
Designing a Simulator Structure for Validating Swarm Robot’s

Dynamic Mission Planning

Mingyu Shin1, Sejin Kim1, Hyojun Ahn1, Sunoh Byun1, Eenseo Baek1, Sungjun Shim2, Jooyoung Kim2, and

Yongjin Kwon1,*

1Department of Industrial Engineering, College of Engineering, Ajou University, Suwon, South Korea
2Intelligent/Autonomous Control SW Team, LIG Nex1, Sungnam, South Korea

Email: saycode99@ajou.ac.kr (M.G. S.); jkn6873@ajou.ac.kr (S.J. K.); hyojunahn000713@ajou.ac.kr (H.J. A.);

eunseo5343@ajou.ac.kr (E.S. B.); sungjun.shim@lignex1.com (S.J. S.); jooyoung.kim@lignex1.com (J.Y. K.);

yk73@ajou.ac.kr (Y.J. K.)
*Corresponding author

Manuscript received Month date, 2023; revised Month date, 2023; accepted Month date, 2023; published February 6, 2024

Abstract—As swarm-based robotic missions become

increasingly important, efficient mission planning for multiple

robots in a swarm has become one of the key issues. When

deploying swarm robots for indoor search tasks, it is necessary

to have a dynamic mission plan that can respond to the

changing environment in real time, rather than being limited to

the static mission plan initially set. However, there is no

standardized method for swarm robots to effectively respond to

the changing environment after entering a building with an

initially assigned mission plan. Therefore, this paper proposes a

new type of simulator structure that can respond and validate

dynamic mission planning algorithms by considering swarm

robots with multiple unit missions. Two decision tree-based

mission planning algorithms were designed and reflected in the

simulator based on the proposed simulator structure. In there,

two algorithms were compared and tested. In addition, an

inheritance hierarchy for swarm unit missions was provided, so

that newly required missions among the multiple unit missions

of the robot could be easily implemented and reflected in the

simulator. As a result, the proposed simulator structure is

expected to have a wide applicability in that it can be used for

research and verification of dynamic mission planning

algorithms that can respond to the environment not only in

indoor navigation tasks but also in other environments where

robots with multi-unit missions.

Keywords—mission planning, unmanned systems, SW

architecture, swarm robots, dynamic mission planning

I. INTRODUCTION

In disaster situations, robots are becoming increasingly

important, especially in situations where direct human

intervention is difficult or dangerous, such as exploring

buildings and searching for survivors. While robots can be

more effective when swarmed and working as a team,

assigning tasks to each robot individually is a very complex

and challenging task, and requires dynamic mission planning

that is not limited to the initially set plan but can respond to

the changing environment in real time. The complexity of

dynamic mission planning has led to the need for this

research, where multiple robots perform tasks in groups to

maximize the efficiency of their assigned tasks.

Currently, there is no standardized way for robots to

effectively respond to the changing environment after

entering a building with an initially assigned mission plan.

Therefore, in this thesis, we design and propose the structure

of a simulator that can validate mission planning algorithms

to ensure that robots can operate efficiently in dynamic

environment. Furthermore, we use this simulator to validate

the behavior of mission planning algorithms and propose

ways for swarm robots to perform their missions more

effectively [1, 2].

To further enrich this research, the authors present

additional contributions based on their understanding of

recent trends in robotics. In the work provided by Savkiv et al.

[3], an adaptive gripping device for industrial robots is

proposed. The device combines the ability to grasp

manipulated objects of different shapes with the ability to

control deviations in the shape of the object. This approach

helps to increase the flexibility and precision of the robot. In

other work done by Mykhailyshyn et al. [4], an approach to

the classification of gripping devices for industrial robots is

analyzed and supports the need for a systematization of

pneumatic gripping devices. This study provides an in-depth

understanding of the diversity and segmentation of robotic

grip devices, which opens new directions for improving the

ability of robots to perform various tasks. These two studies

demonstrate the latest trends in robotics that can respond to

the changes and unexpected variations that can frequently

occur in real world situations. Even though the application

areas are different, this study and the above two studies carry

the similar approach in view of the changing environment

where the robotic applications often come in to contact. By

reflecting the recent trends and by considering other related

research works, the validation methods of the simulator and

mission planning algorithm proposed in this study can be

further improved and become more effective and practical.

