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Abstract—As swarm-based robotic missions become 

increasingly important, efficient mission planning for multiple 

robots in a swarm has become one of the key issues. When 

deploying swarm robots for indoor search tasks, it is necessary 

to have a dynamic mission plan that can respond to the 

changing environment in real time, rather than being limited to 

the static mission plan initially set. However, there is no 

standardized method for swarm robots to effectively respond to 

the changing environment after entering a building with an 

initially assigned mission plan. Therefore, this paper proposes a 

new type of simulator structure that can respond and validate 

dynamic mission planning algorithms by considering swarm 

robots with multiple unit missions. Two decision tree-based 

mission planning algorithms were designed and reflected in the 

simulator based on the proposed simulator structure. In there, 

two algorithms were compared and tested. In addition, an 

inheritance hierarchy for swarm unit missions was provided, so 

that newly required missions among the multiple unit missions 

of the robot could be easily implemented and reflected in the 

simulator. As a result, the proposed simulator structure is 

expected to have a wide applicability in that it can be used for 

research and verification of dynamic mission planning 

algorithms that can respond to the environment not only in 

indoor navigation tasks but also in other environments where 

robots with multi-unit missions. 

Keywords—mission planning, unmanned systems, SW 

architecture, swarm robots, dynamic mission planning 

I. INTRODUCTION

In disaster situations, robots are becoming increasingly 

important, especially in situations where direct human 

intervention is difficult or dangerous, such as exploring 

buildings and searching for survivors. While robots can be 

more effective when swarmed and working as a team, 

assigning tasks to each robot individually is a very complex 

and challenging task, and requires dynamic mission planning 

that is not limited to the initially set plan but can respond to 

the changing environment in real time. The complexity of 

dynamic mission planning has led to the need for this 

research, where multiple robots perform tasks in groups to 

maximize the efficiency of their assigned tasks. 

Currently, there is no standardized way for robots to 

effectively respond to the changing environment after 

entering a building with an initially assigned mission plan. 

Therefore, in this thesis, we design and propose the structure 

of a simulator that can validate mission planning algorithms 

to ensure that robots can operate efficiently in dynamic 

environment. Furthermore, we use this simulator to validate 

the behavior of mission planning algorithms and propose 

ways for swarm robots to perform their missions more 

effectively [1, 2]. 

To further enrich this research, the authors present 

additional contributions based on their understanding of 

recent trends in robotics. In the work provided by Savkiv et al. 

[3], an adaptive gripping device for industrial robots is 

proposed. The device combines the ability to grasp 

manipulated objects of different shapes with the ability to 

control deviations in the shape of the object. This approach 

helps to increase the flexibility and precision of the robot. In 

other work done by Mykhailyshyn et al. [4], an approach to 

the classification of gripping devices for industrial robots is 

analyzed and supports the need for a systematization of 

pneumatic gripping devices. This study provides an in-depth 

understanding of the diversity and segmentation of robotic 

grip devices, which opens new directions for improving the 

ability of robots to perform various tasks. These two studies 

demonstrate the latest trends in robotics that can respond to 

the changes and unexpected variations that can frequently 

occur in real world situations. Even though the application 

areas are different, this study and the above two studies carry 

the similar approach in view of the changing environment 

where the robotic applications often come in to contact. By 

reflecting the recent trends and by considering other related 

research works, the validation methods of the simulator and 

mission planning algorithm proposed in this study can be 

further improved and become more effective and practical. 

II. LITERATURE REVIEW
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The objective of this research is to design the structure of a 

simulator that can validate the mission planning algorithm of 

multiple robots. The technologies behind this research are as 

follows. Table 1 shows the basic concepts required for 

mission planning of swarm robots. With these organized 

concepts, one can define what mission planning is, and get a 

sense of how missions are created and controlled in a cluster, 

which will lead to the design of a simulator structure.

In this section, we envision and robustly design how the 

robot's state changes due to the mission plan, how it will react 

to those changes, and how it will structure the flow of data 

between the logics. In most cases, the operator establishes a 

static mission plan before deploying the robots, and the 

operator controls the robot in real-time during operation.



  

   

Terminology Definition 

Cluster objects Swarm Robot 

Platforms 

A generic term for swarm robots, 

transportation robots, and 

communication relay robots. 

Cluster Subgroup 
Swarm organizational units that 

perform missions. 

Task 

Role of a swarm object during a 

mission. What the swarm group will 

do. 

(Swarm) Mission Planning 

Tactics. Planning how to accomplish a 

mission using cluster subgroup 

composition, tasks, objective 

coordinates, range of operations, etc. 

(Swarm) 

Mission 

Planning 

Static 

The operator enters mission 

information such as ‘target 

coordinates, cluster subgroups, and 

tasks’ into the operation control SW to 

obtain a mission plan. 

