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Abstract—Printed circuit boards (PCBs) are circuits written 

on copper foil fixed to boards that are composed of electrically 

nonconductive glass fiber cloth and resin. Electrical products 

are becoming more miniaturized. As a result, drilling the PCBs 

has become increasingly difficult. Micro-drilling of PCBs is 

suitable for forming through holes. The drilling quality also 

affects the copper plating quality, which affects the reliability of 

the electrical connection. Thus, it is necessary to improve PCB 

drilling technology, develop drilling methods that increase 

productivity, and secure the reliability of the electrical 

connection.  Many studies on the cutting force, temperature, and 

quality of drilled holes in PCB drilling have been conducted. 

Research on the cutting force in micro-drilling revealed that 

increasing the cutting force decreased the quality of the drilled 

holes and affected the breakage of microdrills. Currently, skilled 

engineers select the tools and drilling conditions, which is 

difficult for unskilled engineers. In micro-drilling, engineers 

must select drilling conditions such as the spindle speed and 

infeed rate. The system must support tool selection and drilling 

condition decisions based on open knowledge and data. 
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I. INTRODUCTION 

With the rapid development of science and technology in 

recent years, the performance of electronic devices has 

rapidly improved. Consequently, the holes in electronic 

circuit boards have become smaller and more sophisticated, 

thereby complicating the setting of hole processing 

conditions. Therefore, the drilling technology for Printed 

Circuit Boards (PCBs) must be improved, and a drilling 

method with high productivity has been devised [1]. However, 

it is difficult for unskilled engineers to set optimal drilling 

conditions, and the selection of tools and cutting conditions, 

which are important in the micro-drilling of PCBs, often 

depends on the knowledge and experience of skilled 

engineers, much of which is tacit knowledge. Therefore, it is 

necessary to utilize publicly available knowledge and data to 

determine the cutting conditions; however, there are few 

examples of research based on the formalization of tacit 

knowledge in micro-drilling.  

This study focused on tool catalogs, which contain the 

knowledge and experience of skilled engineers working for 

tool manufacturers. Data mining methods were applied to tool 

catalog information (called “catalog mining”) to construct a 

support system for setting cutting conditions and discovering 

knowledge useful for machining. In a previous study, a 

system was developed that could derive cutting conditions 

from tool information using machine-learning on an end mill 

tool catalog [2]. In the present study, the focus was on 

microdrill catalogs, and a machine-learning analysis was 

performed using tool catalogs for PCBs and metal plates. 

Moreover, an attempt was made to clarify the process of 

selecting cutting conditions by introducing a Partial 

Dependency Plot (PDP) to visualize the relationship between 

feature values and objective indicators.  

II. CATALOG-MINING METHOD 

A. Data Mining and Its Basics 

Data mining is a method for uncovering valuable 

information from large amounts of data accumulated in 

databases that contain useful patterns, rules, or noise. It is 

often used to discover and formalize valuable information 

that has gone unnoticed in background knowledge in 

unexplored fields with little prior research [3, 4]. This method, 

which consists of several statistical analysis methods, has 

been used in manufacturing, chemistry, and other fields, and 

its effectiveness has been demonstrated [5]. In catalog mining, 

tool catalogs already contain a large number of high-quality 

data based on the results of repeated experiments conducted 

by tool manufacturers; therefore, analysts do not need to 

spend time acquiring and selecting data. In addition, because 

much of the data in the catalogs is already displayed 

numerically, much of the data cleansing can be omitted. 

B. Random Forest 

Random forest is an ensemble learning method that uses 

multiple decision trees to form a forest for identification, etc. 

[6]. Fig. 1 shows a decision tree, which is a method for 

visualizing decision rules by performing if-then classification 

based on certain conditions. The group of data obtained 

through branching is called a “node,” and the terminus is 

called a “leaf.” The value of each leaf and node is the average 

value of the objective variable belonging to that node and leaf. 

