrated solution for computing 

and correcting GNSS and INS errors. While the vehicle is 

stationary during stoppage, vehicle attitude (pitch, yaw and 

roll) can also be corrected. This scheme significantly renders 

improved position, velocity and attitude solution. 

In this paper, effects of zero velocity correction are 

investigated by simulating different scenarios. To 

substantiate the presented scheme, first standalone Micro-

Electromechanical System (MEMS) Inertial Measurement 

Unit (IMU) solution is presented. Subsequently, INS is 

integrated with GNSS when uninterrupted GNSS signals are 

available. Next, the segments of GNSS unavailability are 

introduced and their effect is studied. Furthermore, zero 

velocity update is incorporated. First, just INS is corrected by 

zero velocity and then it is used to improve the performance 

of INS and interrupted GNSS integrated navigation. 

II. RELATED WORK

Navigation in GNSS denied environments is a common 

problem being investigated and studied extensively by the 

navigators the world-over. A wide variety of solutions have 

been adopted to address this problem, ranging from 

incorporation of different aiding sensors to the use of machine 

learning algorithms for containing INS error during GNSS 

outages. 

To ensure the robustness of land-based navigation using 

MEMS IMU and low cost GNSS receiver in urban 

environments with access to insufficient number of satellites, 

tightly coupled integration of INS and Precise Point 

Positioning (PPP) GNSS is performed using extended 
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Kalman filter [6]. This technique improves the robustness of 

navigation solution at the cost of additional computational 

load. 

Mu et al. [7] presented the application of vehicle mode 

recognition algorithm and non-holonomic constraints to 

maintain the accuracy of MEMS-INS/GNSS integrated 

navigation for land vehicles in urban settings with GNSS 

outages. The application of this technique is limited by the 

estimating the accuracy of heading misalignment. 

Another approach to maintain the accuracy of low-cost 

INS/GNSS solution in GNSS denied environment for land 

vehicles is presented by Chen et al. [8]. The position drift 

during the GNSS outages is controlled by using the stochastic 

model of time-differenced GNSS carrier phase, non-

holonomic constraints and odometer measurements. 

However, this algorithm is not robust to frequent GNSS 

outages. 

Chiang et al. [9] developed a navigation system for land 

vehicle using smartphone sensors for GNSS challenging 

environments. The data of IMU, GNSS and cameras is 

integrated using Extended Kalman Filter (EKF). The output 

of camera is processed by ORB-SLAM algorithm to compute 

velocity which is fed to the navigation algorithm. 

Yang et al. [10] proposed a fault tolerant MEMS-

INS/GNSS integrated navigation solution that is reliable 

under disturbances as well as partial and complete loss of 

GNSS data. It incorporates non-holonomic constraints and 

Allan-variance informed Kalman Filter. 

Furthermore, Support Vector Machine (SVM) algorithm is 

employed by Cong et al. [11] to predict accumulation of 

MEMS-INS error during the intervals of GNSS outages. 

Dai et al. [12] demonstrated the application of recurrent 

neural networks (RNN) for INS/GNSS positioning in the 

absence of GNSS signals. Ushaq et al. [13] investigated and 

mitigated the effect of slowly growing errors in Global 

Positioning System (GPS) solutions, through adaptive 

Kalman Filtering algorithm. Another approach for successful 

positioning, despite satellite faults and data contamination is 

proposed by Li et al. [14]. To identify and exclude faulty 

GNSS measurements, graph optimization is used employing 

tightly coupled integration of INS and GNSS. 

Most of the techniques employ either additional navigation 

aiding hardware or complex algorithm to maintain the 

accuracy of INS/GNSS positioning during GNSS outages. 

The additional sensors such as cameras, odometers and radars 

come with their own limitations, error sources and cost 

addition. The complexity of algorithms also directly 

translates into computational cost. 

Zero velocity correction offers unique advantages without 

requiring additional hardware sensors or any significant 

increase in computational burden [15]. Although it has been 

employed along with other aids in various schemes presented 

in literature, but there was a lack of in-depth study on zero 

velocity correction and its direct impact on positioning 

accuracy during loss or contamination of GNSS signals 

which can be manifested in various forms. This study 

addresses this gap. 

III. INERTIAL NAVIGATION SYSTEMS (INS)

INS is based upon the input from three gyroscope and three 

accelerometers. Gyroscopes measure angular rates, whereas 

accelerometers measure translational acceleration. Inertial 

Navigation algorithm is used to compute position, velocity 

and attitude from accelerometers and gyroscope output, as 

shown in Fig. 1. In INS algorithm, the effect of gravity, 

earth’s rotation and Coriolis force are compensated from 

accelerometer and gyroscope output, to compute 

instantaneous kinematic acceleration in navigation frame. 
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Fig. 1. Inertial navigation system. 