Dynamic 

Automatically create & execute 

mission plans based on event 

occurrences or situational / 

environmental information. 

(Cluster) 

Mission 

Planning How 

to Create 

Manual 
Operators manually enter mission 

plans 

Automatic 

The operator enters the information 

required for the mission plan and 

generates the mission plan based on 

the conditions. 

(Swarm) 

Mission 

Planning 

Control 

Methods 

Centralized 

Swarm objects execute missions 

according to the commands passed in 

the Mission Plan SW. 

Distributed 

Control 

Create & execute dynamic mission 

plans by communicating between 

leaders of cluster subgroups (without 

Mission Planning SW control) 

Route Planning 

Set waypoints to get to the target 

coordinates. Tasks and target 

coordinates correspond to 

Telecom shaded areas 
Areas where radio waves cannot be 

received. 

However, there are limitations to real-time responses due 

to communication breakdowns and system failures. Recently, 

with the development of high-performance sensors and the 

advancement of artificial intelligence technology, research is 

being conducted to automate the mission planning of swarm 

robots. Since robots cannot be operated autonomously 

without human intervention, a hybrid mission planning 

method also exists.  

The advantages of centralized mission planning are that it's 

easy to manage data centrally, and the cost of configuring the 

system is lower than other mission planning methods. The 

disadvantages are that data from all robots must be 

centralized, which can lead to data bottlenecks. The 

operational radius is also narrowed because they can only 

operate where they can communicate with the center. In 

addition, if the centralized command center is destroyed, 

mission planning for the remaining robots becomes 

impossible. Fig. 1 illustrates the centralized mission planning 

approach for an unmanned surface vehicle [1, 2]. 

The solution to the centralized problem is to decentralize 

the mission planning, which is often used when 

communications between robots are not possible. In the case 

of the distributed mission planning method, the mission is 

planned through the information collected by the individual 

robots without sharing situational awareness information 

between the robots. However, it is very expensive and 

time-consuming to set up the system. Fig. 1 illustrates the 

distributed mission planning approach for unmanned surface 

vessels [5, 6]. Fig. 1 shows a schematic of a hybrid mission 

planning technique. A centralized control center and a swarm 

leader platform control the unmanned platforms that are 

followers. In the hybrid mission planning method, which 

combines the disadvantages of centralized and decentralized 

mission planning methods, the leader platform of each swarm 

plans the missions of its followers [7]. 

 

 

 

 

Fig. 1. Mission planning diagram. 
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Table 1. Mission planning terminology



  

 

Fig. 2. The process of mission management being performed. 

 

In Fig. 2, one can see that the mission plan is modified by 

the optimal operational mode setting, even if the operator's 

decisions are not reflected [2]. To date, most mission 

planning algorithm research has been focused on path 

planning, especially based on CBBA algorithms. They 

mainly demonstrate techniques for assigning multiple UAVs 

to different traveling missions by calculating the cost of 

traveling paths. However, this technique is inappropriate for 

indoor search, which requires multiple unit missions. 

Examples include surveillance missions to detect object 

targets, communication relays to organically send and 

receive status and situation data, as well as mapping and 

pathfinding missions required for indoor search. To 

overcome and improve the limitations of existing 

technologies, it is necessary to develop a new technology for 

autonomously planning multiple missions for swarm robots. 

Therefore, we design a simulator structure that can verify the 

mission planning algorithm, and proceed with the 

verification through a simple swarm mission planning 

algorithm [8−11]. 

III. MATERIALS AND METHODS 

We propose a simulator structure to validate the mission 

planning algorithms, as shown in Fig. 3. The structure of the 

proposed simulator is mainly divided into the Simulation 

Environment, User Interface, and Data Management Module. 

Simulation Environment literally refers to the environment in 

which the mission planning algorithm can be simulated and is 

divided into Mission Planning Module and Virtual 

Environment. 

 
Fig. 3. Hybrid mission planning diagram. 

1) Mission planning module 

The Mission Planning Module is where the mission 

planning algorithm that the operator wants to validate is 

implemented and validated in the simulator. The Mission 

Planning Module is organized in a hierarchical structure of 

Swarm Commander, Swarm, and Resource, and mission 

planning is centered on the Swarm Commander. 

'Swarm Commander' is composed of two main parts, 

'Mission Planning', which plans the mission, and 'Swarm List', 

which references the swarms it belongs to, as shown in Fig. 4. 

'Mission Planning' is the part where the actual mission 

planning algorithm is implemented and driven. It is divided 

into 'Static Mission Planning', which plans the mission 

immediately when the initial user sets the mission, and 

'Dynamic Mission Planning', which modifies the mission 

plan in real-time, as the planned situation changes. Simulator 

users can easily verify the algorithm by implementing the 

mission planning algorithm they want to verify in this part. 

