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Abstract—The development of a new method for fault 

diagnosis in mechanical systems is a critical field of research 

due to the increasing demand for machine reliability and 

maintenance efficiency. In this study, a novel approach to fault 

diagnosis using time-frequency analysis and unsupervised 

learning techniques is proposed. Firstly, the proposed method 

converts the vibration signal into a time-frequency domain 

signal using the Short-Time Fourier Transform (STFT) and 

integrates it with respect to time to obtain the Marginal 

Frequency (MF). The Area Under the Frequency Curve (AUFC) 

is calculated and an unsupervised 1D K-means clustering 

algorithm is used to cluster the feature vectors. Each cluster is 

assigned a normal or failure state and the maximum value of the 

normal region is used as the threshold for failure detection. The 

method is tested on a set of vibration data from normal and 

failed bearings, and the results demonstrate the effectiveness 

and robustness of the proposed approach for fault detection in 

different bearings. The proposed approach represents a 

promising solution for fault diagnosis in mechanical systems, 

which can significantly improve the reliability and 

maintainability of machinery. The combination of 

time-frequency analysis and unsupervised learning techniques 

provides a powerful tool for fault detection in mechanical 

systems. 
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I. INTRODUCTION 

Fault diagnosis in mechanical systems is an important field 

in the research, driven by the increasing demand for reliable 

machinery and efficient maintenance. The ability for the 

quickly and accurately detect faults in mechanical systems is 

essential to prevent catastrophic failures and minimise 

downtime. Therefore, there is a requirement for effective and 

efficient fault diagnosis methods. Traditional methods of 

fault diagnosis in mechanical systems rely on manual 

inspection and judgement based on experience. However, 

these methods waste time, costly and prone to error. With the 

rapid advancement of sensor and signal processing 

technologies, machine learning-based fault diagnosis 

methods have increased their high accuracy, efficiency and 

automation. Various methods have been proposed for fault 

diagnosis in mechanical systems, such as Root-Mean-Square 

(RMS) [1−3], Kurtosis (KU) [4−6] and envelope analysis [7]. 

However, these methods have limitations in handling 

complex signals and detecting incipient faults. To overcome 

these limitations, this study proposes a novel approach to 

fault diagnosis using time-frequency analysis and 

unsupervised learning techniques. Firstly, the proposed 

method converts the time-domain vibration signals to a 

time-frequency domain signal using the STFT [8], which 

provides a more complete representation of the signal. Then, 

by integrating the time-frequency signal with respect to time, 

the MF is got and the AUFC is calculated as a feature vector. 

An unsupervised 1D K-means clustering algorithm [9] is 

used to cluster the feature vectors and each cluster is assigned 

a normal or failure state. The maximum value of the normal 

region is regarded the threshold for failure detection. The 

proposed approach offers a unique contribution to fault 

diagnosis in mechanical systems by combining 

time-frequency analysis and unsupervised learning 

techniques. This innovative integration enhances the signal 

representation, facilitates effective feature extraction and 

classification, and demonstrates promising potential for 

real-world applications. With further development and 

optimization, the proposed method has the potential to 

become a practical and reliable solution for fault diagnosis, 

significantly improving the reliability and maintainability of 

machinery. In conclusion, the proposed approach presents a 

novel methodology that addresses the limitations of previous 

research. By leveraging the strengths of time-frequency 

analysis and unsupervised learning, it offers an innovative 

and powerful tool for fault detection in mechanical systems. 

The study contributes to the development of advanced fault 

diagnosis techniques and highlights the potential of 

time-frequency analysis and unsupervised learning in 

mechanical system applications. 

II. METHODOLOGY 

This section introduces the relevant theories used in the 

diagnostic analysis process. The main method in this study is 

Short-Time Fourier Transform (STFT), which provides 

time-frequency analysis results. The Marginal Frequency 

(MF) is obtained by integrating the STFT results for time 

domain. The Area Under the Frequency Curve (AUFC) is 

used as the diagnostic feature, and a non-supervised learning 

algorithm, K-Means, is used to automatically classify the 

signal into normal or faulty categories. This approach allows 

for the determination of whether the tested signal has 

experienced a fault. 