Each decision tree is generated using the CART 

(classification and regression trees) algorithm, which is 

commonly used in machine-learning. In the case of regression 

binary trees, the binary tree is grown using the heterogeneity 

measure shown in Eq. (1) as the evaluation criterion, and 

branching is performed at the branching condition that 

maximizes the degree of improvement ∆𝑅(𝑡) shown in Eq. 

(2). 

 

  𝑅(𝑡) =
1

𝑁
∑{𝑦𝑛 − 𝑦̅(𝑡)}2

𝑛∈𝑡

 (1) 

 

  ∆𝑅(𝑡) = 𝑅(𝑡) − 𝑅(𝑡𝐿) − 𝑅(𝑡𝑅) (2) 
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where t is an arbitrary node, N is the number of data points, 

𝑦𝑛 is the response, 𝑦̅(𝑡) is the average value of the response 

at node t, 𝑡𝐿 represents the node to the left after branching, 

and 𝑡𝑅  represents the node to the right after branching. 

Although individual decision trees do not have high 

discriminative performance, a random forest can achieve high 

prediction performance by using multiple decision trees to 

compensate for each other's results. Fig. 2 shows a schematic 

diagram. As the figure shows, multiple decision trees are 

constructed by randomly selecting explanatory variables. 

Within each decision tree, the target objective variable is 

searched (the red-filled tree in Fig. 2), and the final output is 

the average of the outputs of each decision tree. The 

performance of the regression model was evaluated using the 

coefficient of determination 𝑅2. 

 

  

Fig. 1. Conceptual diagram of 

decision tree. 

Fig. 2. Processes of 

random forest. 

 

 Random forest also makes it possible to quantify the 

importance of the explanatory variables. First, the prediction 

error MSE for each decision tree is obtained from Eq. (3). 

Next, only the variables whose importance is to be 

determined are randomly reordered, and the prediction error 

MSE' for each decision tree is obtained. The importance of 

the explanatory variables is then obtained using Eq. (4). 

 

  𝑀𝑆𝐸 =
1

𝑁
∑(𝑓𝑘 − 𝑦𝑘)

2

𝑁

𝑘=1

 (3) 

 

  𝑙𝑚𝑝 =
1

𝑁𝑡
∑(𝑀𝑆𝐸𝑖 −𝑀𝑆𝐸𝑖

′)

𝑁𝑡

𝑖=1

 (4) 

 

where 𝑓𝑘  is the kth training datum, 𝑦𝑘  is the kth prediction 

datum, N is the number of data points, and 𝑁𝑡 is the number 

of decision trees. 

C.  Partial Dependency Plot Method Theory 

Machine-learning models, such as random forests, provide 

high prediction accuracy. However, they have an 

interpretability problem in that the relationship between 

inputs and outputs is not well understood. In this study, a PDP, 

which is a method for visualizing the relationship between a 

certain feature and a target indicator, is used. The relationship 

between the inputs and outputs is visualized by estimating the 

learned model 𝑓(𝑥) using Eq. (6).  

 

 𝑓𝑠(𝑥𝑠) = 𝐸𝐶[𝑓(𝑥𝑠, 𝑥𝑐)]

= ∫𝑓(𝑥𝑠, 𝑥𝑐)𝑝(𝑥𝑐)𝑑𝑥𝑐 
(5) 

 

  𝑓𝑠̅(𝑥𝑠) =
1

𝑁
∑𝑓(𝑥𝑠, 𝑥𝑐

(𝑖))

𝑖

 (6) 

 

where 𝑥𝑠  is the variable of interest, and 𝑥𝑐  is the group of 

other variables. 