In this paper, these computations are performed in local 

level north pointing East-North-Up (ENU) frame using the 

Eqs. (1)–(11). 

Velocity computations: 
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whereas: 

21 2 3( )M eR R e Sine = − + (6) 

2R 1( )N eR Sine = + (7) 

Are meridian and transverse radii of curvatures of the 

Earth. 

Direction Cosine Matrix from Navigation Frame to Body 

Frame is computed as follows: 
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Attitude (yaw, pitch, roll) Computations: 
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Detail of all variables mentioned in above equations can be 

found in [3]. 

The instantaneous acceleration can be integrated to 

compute velocity, which can be integrated again for position 

calculation. Due to this integration, the slight errors in sensors 

and non-kinematic compensations accumulate significantly 

resulting in unbounded growth in final position and velocity 

errors. 

IV. GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)

GNSS is considered as the most popular and reliable 

navigation systems, presently. It relies on number of satellites 

orbiting around the Earth along know orbits with known 

Orbital (Keppler) parameters all the time. These satellites 

transmit signals traveling with the speed of light, containing 

the information including satellite position, transmission time 

and other parameters. The receivers at user location can 

compute their position by using the difference in transmission 

and arrival time employing TRILATERATION scheme. 

However, if errors are introduced anywhere during this 

process, they can degrade the accuracy of computed 

position  [16]. 

A. Clock Errors

Satellite clocks are generally very accurate. If any 

deviation appears in them, monitoring stations estimate 

correction parameters and send them to the receivers. 

However, the receiver clocks are inexpensive to ensure 

affordability. Therefore, they have inherent biases, which if 

not compensated accurately, introduce error is the position 

estimation. 

B. Ionospheric and Tropospheric/Stratospheric Delays

The GNSS signals travel through the ionosphere. The 

ionization can affect the transit time of the signal. Since the 

ionization level keep on changing with the solar activity, the 

transit time error cannot be predicted precisely unless dual 

frequency receivers are used. Furthermore, variability in 

satellite elevation also affect the ionospheric delays. After 

ionosphere, signals have to cross the troposphere. Although 

troposphere is electron neutral, it introduces dry and wet 

components of errors as it slows down the signal because of 

it being refractive. 

C. Multipath Error

Multipath error: It is a source of major concern in urban 

settings. Due to the tall buildings and other obstructions the 

GNSS signal is reflected. It reaches the receiver indirectly 

with a delay and higher signal to noise ratio. Apart from that, 

error is also introduced due to inherent noise in receiver 

caused by thermal noise, circuitry, signal sampling and 

quantization. 

Other types of GNSS errors include those due to jamming, 

spoofing and thermal variation in GNSS receivers. 

These errors manifest themselves in different forms in final 

position and velocity of GNSS. Sometimes the result in 

increased randomness in final solution, at other times fixed or 

growing errors are introduced. There are also cases when 

there is no output at all. 

V. ZERO UPDATE POSITION AND TIMING (ZUPT)

ZUPT also known as zero velocity update is performed by 

stopping the vehicle or any other host system and getting 

information about zero velocity with certainty. This 

information can reduce the overall uncertainty in positioning 

which generally keeps on growing with time due to respective 

errors of INS and GNSS. 

In manual ZUPT application ZUPT is initiated at 

driver/user discretion after manual stopping of the vehicle. In 

automatic ZUPT applications, there are various ways to 

detect periodic zero velocity. Some are based on hardware 

and other are software based. In hardware-based methods, 

usually the output of odometer is used to infer the occurrences 

of zero velocity. The software-based techniques include 

adaptive thresholding, cycle segmentation, and other data 

driven classifiers [10]. 

VI. INS/GNSS/ZUPT INTEGRATION

Kalman Filter algorithm is used for GNSS/INS/ZUPT 

Integration. It is a two-step predictor-corrector estimator. The 

first step involves prediction of the state and the second 

corrects it using the measurement. The predictor equations 

are:  

𝑥̂𝑘/𝑘−1 = 𝛷𝑘,𝑘−1𝑥̂𝑘−1 (12) 

/ 1 , 1 1 , 1 1 1 1

T T
k k k k k k k k k kP P Q− − − − − − −=   +  (13) 

The corrector equations are: 

1

/ 1 / 1( )T T

k k k k k k k k kK P H H P H R −

− −= + (14)

𝑥̂𝑘 = 𝑥̂𝑘/𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘/𝑘−1) (15) 

/ 1( ) ( )T T

k k k k k k k k k kP I K H P I K H K R K−= − − + (16)

where 
n n

k

   is a system state transition matrix at epoch k. 