Then, the swarm-specific missions planned by the Mission 

Planning algorithm are assigned to the swarms referenced in 

the ‘Swarm List’. The assigned mission is delivered in the 

form of a ‘Swarm Unit Mission’. ‘Swarm Unit Mission’ is an 

abstract class object that expresses the mission that the swarm 

should perform, and detailed unit missions inherit from 

'Swarm Unit Mission' and are implemented in a polymorphic 

form to suit the characteristics of each mission.  

 
Fig. 4. Swarm commander internal structure. 
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The inheritance structure of Swam Unit Mission and its 

subunits is shown in Fig. 5. Swam Unit Mission, 

implemented as an abstract class, has common member 

variables and methods. The name variable, which represents 

the mission’s name of all the detailed missions, and the 

duration variable, which represents the duration of the 

mission, are field members. 

 
Fig. 5. Swarm unit mission and detail unit mission class inheritance structure. 

 

In addition, there are two abstract methods, 'Initialize()', 

which performs a common initialization before starting all 

missions, and ‘CarryingOutMission()’, which actually carries 

out the mission, and each subdivided unit mission can 

override these methods to implement a polymorphic form. 

The overridden ‘Initialize(Swarm)’ method registers the 

'Swarm' passed in as an argument with ‘activatedSwarm’, 

receives the swarm to carry out the unit mission, and 

performs the initial setup. The ‘CarryingOutMission()’ 

method is where the registered ‘activatedSwarm’ actually 

carries out the mission, and the specific details will vary 

depending on the type of mission. The structure of 'Swarm', 

which receives unit tasks from ‘Swam Commander’, is 

illustrated in Fig. 6. After receiving the unit task from the 

Swarm Commander, the Swarm assigns the task to the 

various ‘Resources’ referenced in the Robot List (Swarm). 

The method of assigning tasks to ‘Resources’ utilizes various 

predefined rules or algorithms. The ‘Robot List’ (Swarm) 

collects the status information of the 'Resources' in real-time 

for dynamic mission planning and delivers it to the 'Swarm 

Commander' in data packets. 

 
Fig. 6. Swarm internal structure. 

 

2) Virtual environment 

‘Virtual Environment’ refers to the environment in which 

multiple robots operated by the Mission Planning Module 

operate and interact. The ‘Virtual Environment’ includes the 

indoor environment where the mission takes place with 

interactive enemies. The operator implements the scenario to 

be simulated in this ‘Virtual Environment’ and verifies it with 

the robots performing the mission planning algorithm. 

3) User interface 

The ‘User Interface’ is literally the part that directly 

communicates with the user and exchanges necessary 

information. It consists of the ‘Swarm Configuration Setting 

Interface’ for initial setup and the ‘Simulation Visualization 

Interface’ for monitoring the simulation. 
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Fig. 7. Example swarm configuration settings interface. 

 

The ‘Swarm Configuration Setting Interface’ is the part 

that sets the mission goal of ‘Swarm Commander’ and 

performs initial settings such as the number of swarms and 

robot types. The initial settings utilize a drag-and-drop based 

GUI (Graphical User Interface) to make it easy and intuitive 

for the operator to set up. Fig. 7 shows an example of the 

swarm configuration setup interface, which utilizes multiple 

setup elements on the right to set initial information by 

dragging and dropping. The 'Simulation Visualization 

Interface' is literally an interface where you can see the 

simulation taking place in the actual simulation environment. 

The interface consists of several panels to check the status 

information of the robot, mission performance information, 

etc. and an interface such as buttons for the operator to 

change the desired panel. Fig. 8 is an example of the 

Simulation Visualization Interface. 

 
Fig. 8. Example of simulation visualization interface. 

4) Data management module 

Finally, the ‘Data Management Module’ is a module that 

collects data generated between simulations and processes it 

for analysis. First, the ‘Data Collector’ collects mission 

progress information, swarm status information, and robot 

status information. Then, after the simulation is in progress or 

over, it creates graphs based on the data collected through the 

‘Graph Generator’ to provide various information to the 

operator. Graphs that provide various information such as 

mission execution time and enemy detection count are 

provided. With this feature, it will be easy to verify the 

completeness and effectiveness of the mission planning 

algorithm. Using the above structure of the proposed 

simulator, it will be easy to implement and verify various 

mission planning algorithms. In the following Results and 

Discussion section, to verify the effectiveness and efficiency 

of the proposed structure, we will implement a simple 

simulator based on the structure and verify the mission 

planning algorithm. 