III. DATA-SET 

Four catalogs were used for catalog mining: PCB tool 

catalogs from Companies A and B and metal plate tool 

catalogs from Companies C and D. Table 1 shows the range 

of values for the variables listed in the PCB drill catalogs of 

Companies A and B. Table 2 shows the range of values for 

the variables listed in the metal plate drill catalogs of 

Companies C and D. Fig. 3 shows a magnified view of the 

drill shape and drill tip. The drill shape can vary depending 

on the tool manufacturer and work material. Fig. 4 shows a 

general shape.  

 
Table 1. Variables of catalog (for PCBs) 

 
Table 2. Variables of catalog (for metal plate) 

Company D E 

Data volume 214 1672 

Diameter D [mm] 0.01 – 6 2 – 20 

Flute length l [mm] 0.025 – 18 12 – 430 

Shank diameter Ds [mm] 3 – 6 3 – 20 

Overall length L [mm] 38 – 60 62 – 490 

Helix angle α [degree] 20 – 30 25 – 30 

Point angle β [degree] 120 140 – 160 

Spindle speed S [k rpm] 1.6 – 40 0.7 – 12.7 

Infeed rate F [mm/min] 1 – 1200 264 – 1280 

Cutting speed V [m/min] 0.63 – 141.4 33 – 119.7 

Chip load C [μm/rev.] 0.3 - 133 60 – 420 

 

 

 

 

 

Fig. 3. Drill shape. 

 

The tool catalogs contain information on drill geometry, 

such as shank diameter Ds [mm], overall length L [mm], 

diameter D [mm], flute length ℓ [mm], helix angle α [degree], 

and point angle β [degree], as well as data on workpiece 

Company A B 

Data volume 2873 2150 

Diameter D [mm] 0.1 - 6.5 0.105 - 6.5 

Flute length l [mm] 1.3 - 12 1.5 - 12 

Shank diameter Ds [mm] 3.175 3.175 

Overall length L [mm] 38.1 38.1 

Helix angle α [degree] 30 30 - 45 

Point angle β [degree] 130 - 165 120 - 165 

Stack height Sh [-] 1 - 10 1 - 10 

Board thickness Bt [mm] 0.1 - 1.6 0.1 - 6.4 

Spindle speed S [k rpm] 20 - 200 15 - 200 

Infeed rate F [mm/min] 400 - 4400 500 - 2700 

Cutting speed V [m/min] 37.7 - 408.4 41.2 – 306.3 

Chip load C [µm/rev.] 5 - 106.5 5 - 63 
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materials, such as stack height Sh [-] and board thickness Bt 

[mm], in catalogs for tools for PCBs, and S35C and SS400 in 

catalogs for tools for metal plates. In addition, spindle speed 

S [rpm], spindle cutting speed V [m/min], spindle infeed rate 

F [mm/min], and chip load C [µm/rev] are listed as 

recommended cutting conditions for these materials. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Prediction of Cutting Conditions by Random Forest 

In addition to the drill shape variables (D, l, Ds, L, α, and 

β) and work material variables (Sh and Bt) listed in the PCB 

tool catalogs of Companies A and B shown in Table 1, D/Ds 

(the ratio of diameter to shank diameter), l/L (the ratio of flute 

length to overall length), and D/l (the ratio of tool diameter to 

blade length) were added as drill shape variables. Using 11 

explanatory variables, the cutting conditions (spindle speed S 

and infeed rate F) were predicted using a random forest. Figs. 

4 and 5 show the relationship between the catalog values of 

the cutting conditions and the predicted values for Companies 

A and B, respectively, and the value of the coefficient of 

determination 𝑅2. Figs. 4 and 5 show that the coefficient of 

determination is high for Companies A and B, indicating that 

the cutting conditions (S and F) can be predicted.  

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 4. Results of random forest (Co. A). 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 5. Results of random forest (Co. B). 

 

Next, random forest was used to predict the cutting 

conditions (spindle speed S and infeed rate F) for the metal 

plate tool catalogs of Companies C and D, as listed in Table 

2. The PCB tool catalogs contain work material variables, 

such as stack height Sh and board thickness Bt; however, 

these variables are not listed in the metal plate tool catalogs. 

