
  

  

Abstract—This paper introduces a new methodology, 

nicknamed Pathfinder, for finding optimal search paths for 

searchers that can transport and deploy other searchers. The 

methodology applies an Agent-Based Model to model target 

movement, then uses nonlinear optimization methods to find 

optimal search plans. This methodology can optimize these 

search teams effectively and quickly. Pathfinder significantly 

increase probability of detection and decreases travel distance. 

In addition to advancing Search Theory, this methodology also 

has the potential to enhance current search and rescue (SAR) 

and anti-submarine warfare (ASW) operations. 

 

Index Terms—Simulation, search theory, search and rescue, 

nonlinear optimization, agent based modeling. 

 

I. INTRODUCTION 

Search theory started during World War 2 by B.O. 

Koopman to find optimal search strategies in hunting German 

U-boats [1]. In more recent times search theory has advanced 

to include various searcher and target types. For a review of 

the developed methods see, [2]. However, there are important 

questions in search theory that have not been addressed. One 

such question is how to optimize searchers that can transport 

and deploy other searchers. This is a critical question to 

address since many searchers can transport other searchers 

and optimizing where to deploy them may improve the 

chances of target detection. Such an approach may also save 

resources, since the search becomes more localized. 

The methods that can organize a group of stationary 

searchers or sensors has been around for over a decade (see, 

for example [3]-[6]).  These methods include adaptive 

fireworks algorithms, genetic algorithms, and multi-objective 

genetic optimization algorithms. Even though these 

algorithms can be effective at optimizing an array of 

stationary sensors, they cannot optimize a mobile searcher 

that deploys a sensor during a search, for example. Thus, the 

problem of how to optimize a searcher that can transport and 

deploy other searchers over a domain where a target is, needs 

to be addressed and a methodology that can address this 

problem needs to be developed. 

One important application of optimizing searchers that can 

deploy other searchers is ASW, with airborne assets in 

particular, see [7] and [8]. A classic example of a searcher 
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transporting and deploying another searcher would be an 

aircraft using an expendable sonar buoy while searching for 

submarines, which is a critical tool for ASW [9]. A 

methodology that can optimize these resources would be 

important for ASW. In addition, such an advanced planning 

methodology could also be used with Unmanned Aerial 

Vehicles (UAV) and Unmanned Surface Vehicles (USV) 

which can be transported by ships. 

The goal of this research is to address the problem of 

optimizing search plans for search teams that consist of a 

carrier-passenger search pair. In this manuscript we describe 

how a new methodology, nicknamed Pathfinder, can optimize 

these search operations. 

This paper also demonstrates how a search manager could 

use Pathfinder to search for a missing boat in the open ocean. 

We will present a search scenario to help describe this 

methodology. In this scenario, imagine being a search 

manager in Delaware USA and the operators of a boat sent a 

short distress call because of electrical issues a few moments 

before the search manager received the information. Attempts 

were made to contact the boat again, but the operator of the 

boat was incapable of communicating. The incomplete 

dataset includes the heading of the boat, an estimate of its 

current location, and relevant environmental information. 

The paper is organized as follows. In the next section we 

will discuss in detail the Pathfinder methodology. In section 

three we will discuss the results from the considered scenario. 

We present our concluding remarks in section four. In section 

five we review future research areas and will examine why 

this new methodology is important to ASW and SAR 

operations. 

 

II. METHODOLOGY 

Pathfinder uses a two-dimensional domain to model the 

search area. In our example, this is a purely maritime domain. 

𝛺 ∈ 𝑅2 

Searchable subdomains are constructed to limit searchers 

from areas they are not allowed, such as foreign or restricted 

territories. We define this area. 𝛺𝑠, such that 
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𝛺𝑠 ⊆  𝛺 

We define our searcher paths 𝑧𝑡
𝑘, 𝑡 = 1, . . , 𝑇 for searcher 

𝑘 = 1, … , 𝐾  and target paths 𝑢𝑡
𝑔

, 𝑡 = 1, … , 𝑇 for target g ∈ 𝐺 

of |G| targets to satisfy the following.  