A. STFT 

The use of the STFT has become increasingly popular in 

recent years for the analysis of time domain signals. Unlike 

the Fourier transform, which can only determine the 

energy-frequency variation, the STFT takes into account the 
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time variables in the energy-frequency magnitude, allowing 

analysis of the frequency variation of non-linear or 

non-steady-state vibration signals. The STFT principle 

involves multiplying the input signal by a window function 

and dividing long time signals into many shorter signals with 

the same time span. This allows the Fourier transform to be 

performed on specific local short-term signals as the window 

function moves with the time axis, producing a complex 

function representing the magnitude of the signals as time 

and frequency change. The main equation of the STFT [10], 

shown in Eq. (1), involves the integration of a window 

function and a signal, and is an essential tool for bearing fault 

analysis. 

 

 ( ) ( , ) ( ) ( ) iSTFT x t X x t t e dt   


−

−
 = −  (1) 

 

 The equation presented earlier in the section shows the 

principle of STFT and its main equation. In this equation, 

( )x t  represents the input signal, ( )   is a window function, 

and ( , )X    is a complex function that represents the signal's 

magnitude with respect to time and frequency changes. There 

are different types of window functions available, such as 

Hamming and Gaussian windows, which are commonly used 

in STFT. In this study, Hamming windows were used and its 

equation is given by Eq. (2): 
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where ( )w n  is the value of the Hamming window at index 

n , N  is the window length. The Hamming window is 

suitable for analyzing non-stationary signals with low side 

lobes and good frequency resolution. 

B. MF 

In the analysis of non-stationary bearing vibration signals, 

the concept of MF is introduced, which is obtained by 

integrating the time-frequency two-dimensional array along 

the time axis. The resulting one-dimensional array represents 

the energy aggregation corresponding to each frequency and 

can be used to identify the optimum fault characteristic 

frequency. The MF provides a more accurate representation 

of the frequency characteristics of the signal because it takes 

into account the time variation of the frequency energy. In 

this study, the MF was obtained by STFT analysis of the 

time-domain signal and used as a diagnostic feature for fault 

detection. The mathematical expression for the MF 

calculation is shown in Eq. (3). 

 

( ) ( , )MF X t dt 


−
=   (3) 

 

C. K-means Cluster Analysis 

K-means is a widely used unsupervised clustering 

algorithm that divides input data into clusters with similar 

characteristics based on their distances from each other. The 

algorithm is often used in pattern recognition and machine 

learning applications. The K-means clustering algorithm is a 

simple and efficient approach that can partition data into 

distinct groups. It consists of the following steps [11]: 

⚫ Initialisation: K signals in a given signal set are 

randomly selected as the initial cluster centre. 

⚫ Allocation: The Euclidean distance 2

d =ij i jx −  

between each signal and each cluster centre is 

calculated and each signal is assigned to the nearest 

cluster. 

⚫ Recalculation: The centre of k clusters is recalculated 

using the following method: where is the number of 

clusters. 

⚫ Iteration: The total mean square error between all 

signals and the corresponding cluster centre is 

calculated using . If convergence or the maximum 

number of iterations is reached, proceed to step 5, 

otherwise return to step 2. 

⚫ Output: Export the cluster result. 

The K-means algorithm can effectively classify data and is 

widely used in various fields. In fault diagnosis, K-means can 

automatically classify normal and fault signals and determine 

the optimum threshold for fault detection. 

III. EXPERIMENTAL SETUP 

 
Fig. 1. The bearing test and accelerometer arrangement plan. 

 

To validate the proposed method, the experimental data 

provided by the NASA Bearing Data Center was adopted as a 

benchmark dataset for fault diagnosis in mechanical systems. 