II. LITERATURE REVIEW

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

24DOI : 10.7763/IJMO.2024.V14.845

The objective of this research is to design the structure of a

simulator that can validate the mission planning algorithm of

multiple robots. The technologies behind this research are as

follows. Table 1 shows the basic concepts required for

mission planning of swarm robots. With these organized

concepts, one can define what mission planning is, and get a

sense of how missions are created and controlled in a cluster,

which will lead to the design of a simulator structure.

In this section, we envision and robustly design how the

robot's state changes due to the mission plan, how it will react

to those changes, and how it will structure the flow of data

between the logics. In most cases, the operator establishes a

static mission plan before deploying the robots, and the

operator controls the robot in real-time during operation.

Terminology Definition

Cluster objects Swarm Robot

Platforms

A generic term for swarm robots,

transportation robots, and

communication relay robots.

Cluster Subgroup
Swarm organizational units that

perform missions.

Task

Role of a swarm object during a

mission. What the swarm group will

do.

(Swarm) Mission Planning

Tactics. Planning how to accomplish a

mission using cluster subgroup

composition, tasks, objective

coordinates, range of operations, etc.

(Swarm)

Mission

Planning

Static

The operator enters mission

information such as ‘target

coordinates, cluster subgroups, and

tasks’ into the operation control SW to

obtain a mission plan.

Dynamic

Automatically create & execute

mission plans based on event

occurrences or situational /

environmental information.

(Cluster)

Mission

Planning How

to Create

Manual
Operators manually enter mission

plans

Automatic

The operator enters the information

required for the mission plan and

generates the mission plan based on

the conditions.

(Swarm)

Mission

Planning

Control

Methods

Centralized

Swarm objects execute missions

according to the commands passed in

the Mission Plan SW.

Distributed

Control

Create & execute dynamic mission

plans by communicating between

leaders of cluster subgroups (without

Mission Planning SW control)

Route Planning

Set waypoints to get to the target

coordinates. Tasks and target

coordinates correspond to

Telecom shaded areas
Areas where radio waves cannot be

received.

However, there are limitations to real-time responses due

to communication breakdowns and system failures. Recently,

with the development of high-performance sensors and the

advancement of artificial intelligence technology, research is

being conducted to automate the mission planning of swarm

robots. Since robots cannot be operated autonomously

without human intervention, a hybrid mission planning

method also exists.

The advantages of centralized mission planning are that it's

easy to manage data centrally, and the cost of configuring the

system is lower than other mission planning methods. The

disadvantages are that data from all robots must be

centralized, which can lead to data bottlenecks. The

operational radius is also narrowed because they can only

operate where they can communicate with the center. In

addition, if the centralized command center is destroyed,

mission planning for the remaining robots becomes

impossible. Fig. 1 illustrates the centralized mission planning

approach for an unmanned surface vehicle [1, 2].

The solution to the centralized problem is to decentralize

the mission planning, which is often used when

communications between robots are not possible. In the case

of the distributed mission planning method, the mission is

planned through the information collected by the individual

robots without sharing situational awareness information

between the robots. However, it is very expensive and

time-consuming to set up the system. Fig. 1 illustrates the

distributed mission planning approach for unmanned surface

vessels [5, 6]. Fig. 1 shows a schematic of a hybrid mission

planning technique. A centralized control center and a swarm

leader platform control the unmanned platforms that are

followers. In the hybrid mission planning method, which

combines the disadvantages of centralized and decentralized

mission planning methods, the leader platform of each swarm

plans the missions of its followers [7].

Fig. 1. Mission planning diagram.

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

25

Table 1. Mission planning terminology

Fig. 2. The process of mission management being performed.

In Fig. 2, one can see that the mission plan is modified by

the optimal operational mode setting, even if the operator's

decisions are not reflected [2]. To date, most mission

planning algorithm research has been focused on path

planning, especially based on CBBA algorithms. They

mainly demonstrate techniques for assigning multiple UAVs

to different traveling missions by calculating the cost of

traveling paths. However, this technique is inappropriate for

indoor search, which requires multiple unit missions.

Examples include surveillance missions to detect object

targets, communication relays to organically send and

receive status and situation data, as well as mapping and

pathfinding missions required for indoor search. To

overcome and improve the limitations of existing

technologies, it is necessary to develop a new technology for

autonomously planning multiple missions for swarm robots.

Therefore, we design a simulator structure that can verify the

mission planning algorithm, and proceed with the

verification through a simple swarm mission planning

algorithm [8−11].