Therefore, the focus was on the material properties of metals, 

and they were added as work material variables to the 

explanatory variables. The work material variables added in 

this report are Young's modulus E, thermal conductivity λ, 

tensile strength σ, and Vickers hardness H. Table 3 shows the 

types of work materials listed for Companies C and D and the 

values of the added work material variables, which are 

basically JIS steel and aluminum alloys except HAP7, 

NAK55 and NAK80, pre-hardened steels in Japanese steel 

companies. The cutting conditions (S and F) were predicted 

using 13 explanatory variables in the metal plate tool catalogs: 

drill shape variables (D, l, Ds, L, α, β, D/Ds, l/L, and D/l) and 

work material variables (E, λ, σ, and H) listed in Table 3. Figs. 

6 and 7 show the relationship between the catalog and 

predicted values of the cutting conditions and the coefficient 

of determination 𝑅2 for Companies C and D, respectively.  

 
Table 3. Work material parameters 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 6. Results of random forest (Co. C). 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 7. Results of random forest (Co. D). 

 

Figs. 6 and 7 show that the coefficient of determination is 

high for Companies C and D, indicating that the cutting 

conditions (S and F) can be predicted. This indicates that the 

random forest can be used to derive the optimal cutting 

conditions from the information on the drill geometry and 

workpiece material in the tool catalog and that it is easy to 

search for cutting conditions. 

As described in this section, a random forest was used to 

predict the cutting conditions using a tool catalog, and 

accurate results were obtained. Therefore, the machine-

learning model learned the information contained in the tool 

catalogs sufficiently. In the next section, the process of 

determining cutting conditions by evaluating the importance 

of explanatory variables and PDP is discussed, and the effects 

Work 

material 

E 

[Gpa] 

λ 

 [W/m･K] 

σ 

[N/mm2] 

H 

[HB] 

S10C 206 59 310 133 

S35C 205 52 510 178 

S50C 205 44 610 207 

SS400 206 51.6 455 130 

SCM440 212 42.7 980 319 

SUS304 193 16.7 520 187 

SUS430 200 26 450 183 

A5052 68 137 260 68 

ADC12 72 100 310 92 

SKD61 206 30.5 1250 369 

HPM7 208 34.3 974 303 

NAK55 201 38.9 1265 369 

NAK80 201 38.9 1255 369 

FC250 115 50 250 241 
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of the drill shape and work material on the cutting conditions 

are determined. 

B. Discussion on the Importance of Explanatory 

Variables 

Figs. 8 and 9 show the five most important explanatory 

variables for Companies A and B, respectively. The figures 

show that D and D/Ds are important for determining the 

cutting conditions (S and F) of drills for PCBs. Because the 

work material variables (Sh and Bt) are less important, the 

cutting conditions of drills for PCBs can be determined based 

on the drill diameter in many cases.  

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 8. Importance of each parameter (Co. A). 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 9. Importance of each parameter (Co. B). 

 

Figs. 10 and 11 show the five most important explanatory 

variables for Companies C and D, respectively. The figures 

show that the work material variable, λ, is significant in 

addition to D in the metal plate tool catalogs. Thermal 

conductivity indicates the diffusivity of heat; the larger the 

thermal conductivity, the higher the diffusivity of heat in the 

work material, and the less heat transferred to the drill, thus 

having a smaller effect on the temperature rise of the drill. 

Therefore, a work material with higher thermal conductivity 

can be machined at a higher spindle speed. Thus, it is likely 

that the spindle speed is determined based on the thermal 

conductivity of the work material. 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 10. Importance of each parameter (Co. C). 