Specifically, the 2nd test data set was used, which includes 

vibration signals recorded from four bearings installed on a 

shaft of a test platform, each receiving a radial load of 6,000 

lb. The test platform, equipped with an AC motor driving the 

shaft at a constant speed of 2000 rpm, is shown in Fig. 1. To 

obtain the vibration signals, an accelerometer is installed on 

each bearing seat and the signals are collected using a data 

acquisition system. In addition, the bearings were lubricated 

during the experiment to maintain their operating conditions. 

To ensure the safety of the test platform, a magnetic plug is 

installed in the oil return line to collect metal debris resulting 

from bearing wear. This allows the operation to be stopped 

when a certain amount of debris accumulates. Further details 

of the test platform can be found in the dataset documentation 

[12, 13]. A set of experimental data consisting of 984 files 

was selected for this study. Each file represents the data 

extracted from a measurement taken on the equipment every 

ten minutes. A one-second vibration signal was recorded 

each time, with the sampling frequency set to 20 kHz. Each 

file contains four channels, corresponding to the measured 

data from the four accelerometers. Each row contains 20,480 

points representing the vibration signal sampled at high 

frequency. The experiment continued until the outer ring of 
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bearing 1 failed, which is a common failure mode in 

mechanical systems. The failure was detected and verified by 

visual inspection of the bearing after the experiment. The use 

of this dataset ensures the reliability and relevance of the 

results as they are validated against a widely accepted 

benchmark dataset. 

IV. RESULTS AND DISCUSSION 

A. AUFC 

The use of time domain vibration signals alone is not 

sufficient to accurately diagnose bearing damage. To 

overcome this problem, the STFT was used to convert the 

time domain signal to a time-frequency domain signal, which 

was then integrated over time to obtain the MF for analysis. 

Specifically, a one second segment was selected for analysis 

in each ten minute measurement interval. The results of the 

MF analysis for normal versus normal operation and normal 

versus faulty operation are shown in Figs. 2 and 3. The 

horizontal axis in both figures. represents the frequency, 

while the vertical axis represents the corresponding energy 

magnitude. Fig. 2 shows a comparison of two vibration 

signals from normal bearings, where a significant overlap in 

energy magnitudes is observed. In contrast, Fig. 3 shows a 

comparison between a normal vibration signal and a signal 

from a faulty bearing in the later stage of the experiment, 

where a clear difference in energy magnitudes is observed 

between normal and faulty signals. It should be noted that 

there may be some variation in energy magnitudes at lower 

frequencies due to differences in bearing placement and 

contact friction. In addition, it is common for signals from 

damaged bearings to occur at higher frequencies, and in Fig. 

3 no significant resonance frequency is observed above 6000 

Hz, suggesting that only the AUFC between 2000-6000 Hz 

should be considered in further analysis. 

 

 
Fig. 2. Comparison of MF of Two Normal Bearings. 

 
Fig. 3. Comparison of MF of Normal and Faulty Bearings. 

In this study, the AUFC was calculated using the 

trapezoidal integration method. Specifically, the trapezoidal 

rule was applied to integrate the frequency curve shown in 

the coordinate system of Fig. 4, which involves calculating 

the area of the trapezoid ABCD. The calculation is expressed 

in (4), where a  and e  are the upper and lower limits of the 

frequency, respectively. iE  represents the ith trapezoid of 

the discretised frequency curve, where 1iy −  and iy  are the 

upper and lower bases of the trapezoid, respectively, and 

ix  is the height of the trapezoid. 