n

kx  is a state vector 

k is the KF model noise matrix it relates the system noise

vector kw  to the system state vector kx

n

kw  represents the system noise characterized by the

matrix Q  (Covariance of System noise)

p

kz  is the measurement vector
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p n

kH   is the measurement matrix and relates the state 

vector kx to the measurement kz vector.

p

k  is the measurement noise. The precision of sensors 

is indicated by a covariance matrix R
Kalman filter is based on the assumption that the state 

vector x̂    estimation error vector ˆx x x= −    system noise 

vector ( w ) and measurement errors vector ( v ) are all 

Gaussian in nature  uncorrelated and expressed by following 

statistical expressions: 

T

k j kE x x P  =  for k=j  0 for k j

0T

k jE w v  =  for all values of k and j 

T

k j kE w w Q  =  for k=j 0 for k j

T

k j kE v v R  =  for k=j 0 for k j

It may be noted that 
p pQ    and 

m m

kR    are 

positive definite matrices. p and m are the sizes of system 

noise vector( w  ) and measurement noise vector( v  ) 

respectively. Where [ ]E   denotes the expectation  and 
ij  is 

the Kronecker delta function. Initial state 0x is normally

distributed with zero mean and covariance 0P . 

In this paper, INS error equations are used in prediction 

mode. The correction is performed by using GNSS or zero-

velocity measurement. Here, 𝑥𝑘  is error state vector with

dimensions of 151. 

...

      

g g g

x y z x y z

T

bx by bz bx by bz

x V V V h        

  
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(17) 

Components of 𝑥𝑘 in Eq. (17) are errors in pitch, roll, yaw,

east velocity, north velocity, up velocity, latitude, longitude, 

altitude, three gyro errors and three accelerometer errors, 

respectively. 

P is the error covariance matrix, which represent the 

estimated stability of the state vector. Its diagonal elements 

are variances of error of individual elements of the state 

vector. 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2
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Q is a process noise covariance matrix, representing 

uncertainty in the process model. In this case, it comprises of 

covariance of accelerometers and gyroscopes errors. 

2 2 2 2 2 2

gx gy gz ax ay azQ diag       =   (19) 

For INS/GNSS integration, the measurement vector is 

given by: 

𝑧 =

[

𝑉̂𝑖𝑥
𝑔

𝑉̂𝑖𝑦
𝑔
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ℎ̂𝑖 ]

−
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(20) 

The measurement matrix which maps the measurement 

vector to state vector is given by H: 

( )

( )
M

N
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 
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 (21) 

The measurement noise covariance matrix, R, represent 

uncertainty in measurement. In this case, it is the error of 

GNSS output. It is given by: 

2 2 2 2 2 2

Gx Gy Gz G G GV V V hR diag        =
 

(22)

When zero velocity is detected, the measurement vector is: 

𝑧 = [

𝑉̂𝑖𝑥
𝑔

𝑉̂𝑖𝑦
𝑔

𝑉̂𝑖𝑧
𝑔

] − [

𝑉̂𝐺𝑥
𝑔

𝑉̂𝐺𝑦
𝑔

𝑉̂𝐺𝑧
𝑔

] (23) 

And measurement covariance matrix is: 

2 2 2

Gx Gy GzV V VR diag    =
 

(24)

Measurement Matrix 

 ? 3,3) (3,3) (3,9)H zeros eye zeros= (25) 

VII. SIMULATIONS AND RESULTS

The simulations for land vehicle navigation were 

performed in 2D for the period of about one hour. Initially the 

vehicle is stationary for 1 min. After accelerating, it traverses 

a 2D trajectory with the speed of around 10 m/s. After 

travelling for around 40 min, the vehicle comes to rest again. 

The MEMS IMU with accelerometers of 0.2 mg random 

bias and gyroscopes of 5o/hr random bias were used. The 

GNSS receiver with the of 25 m random errors in position 

and 0.1 m/s random velocity error was incorporated.  

A. Standalone INS

When only MEMS IMU is used for navigation, 

considerable error was introduced. The navigation solution 

does not follow the trajectory well as shown in Fig. 2. 

Although, the motion is in 2D, the vertical velocity is 

introduced as indicated by Fig. 3. Fig. 4 shows the 

introduction of maximum of 2 km of error in latitude and 

longitude during 45 min. Fig. 5 indicates the position error of 

INS stand-alone system. 
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Fig. 2. Standalone INS trajectory. 

Fig. 3. Standalone INS velocity. 

Fig. 4. Standalone INS position. 

Fig. 5. Position error of standalone INS. 

B. INS/GNSS Integration

When INS and GNSS are integrated, the final navigation 

solution is almost coincident to ideal values as shown in 

Fig.  6. East, North and Up velocities are plotted in Fig. 7. 

Position computed by INS/GNSS Integration is plotted vis a 

vis reference values in Fig. 8. The position errors converge to 

zero as depicted by Fig. 9. This is the case only if GNSS is 

available without any interruptions. 