𝑢
𝑔

∈ 𝛺 

𝑧𝑘 ∈ 𝛺𝑠 

To describe the position of the target before the search 

starts, we use its initial probability distribution 𝜃(𝑥), which 

could be based, in particular, on its last known location. To 

add more accuracy and flexibility, we use regions defined as 

𝑅𝑖 ⊆ 𝛺 with probabilities 𝑎𝑖. This could be useful when there 

are several sources of information that need to be reconciled. 

These regions satisfy the probability that the target is in the 

domain 𝑀. 

∑ 𝑎𝑖
𝑚
𝑖=0 ∫ 𝜃(𝑥)𝑑𝑥

𝑅𝑖
= 𝑀 𝑎𝑛𝑑 ∑ 𝑎𝑖

𝑚
𝑖=0 = 1            (1) 

For example, we have two circular regions in our scenario. 

A large 40% region, where there is a 40% chance the target 

was in that region at. Then a smaller 50% region within it 

where there is a 50% chance the target was there at. The rest 

of the domain falls within a 10% region where there is a 10% 

chance that a target is there. The 40% and 50% regions will 

be towards the center of the search domain. The initial target 

types will be; boat with power at 60%, boat without power at 

30%, raft at 5%, and person in the water at 5%.  

We used this prior distribution in an agent-based model 

(ABM) to model target movement. This model uses 

numerous independent agents that are affected by 

environmental factors, behavioral factors, and hazards. First, 

environmental factors are wind and currents that are in the 

search area. The wind and currents in our example will push 

these agents north, then east. The ABM also can incorporate 

hazards such as rocks that agents navigate around or get stuck 

on. Second, there are behavioral factors. These behavioral 

factors depend on survival modes to model target movement. 

When people are lost, they rely on a survival strategy to 

survive or find their way home. These include overdue, travel 

aid, route finding, stay put, and wandering. In this scenario 

the overdue, travel aide, stay put, and wondering modes are 

present. When a target is overdue, it is not lost and is actually 

late getting home or their next waypoint. The travel aide 

mode is when a target has some travel aids and can self-rescue. 

This mode relies on the theory of “bounded rationality” [10]. 

According to this theory, rationality is bounded because of 

limited data and mental capabilities. Thus, a missing person’s 

idea of a path home is more accurate as they approach future 

waypoints. Wandering is when a target does not have travel 

aids or is incapable of rational behaviors and will wonder 

around the domain. Finally, the stay put mode is when a target 

stays where they are. With a boat, this could be implemented 

by using an anchor or beaching the boat. The ABM provides 

us with our estimate target paths 𝑢𝑡
𝑔

, 𝑡 = 1, … , 𝑇. 

Next, we model the probability that a searcher at 𝑧𝑡
𝑘 will 

detect a target at 𝑢𝑡
𝑔

 at time 𝑡. This is implemented using a 

detection function, which depends on several factors 

including time, distance, visibility, and properties of the 

target. Some previous methodologies use the idea of sweep 

widths, lateral ranges, etc. See [11]. In Pathfinder, we use a 

modification of the inverse Nth power law [12] below, 

because it provides flexibility. 

𝛤(𝑢𝑡
𝑔

, 𝑧𝑡
𝑘, ∆𝑡)

= 1 − exp (−∆𝑡
𝛼(𝑧𝑡

𝑘, 𝜏(𝑧𝑡
𝑘), 𝑢𝑡

𝑔
, 𝑣)

|𝑢𝑡
𝑔

− 𝑧𝑡
𝑘|

𝑛(𝑧𝑡
𝑘,𝜏(𝑧𝑡

𝑘),𝑢𝑡
𝑔

,𝑣)

)     (2) 

𝑛(∗) > 0, 𝛼(∗) > 0, ∆𝑡 > 0, 𝑧𝑡
𝑘 ∈ 𝛺𝑠, 𝑢𝑡

𝑔
∈ 𝛺 

This function depends on time step ∆𝑡 , target type 𝑢𝑡
𝑔

, 

searcher type 𝑧𝑡
𝑘 , visibility 𝑣 , terrain type 𝜏(𝑧𝑡

𝑘) , and the 

parameters 𝛼(∗) and 𝑛(∗). These parameters are found using 

experimental data. For notational simplicity we also define 

the probability of not detecting a target as below: 