 

 
Fig. 4. AUFC calculation. 
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B. K-means Resluts 

In this study, an unsupervised K-means clustering 

algorithm was used to automatically classify the vibration 

signals into two groups, normal and faulty. The proposed 

method of fault diagnosis is used time-frequency analysis and 

integrates the resulting MF to obtain the AUFC between 

2000-6000 Hz. The AUFC was then used as a feature vector 

to cluster the data by the K-means algorithm. The K-means 

clustering algorithm is a popular unsupervised machine 

learning technique used for data classification. In this study, 

the 1D K-means algorithm was applied to obtain from the MF 

integration process. This algorithm clusters the data divided 

into two groups based on the similarity of their feature 

vectors. The clustering process is performed iteratively until 

the cluster centroids don't change significantly. After 

clustering the data, the next step is to determine the fault 

detection threshold. This threshold is used to distinguish 

between normal and faulty states. In this study, the maximum 

value of the normal region was used as the fault detection 

threshold. 

Fig. 5 shows the classification results by the unsupervised 

K-means algorithm with 1D clustering. The horizontal axis 

represents the AUFC values, while the vertical axis 

represents the classified states. A value of -1 indicates the 

normal state and a value of 0 indicates the faulty state. The 

threshold of fault diagnosis is 0.12718, as shown in the figure. 

If the feature vector of a vibration signal exceeds this 

threshold, it is classified as a failed state. From the plot, it is 

clear that the proposed method can effectively distinguish 

between the normal and faulty states. The majority of the data 
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points fall into either the normal or faulty category, indicating 

that the proposed method is reliable in fault diagnosis. 

 

 
Fig. 5. Classification Results using K-means clustering. 

 

The threshold was obtained by the K-means unsupervised 

algorithm and 1D clustering was used to automatically 

classify the vibration signals. The maximum value of the 

signal features classified as normal was thought the fault 

diagnosis threshold, which was found to be 0.12718. The 

effectiveness of this threshold was further analysed by 

applying it to other bearings in the same test and the results 

are shown in Fig. 6. The horizontal axis in the figure 

represents different bearings, each containing 984 measured 

data points, while the vertical axis represents the AUFC. It 

can be seen from the figure that at the end of the experiment 

the threshold only produced false positives in three other 

bearings. This is because bearing 1 had already suffered 

severe damage and the other bearings on the same shaft 

would generate more severe signals as a result of the chain 

reaction. 

 

 
Fig. 6. AUFC analysis of other bearings using the fault diagnosis threshold 

value. 

 

These results demonstrate that the fault threshold obtained 

through the K-means algorithm is effective in diagnosing the 

condition of the bearings. The approach is not only efficient 

but also highly automated, reducing the workload of the 

maintenance staff. Moreover, the use of the AUFC allows for 

more accurate fault diagnosis, a valuable tool for condition 

monitoring and fault diagnosis of bearings in industrial 

settings. 

V. CONCLUSION 

This study has proposed a novel approach to fault 

diagnosis in mechanical systems using time-frequency 

analysis and unsupervised learning techniques. The proposed 

method was shown to be effective for detecting faults in 

bearings and has the potential to significantly improve the 

reliability and maintainability of machinery. The approach 

involved integrating the STFT and 1D K-means clustering 

algorithms to cluster feature vectors and assign them a 

normal or fault state. Using the maximum value of the normal 

regarded the threshold for fault detection further improved 

the accuracy of the method. Compared to traditional methods, 

the proposed approach has several advantages. Firstly, it can 

detect uncertain faults without prior knowledge of their 

characteristics. Secondly, it can be used in real operation, 

which is essential for ensuring the safety and reliability of 

mechanical systems. Finally, the use of unsupervised 

learning techniques reduces the need for manual labelling of 

training data, saving time and effort in the fault diagnosis 

process. However, the proposed method has limitations that 

require future research. Firstly, an amount of training data is 

required to achieve high accuracy, which may prove 

challenging for certain applications. Secondly, the method 

may not be suitable for detecting very early-stage faults 

where the signal is not strong enough to produce a clear MF. 

Finally, further optimization is required to improve the 

parameters of the method to achieve even better performance. 

In conclusion, the proposed approach is a promising solution 

for fault diagnosis in mechanical systems and has the 

potential to become a practical and reliable tool for 

real-world applications. By further refining and optimizing 

the method, it could contribute to the development of more 

efficient and reliable machines in the future. 
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