Fig. 6. INS/GNSS integrated trajectory. 

Fig. 7. INS/GNSS integrated velocity. 

Fig. 8. INS/GNSS integrated position. 

C. INS with Interrupted GNSS

Due to the multitude of factors, an un-interrupted

availability of GNSS is not possible in normal urban settings. 

As a result, different types of disturbances are introduced.  

In this case, there was interruption in GNSS from 

18–25 min and then from 32–35 min. 
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Fig. 9. Position error of INS/GNSS integration. 

Case 1: In the first case, as a result of interruption, a 

random noise is introduced in the output of GNSS. Here, in 

the interrupted segment, the randomness in GNSS output was 

increased to 10 times. 

The effect of the randomness in GNSS is reflected in the 

final navigation solution. The INS/GNSS trajectory exhibit 

some deviation from the ideal one as shown in Fig. 10. The 

velocity and position error clearly show the effect of 

randomness Fig. 11. 

Case 2: Instead of random errors, if growing errors are 

introduced in GNSS, they can create havoc as shown in Fig. 

12. Although Kalman filter tries to arrest the errors back as

soon as GNSS become available again, but still the overall

error significantly degrades the solution. Fig. 13 shows the

velocity solutions in case of interrupted GNSS signals.

Fig. 10. Trajectory of INS/GNSS Integ having random errors. 

Fig. 11. Velocity of INS/GNSS Integ having random errors. 

Fig. 12. Trajectory of INS/GNSS Integ having growing errors. 

Fig. 13. Velocity of INS/GNSS Integ with growing errors. 

D. INS/ZUPT Integration

If standalone INS is aided by zero-velocity correction, it

can somewhat reduce the final navigation errors. Here, the 

two important factors are the accuracy of INS sensors and 

frequency of zero-velocity. Increasing either of them, 

improves the final solution. However, the price of high 

accuracy INS becomes prohibitively high for most of 

applications. Increasing the frequency of zero-velocity 

correction is also not very feasible as it requires stopping the 

vehicle for some finite time. 

In this case, zero-velocity correction was performed after 

every 10 min. As vehicle was already stationary initially, it 

was stopped for first velocity correction after 10 min (around 

1200 secs). After 10 min, the vehicle was decelerated, then 

stopped for 1 min and then accelerated again. As it was 

stopped thrice, the overall time has increased for the same 

total distance. Every time, the vehicle is stopped, the error in 

velocity becomes zero. However, during the next 10 min 

interval, when it is operating under pure INS, the error grows 

again.  

The final trajectory of INS and zero velocity corrected 

solution does not coincide with the ideal trajectory, but still it 

is improved version of standalone Fig. 14 INS. If the 

frequency of zero velocity update or sensor accuracy is 

enhanced, even better results can be obtained. 

As the time passes, the growth becomes more significant 

as shown in Figs. 15 and 16. 
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Fig. 14. INS/ZUPT trajectory. 

Fig. 15. INS/ZUPT velocity. 

Fig. 16. INS/ZUPT position error. 

E. INS/Interrupted GNSS/ZUPT Integration

When INS, GNSS with interruptions, and zero-velocity

correction are integrated, the final navigation solution is 

significantly improved Fig. 17. 

When GNSS becomes unavailable, the error is introduced. 

However, if the zero-velocity correction of 1 min after every 

10 min is performed, the final errors stays within bounds even 

if the GNSS interruption result in the growing errors (Figs. 18 

and 19). 

Fig. 17. INS/Interrupted GNSS/ZUPT trajectory. 

Fig. 18. INS/Interrupted GNSS/ZUPT velocity. 

Fig. 19. INS/Interrupted GNSS/ZUPT position error. 

VIII. CONCLUSION

The standalone INS give the complete and self-contained 

navigation solution. But due to error accumulation, the INS 

solution after few minutes becomes overly erroneous for 

many practical applications, unless highly precise and 

expensive sensors are used. Therefore, in most scenarios, 

standalone INS is not employed. The integration of INS with 

GNSS is the most common practice since the two systems 

have complementary properties. Nevertheless, there are some 

sources of errors in GNSS as well which can manifest 

themselves in different forms. They can introduce growing 

errors in GNSS position and velocity, increase randomness 

by several orders of magnitude or can result in null output. In 

this paper, the two cases of manifestation of GNSS errors are 
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studied. In case of increased randomness, the integrated 

trajectory might not deviate significantly. But when there is a 

growing error in GNSS, it completely deteriorates the 

navigation solution. If zero velocity update is incorporated by 

stopping the vehicle after some periodic intervals for a short 

time, the final solution can be significantly improved both in 

the case of growing and random errors of GNSS. 
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