III. MATERIALS AND METHODS

We propose a simulator structure to validate the mission

planning algorithms, as shown in Fig. 3. The structure of the

proposed simulator is mainly divided into the Simulation

Environment, User Interface, and Data Management Module.

Simulation Environment literally refers to the environment in

which the mission planning algorithm can be simulated and is

divided into Mission Planning Module and Virtual

Environment.

Fig. 3. Hybrid mission planning diagram.

1) Mission planning module

The Mission Planning Module is where the mission

planning algorithm that the operator wants to validate is

implemented and validated in the simulator. The Mission

Planning Module is organized in a hierarchical structure of

Swarm Commander, Swarm, and Resource, and mission

planning is centered on the Swarm Commander.

'Swarm Commander' is composed of two main parts,

'Mission Planning', which plans the mission, and 'Swarm List',

which references the swarms it belongs to, as shown in Fig. 4.

'Mission Planning' is the part where the actual mission

planning algorithm is implemented and driven. It is divided

into 'Static Mission Planning', which plans the mission

immediately when the initial user sets the mission, and

'Dynamic Mission Planning', which modifies the mission

plan in real-time, as the planned situation changes. Simulator

users can easily verify the algorithm by implementing the

mission planning algorithm they want to verify in this part.

Then, the swarm-specific missions planned by the Mission

Planning algorithm are assigned to the swarms referenced in

the ‘Swarm List’. The assigned mission is delivered in the

form of a ‘Swarm Unit Mission’. ‘Swarm Unit Mission’ is an

abstract class object that expresses the mission that the swarm

should perform, and detailed unit missions inherit from

'Swarm Unit Mission' and are implemented in a polymorphic

form to suit the characteristics of each mission.

Fig. 4. Swarm commander internal structure.

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

26

The inheritance structure of Swam Unit Mission and its

subunits is shown in Fig. 5. Swam Unit Mission,

implemented as an abstract class, has common member

variables and methods. The name variable, which represents

the mission’s name of all the detailed missions, and the

duration variable, which represents the duration of the

mission, are field members.

Fig. 5. Swarm unit mission and detail unit mission class inheritance structure.

In addition, there are two abstract methods, 'Initialize()',

which performs a common initialization before starting all

missions, and ‘CarryingOutMission()’, which actually carries

out the mission, and each subdivided unit mission can

override these methods to implement a polymorphic form.

The overridden ‘Initialize(Swarm)’ method registers the

'Swarm' passed in as an argument with ‘activatedSwarm’,

receives the swarm to carry out the unit mission, and

performs the initial setup. The ‘CarryingOutMission()’

method is where the registered ‘activatedSwarm’ actually

carries out the mission, and the specific details will vary

depending on the type of mission. The structure of 'Swarm',

which receives unit tasks from ‘Swam Commander’, is

illustrated in Fig. 6. After receiving the unit task from the

Swarm Commander, the Swarm assigns the task to the

various ‘Resources’ referenced in the Robot List (Swarm).

The method of assigning tasks to ‘Resources’ utilizes various

predefined rules or algorithms. The ‘Robot List’ (Swarm)

collects the status information of the 'Resources' in real-time

for dynamic mission planning and delivers it to the 'Swarm

Commander' in data packets.

Fig. 6. Swarm internal structure.

2) Virtual environment

‘Virtual Environment’ refers to the environment in which

multiple robots operated by the Mission Planning Module

operate and interact. The ‘Virtual Environment’ includes the

indoor environment where the mission takes place with

interactive enemies. The operator implements the scenario to

be simulated in this ‘Virtual Environment’ and verifies it with

the robots performing the mission planning algorithm.

3) User interface

The ‘User Interface’ is literally the part that directly

communicates with the user and exchanges necessary

information. It consists of the ‘Swarm Configuration Setting

Interface’ for initial setup and the ‘Simulation Visualization

Interface’ for monitoring the simulation.

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

27

Fig. 7. Example swarm configuration settings interface.

The ‘Swarm Configuration Setting Interface’ is the part

that sets the mission goal of ‘Swarm Commander’ and

performs initial settings such as the number of swarms and

robot types. The initial settings utilize a drag-and-drop based

GUI (Graphical User Interface) to make it easy and intuitive

for the operator to set up. Fig. 7 shows an example of the

swarm configuration setup interface, which utilizes multiple

setup elements on the right to set initial information by

dragging and dropping. The 'Simulation Visualization

Interface' is literally an interface where you can see the

simulation taking place in the actual simulation environment.