𝛤(𝑢𝑡
𝑔

, 𝑧𝑡
𝑘, ∆𝑡) = 1 −  𝛤(𝑢𝑡

𝑔
, 𝑧𝑡

𝑘, ∆𝑡)    (3) 

The objective of the Pathfinder methodology is to find 

optimal searcher paths,  𝑧𝑡
𝑘, 𝑡 = 1, … , 𝑇, that maximize the 

probability of detection function (POD). These paths depend 

on target paths from the ABM, 𝑢𝑡
𝑔

, 𝑡 = 1, … , 𝑇 , and the 

detection function. We call a collection of searcher paths a 

search plan. This POD function is as follows:  

𝐹(𝑧𝑡
𝑘) = 1/|𝐺| ∑ ∑ ∑ 𝛤(𝑢𝑡

𝑔
, 𝑧𝑡

𝑘, ∆𝑡)

|𝐺|

𝑔=1

∏ 𝜞̅(𝑢𝑗
𝑔

, 𝑧𝑗
𝑘, ∆𝑡)

𝑡−1

𝑗=1

|𝐾|

𝑘=1

𝑇
∆𝑡

𝑡=1

      (4) 

This objective function is a modification of the objective 

function found in [13] and follows the logic of [14].  

To make the objective function produce realistic search 

trajectories, we incorporate three penalty terms for fuel, 

momentum, and center-of-mass. The fuel penalty below is 

used to make search plans look like more cost-effective 

trajectories and cut down on suboptimal waypoints.   

𝑃𝐹(𝑧𝑡
𝑘)  = ∑ ∑ 𝑃𝑘

𝐹‖𝑧𝑡
𝑘 − 𝑧𝑡−1

𝑘 ‖2
𝑇/𝛥𝑡
𝑡=1

|𝐾|
𝑘=1      (5) 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑘
𝐹 ≤ 0  𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

The following is the momentum penalty. This penalty 

reduces zig-zagging and generally smooths paths and make 

them easier to follow. 

𝑃𝑀(𝑧𝑡
𝑘)  = ∑ ∑ 𝑀𝑘 𝑃𝑘

𝑀‖𝑧𝑡+1
𝑘 − 2𝑧𝑡

𝑘 − 𝑧𝑡−1
𝑘 ‖2/𝛥𝑡

𝑇/𝛥𝑡
𝑡=1

|𝐾|
𝑘=1  

 (6) 

𝑤ℎ𝑒𝑟𝑒  𝑀𝑘 > 0 𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

𝑎𝑛𝑑  𝑃𝑘
𝑀 ≤ 0 𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

Finally, the center-of-mass penalty eliminates erratic 

search trajectory and helps the nonlinear optimization model 

converge to a solution.  

𝑃𝐶𝑀(𝑧𝑡
𝑘)  = ∑ ∑ 𝑃𝑘

𝐶𝑀‖𝑧𝑡
𝑘 − 𝑎𝑣𝑔(𝑢𝑡)‖2

𝑇/𝛥𝑡
𝑡=1

|𝐾|
𝑘=1     (7) 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑘
𝐶𝑀 ≤ 0 𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

𝑤ℎ𝑒𝑟𝑒 𝑎𝑣𝑔(𝑢𝑡) =
1

𝐺
∑ 𝑢𝑡

𝑔

𝐺

𝑔=1
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With these 3 penalty terms we have the following objective 

function with the positive weights 𝑤𝐹, 𝑤𝑀, and 𝑤𝐶𝑀.  

𝐹(𝑧𝑡
𝑘) + 𝑤𝐹𝑃𝐹(𝑧𝑡

𝑘)+𝑤𝑀𝑃𝑀(𝑧𝑡
𝑘) + 𝑤𝐶𝑀𝑃𝐶𝑀(𝑧𝑡

𝑘)   (8) 

To model deployable searchers, we add the expressions 

D(t,𝐷𝜀 ,𝐷𝑘) and D(t,𝐷𝑃,𝐷𝑘) that will transition from 1 to 0 

depending on a variable and two parameters. A deployment 

variable 𝐷𝑘  which will determine the time a carrier and 

passenger depart from each other. The other parameter, 𝐷𝜀 

and 𝐷𝑃 , which are unitless, determine how quickly the 

departure takes place.  