 

In addition to D and λ, E and H are important for predicting 

the infeed rate. Young's modulus expresses the rigidity of the 

work material, and the larger the value, the higher the rigidity 

and the lower the drill bite; therefore, it is necessary to reduce 

the infeed rate to promote the drill bite. In addition, because 

hardness affects tool wear and cutting resistance, the infeed 

rate must be reduced to lower the cutting resistance. 

Therefore, the infeed rate is likely to be determined by 

considering the Young's modulus and hardness of the work 

material. 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 11. Importance of each parameter (Co. D). 

 

C. Consideration of Explanatory Variables Using PDP 

In this study, the influence of explanatory variables on the 

prediction of the cutting conditions (S and F) was evaluated 

using PDP, a method for visualizing features and objective 

indicators. Therefore, the focus was on D/Ds and λ, which 

were variables of high importance in the results in the 

previous section. Figs. 12 and 13 show the PDP of D/Ds and 

the cutting conditions (S and F) for Companies A and B, 

respectively. Figs. 14 and 15 show the PDP of λ and the 

cutting conditions (S and F) for Companies C and D, 

respectively. 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 12. Partial dependency plot (Co. A). 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 13. Partial dependency plot (Co. B). 

 

Figs. 12 and 13 show that the contribution of D/Ds to the 

spindle speed prediction increases in the negative direction 

(lower rotation speed) up to a value of 0.5, after which it 

remains almost constant. In other words, for drills with 

diameters less than half the shank diameter (D/Ds < 0.5), the 

diameter need not be considered significant in determining 

the spindle speed; however, as the drill diameter approaches 

half the shank diameter (D/Ds = 0.5), the degree to which the 

diameter must be considered gradually increases. For drills 

with diameters larger than half the shank diameter (D/Ds > 

0.5) were considered to reduce the spindle speed by a constant 

value. Although there were differences between the PDPs of 

Companies A and B in predicting the infeed rate, they both 
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had in common that the infeed rate was considered to increase 

based on a certain value of D/Ds and decrease thereafter 

because a peak was observed in the PDP.  

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 14. Partial dependency plot (Co. C). 

 

  

(a) Spindle speed S (b) Infeed rate F 

Fig. 15. Partial dependency plot (Co. D). 

 

Figs. 14 and 15 show that, in the metal plate tool catalog, 

the contribution of λ changes significantly at approximately 

40 W/m-K in the prediction of the spindle speed and infeed 

rate. This is the thermal conductivity value for carbon steel 

for machine structural use (S50C) and chrome molybdenum 

steel (SCM440), and it is highly likely that these work 

materials are the criteria for determining the cutting 

conditions. 

V. CONCLUSION 

A random forest was used to predict the cutting conditions 

of microdrills for PCBs and metal plates using the drill shape 

and work material variables listed in the tool catalogs as 

explanatory variables and the cutting conditions (spindle 

speed and spindle infeed rate) as objective variables. As a 

result of random forest prediction, the following findings 

were obtained:  

(1) The coefficient of determination was 0.7 or higher, and 

high accuracy was obtained; therefore, random forest is 

an effective means for deriving cutting conditions using 

drill tool catalog information. 

(2) The drill diameter (D, D/Ds) was found to be important 

for determining the cutting conditions of the PCB drill. In 

addition to the diameter D, work material variables, such 

as thermal conductivity λ, Young's modulus E, and 

hardness H, are important for metal plate drills. 

(3) By visualizing the relationship between explanatory and 

objective variables using a PDP, it was possible to 

determine the effects of the ratio of the diameter to the 

shank diameter, D/Ds, on the cutting conditions and the 

effects of the thermal conductivity, λ, on the cutting 

conditions. 

(4) In the PCB tool catalogs, it was found that a ratio of 0.5 

of the diameter to the shank diameter, D/Ds, is likely to be 

the criterion for determining the spindle speed. In the 

metal plate tool catalogs, it was found that the cutting 

conditions were likely to be determined by materials with 

a thermal conductivity λ of approximately 40 W/m-K, 

such as S50C and SCM440. 
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