IV. RESULT AND DISCUSSION 

Fig. 9 shows an environment in which you need to perform 

an indoor navigation task. The indoor environment contains 

10 randomly placed objects. We assume that the doors in 

each room represent entryways and that the indoor map 

information is unknown. Initially, the navigation task starts 

when the user statically assigns the task, and the task duration 

is assumed to be 12 minutes. 

 

 
Fig. 9. Setting up the environment based on the proposed simulator structure. 

 

 
Fig. 10. A ground robot equipped with a low-end monocular camera 

modeled in the simulator. 
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Fig. 11. Simulation environment being identified by sensors. 

 

As shown in Fig. 11, one can check whether an object is 

detected by the sensors onboard the robots. In the upper right 

corner, one can see detection information, operation time, 

and contextual notifications. The screen can be switched for 

each robot to view the simulation environment from different 

angles, as shown in Fig. 12. Additionally, the number of 

detected objects can be graphed, and the simulation result 

data can be extracted to a CSV file by pressing the button at 

the bottom right. The above simulation can be validated by 

selecting and changing only the dynamic mission planning 

algorithm and comparing the number of object detections for 

the same operation time. To simplify the validation of the 

algorithm based on the proposed simulator structure, we use a 

decision tree as a mission plan [7], as shown in Fig. 13. When 

the mission first starts, it is given the task of either finding an 

entryway or mapping it, depending on whether it has map 

information or not. If it takes more than 150 seconds to find 

an on-ramp, you are assigned a surveillance mission. 

 

 
Fig. 12. Aerial view of the simulation environment. 

 
Fig. 13. Decision tree-based unit mission planning algorithm schematic. 

 

Exceptionally, if three or more driveways are found, a 

surveillance mission is also planned. A map generation 

mission is planned if there is no map information at the start 

of the scenario or if more than 20 coordinates to move to are 

not found within 150 seconds of the start of the map 

generation mission. Finally, a ramp finding mission is 

planned if the opposite conditions of surveillance missions 

are met. As an exception, at least 20 coordinates within 150 

seconds of the start of the ramp finding mission are found. 

The robot’s swarm mission is planned and executed by the 

algorithm being set up, as shown in Fig. 14. At 44 seconds 

into the simulation, all the swarms are mapped by the 

decision tree we designed, and if any swarm has found more 

than 20 movable points, the mission is planned to find an 

entry point. 

 
Fig. 14. Simulated situations with mission planning algorithms. 
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Fig. 15. Schematic of the decision tree-based unit mission planning algorithm with parameter changes. 

 

To validate the algorithm, partially change the parameters 

of the previously used decision tree, as shown in Fig. 15. First, 

in mission planning, change the parameter from 150 seconds 

to 100 seconds based on the execution time to find the ramp. 

Second, if the time to find the ramp is less than the given 

execution time, re-plan the mission based on the number of 

ramps found, changing the parameter from 3 to 5. Finally, for 

mapping, we set the simulator to re-plan the mission by 

changing the initial execution time from 150 seconds to 200 

seconds and changing the number of points that can be 

moved within the given execution time to 30. 

 

 
Fig. 16. First decision tree validation result. 

 

 
Fig. 17. Second decision tree verification result. 

 

Fig. 16 and Fig. 17 are user interfaces that show the 

validation results for each decision tree. Table 2  shows the 

results of the comparative validation of the decision 

tree-based mission planning algorithm. You can see that after 

changing the parameters of the nodes, the number of object 

detections increases within the same operation time. 

 
   

 
  

 
  

   

   

   

 
  

 

Although the mission planning algorithm under 

comparison was a simple decision tree with only the 

parameter values changed, by customizing the desired unit 

mission and outcome metrics based on this simulator 

structure, and applying the mission planning algorithm to the 

method called 'DynamicMissionPlanning()' inside the 

structure, you can perform comparative validation of the 

algorithm and select a better mission planning algorithm. 

V. CONCLUSION 

Through the proposed simulator structure, we were able to 

apply and verify algorithms for planning multiple robot 

missions that can be utilized in search operations. It is 

significant in that it solved the problem of having to develop 

a simulator each time to verify the mission planning 

algorithm because it is concentrated on the research of path 

planning-based mission planning algorithms, and solved a 

practical problem in that it was only necessary to design 

missions in classes according to the purpose. It is also 

expected to be scalable in that it is easy to develop AI-based 

mission planning algorithms and useful for developing 

verification simulators for autonomous unmanned systems in 

the future if only an environment for learning AI is 

additionally built. 
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Table 2 . Validate a comparison between two algorithms

Before Change 

Parameter

After Change 

Parameter

Spent Time in 

Simulation(s)
720 720

Number of detections 6 8

First detection time(s) 170 127

Last detection time(s) 672 588

Detection success 

rate(%)
60 80
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