The interface consists of several panels to check the status

information of the robot, mission performance information,

etc. and an interface such as buttons for the operator to

change the desired panel. Fig. 8 is an example of the

Simulation Visualization Interface.

Fig. 8. Example of simulation visualization interface.

4) Data management module

Finally, the ‘Data Management Module’ is a module that

collects data generated between simulations and processes it

for analysis. First, the ‘Data Collector’ collects mission

progress information, swarm status information, and robot

status information. Then, after the simulation is in progress or

over, it creates graphs based on the data collected through the

‘Graph Generator’ to provide various information to the

operator. Graphs that provide various information such as

mission execution time and enemy detection count are

provided. With this feature, it will be easy to verify the

completeness and effectiveness of the mission planning

algorithm. Using the above structure of the proposed

simulator, it will be easy to implement and verify various

mission planning algorithms. In the following Results and

Discussion section, to verify the effectiveness and efficiency

of the proposed structure, we will implement a simple

simulator based on the structure and verify the mission

planning algorithm.

IV. RESULT AND DISCUSSION

Fig. 9 shows an environment in which you need to perform

an indoor navigation task. The indoor environment contains

10 randomly placed objects. We assume that the doors in

each room represent entryways and that the indoor map

information is unknown. Initially, the navigation task starts

when the user statically assigns the task, and the task duration

is assumed to be 12 minutes.

Fig. 9. Setting up the environment based on the proposed simulator structure.

Fig. 10. A ground robot equipped with a low-end monocular camera

modeled in the simulator.

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

28

Fig. 11. Simulation environment being identified by sensors.

As shown in Fig. 11, one can check whether an object is

detected by the sensors onboard the robots. In the upper right

corner, one can see detection information, operation time,

and contextual notifications. The screen can be switched for

each robot to view the simulation environment from different

angles, as shown in Fig. 12. Additionally, the number of

detected objects can be graphed, and the simulation result

data can be extracted to a CSV file by pressing the button at

the bottom right. The above simulation can be validated by

selecting and changing only the dynamic mission planning

algorithm and comparing the number of object detections for

the same operation time. To simplify the validation of the

algorithm based on the proposed simulator structure, we use a

decision tree as a mission plan [7], as shown in Fig. 13. When

the mission first starts, it is given the task of either finding an

entryway or mapping it, depending on whether it has map

information or not. If it takes more than 150 seconds to find

an on-ramp, you are assigned a surveillance mission.

Fig. 12. Aerial view of the simulation environment.

Fig. 13. Decision tree-based unit mission planning algorithm schematic.

Exceptionally, if three or more driveways are found, a

surveillance mission is also planned. A map generation

mission is planned if there is no map information at the start

of the scenario or if more than 20 coordinates to move to are

not found within 150 seconds of the start of the map

generation mission. Finally, a ramp finding mission is

planned if the opposite conditions of surveillance missions

are met. As an exception, at least 20 coordinates within 150

seconds of the start of the ramp finding mission are found.

The robot’s swarm mission is planned and executed by the

algorithm being set up, as shown in Fig. 14. At 44 seconds

into the simulation, all the swarms are mapped by the

decision tree we designed, and if any swarm has found more

than 20 movable points, the mission is planned to find an

entry point.

Fig. 14. Simulated situations with mission planning algorithms.

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

29

Fig. 15. Schematic of the decision tree-based unit mission planning algorithm with parameter changes.

To validate the algorithm, partially change the parameters

of the previously used decision tree, as shown in Fig. 15. First,

in mission planning, change the parameter from 150 seconds

to 100 seconds based on the execution time to find the ramp.

Second, if the time to find the ramp is less than the given

execution time, re-plan the mission based on the number of

ramps found, changing the parameter from 3 to 5. Finally, for

mapping, we set the simulator to re-plan the mission by

changing the initial execution time from 150 seconds to 200

seconds and changing the number of points that can be

moved within the given execution time to 30.

Fig. 16. First decision tree validation result.

Fig. 17. Second decision tree verification result.

Fig. 16 and Fig. 17 are user interfaces that show the

validation results for each decision tree. Table 2 shows the

results of the comparative validation of the decision

tree-based mission planning algorithm. You can see that after

changing the parameters of the nodes, the number of object

detections increases within the same operation time.

Although the mission planning algorithm under

comparison was a simple decision tree with only the

parameter values changed, by customizing the desired unit

mission and outcome metrics based on this simulator

structure, and applying the mission planning algorithm to the

method called 'DynamicMissionPlanning()' inside the

structure, you can perform comparative validation of the

algorithm and select a better mission planning algorithm.

V. CONCLUSION

Through the proposed simulator structure, we were able to

apply and verify algorithms for planning multiple robot

missions that can be utilized in search operations. It is

significant in that it solved the problem of having to develop

a simulator each time to verify the mission planning

algorithm because it is concentrated on the research of path

planning-based mission planning algorithms, and solved a

practical problem in that it was only necessary to design

missions in classes according to the purpose. It is also

expected to be scalable in that it is easy to develop AI-based

mission planning algorithms and useful for developing

verification simulators for autonomous unmanned systems in

the future if only an environment for learning AI is

additionally built.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

30

Table 2 . Validate a comparison between two algorithms

Before Change

Parameter

After Change

Parameter

Spent Time in

Simulation(s)
720 720

Number of detections 6 8

First detection time(s) 170 127

Last detection time(s) 672 588

Detection success

rate(%)
60 80

AUTHOR CONTRIBUTIONS

Mingyu Shin, Sejin Kim, Hyojun Ahn and Sunoh Byun

conducted the research; Eunseo Baek analyzed the data; and

Sungjun Shim, Jooyoung Kim, and Yongjin Kwon wrote the

paper. All authors had approved the final version.

FUNDING

This work was supported by Korea Research Institute for

defense Technology planning and advancement (KRIT) grant

funded by the Korea government (DAPA (Defense

Acquisition Program Administration)). (No.

KRIT-CT-22-006-005, Control technology for collective

operation of military ultra-small ground robots).

REFERENCES

[1] H. M. Park, “Design and implementation of interface system for swarm

USVs simulation based on hybrid mission planning,” Journal of

Sensors, 2018.

[2] S. Hong, K. Kim, and H. Kim, “Unit mission based mission planning

and automatic mission management for robots,” Journal of Intelligent

and Robotic Systems, vol. 70, pp. 1−4, 2013.

[3] V. Savkiv, R. Mykhailyshyn, P. Maruschak, V. Kyrylovych, F.

Duchon, and L. Chovanec, “Gripping devices of industrial robots for

manipulating offset dish antenna billets and controlling their

shape,” Transport, vol. 36, no. 1, pp. 63−74, Mar. 2021.

[4] R. Mykhailyshyn, V. Savkiv, P. Maruschak, and J. Xiao, “A systematic

review on pneumatic gripping devices for industrial robots,” Transport,

vol. 37, no. 3, pp. 201–231, Aug. 2022.

[5] I. Hwang, H. Kim, and S. Kim, “Modified consensus based auction

algorithm for task allocation of multiple unmanned aerial vehicle,”

Journal of Intelligent and Robotic Systems, vol. 86, no. 2, pp. 361−377,

2017

[6] F. Pecora, A. Bernardino, and L. Iocchi, “Planning under Uncertainty

for robotic tasks with mixed observability,” IEEE Transactions on

Robotics, 2019.

[7] H. I. Christensen and A. T. Fiore, “A review of task planning in

robotics,” Robotics and Autonomous Systems, 2013.

[8] N. Michael and V. Kumar, “A survey of planning algorithms in

multi-robot systems,” Robotics and Autonomous Systems, 2014.

[9] A. Farinelli, L. Iocchi, and D. Nardi, “Multi-robot task allocation in

uncertain environments: A survey,” Autonomous Robots, 2016.

[10] S. Lee, S. Lee, and S. H. Choi, “A task planning method for

cooperative unmanned aerial vehicle systems,” Journal of Intelligent

and Robotic Systems, 2018.

[11] H. Zhu, Y. Zhang, and D. Wu. “A multi-objective optimization Method

for multi-robot task planning,” IEEE Transactions on Industrial

Informatics, 2019.

[12] T. J. Choi and C. W. Ahn, “A swarm art based on evolvable boids with

genetic programming,” Journal of Advances in Information

Technology, vol. 8, no. 1, pp. 23−28, February 2017.

[13] S. Geetha, G. Poonthalir, and P. T. Vanathi, “A hybrid particle swarm

optimization with genetic operators for vehicle routing problem,”

Journal of Advances in Information Technology, vol. 1, no. 4, pp.

181−188, November, 2010. doi:10.4304/jait.1.4.181-188

Copyright © 2024 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Modeling and Optimization, Vol. 14, No. 1, 2024

31

https://creativecommons.org/licenses/by/4.0/