D(t,𝐷𝜀,𝐷𝑘)=
1

𝑒𝐷𝜀(t-𝐷𝑘)+1
          (9) 

D(t,𝐷𝑃,𝐷𝑘)=
1

𝑒𝐷𝑃(t-𝐷𝑘)+1
       (10) 

Figure 1 shows how the dependence of D(t,𝐷𝑃,𝐷𝑘)  in 

equation (10) on parameter 𝐷𝑃 with 𝐷𝑘=5min. The larger the 

value  𝐷𝑃 , the quicker the deployment takes place. The 

similar dependence of D(t,𝐷𝜀,𝐷𝑘) on 𝐷𝜀 can be observed for 

equation (9).  

 

 
Fig. 1. The graph of equation (10) with various values of 𝐷𝑃 . Note how a 

larger value models a faster deployment. 

With equation (9) we create a max movement constraint. 

For the movement constraints to work each searcher will have 

two parameters to model maximum speed: 𝜀1 (𝑠𝑘, 𝜏(𝑧𝑡−1
𝑘 )) 

for before the deployment time and 𝜀2 (𝑠𝑘, 𝜏(𝑧𝑡−1
𝑘 )) for after 

the deployment time. For the searcher that is carrying another 

searcher both of these will be the same. For a searcher that is 

a passenger 𝜀1 (𝑠𝑘 , 𝜏(𝑧𝑡−1
𝑘 )) will match that of its carrier and 

𝜀2 (𝑠𝑘, 𝜏(𝑧𝑡−1
𝑘 )) will depend on the passenger searcher type. 

An easy example is a helicopter transporting a buoy. Pre-

deployment, 𝜀1  would be the same for both of them and 

would be the max move limit of the helicopter. But post 

deployment, 𝜀2 of the helicopter would be that of a helicopter 

but 𝜀2 of the buoy would be that of a buoy. 

With equation (10) we create a pairing constraint. This 

constraint controls the distance between the paired searchers. 

The pairing constraint will force the carrier and passenger to 

stay close to each other before the deployment time, but will 

allow them to separate after the deployment time. For 

example, if we are modeling a helicopter with a buoy, the 

distances between paired searchers would be small, a few 

meters, for pre-deployment. However, after deployment, the 

distances would become large, possibly a few thousand 

kilometers. This would allow deployed searchers to travel far 

from their carrier post deployment. With these modifications 

we derive the optimization model below. 

Maximize: 

𝐹(𝑧𝑡
𝑘) + 𝑤𝐹𝑃𝐹(𝑧𝑡

𝑘)+𝑤𝑀𝑃𝑀(𝑧𝑡
𝑘) + 𝑤𝐶𝑀𝑃𝐶𝑀(𝑧𝑡

𝑘) 

Subject to:  

1) Movement constraints on the searchers 

‖𝑧𝑡
𝑘 − 𝑧𝑡−1

𝑘 ‖2  ≤ 𝜀1 (𝑠𝑘, 𝜏(𝑧𝑡−1
𝑘 )) (𝐷(𝑡, 𝐷𝜀 , 𝐷𝑘))

+ 𝜀2 (𝑠𝑘, 𝜏(𝑧𝑡−1
𝑘 )) (1 − 𝐷(𝑡, 𝐷𝜀 , 𝐷𝑘)) 

𝑓𝑜𝑟 𝑘 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟. 
2) Distance between paired searchers 

‖𝑧𝑡
𝑘𝑐 − 𝑧𝑡

𝑘‖2
2 ≤ 𝑣𝐿(1 − 𝐷(𝑡, 𝐷𝑃 , 𝐷𝑘))  

𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑐𝑎𝑟𝑟𝑖𝑒𝑟  
𝑘𝑐 𝑎𝑛𝑑 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑣𝐿 

3) Initial locations constraints on the searchers 

𝑧0
𝑘 = 𝑍0

𝑘   𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

4) Final locations constraints on the searchers 

𝑧𝑇
𝑘 = 𝑍𝑇

𝑘  𝑓𝑜𝑟 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 𝑘 

 

This is the optimization model we will use to optimize 

searchers that can transport and deploy other searchers. The 

final step in the methodology is a post-processor that fixes 

unrealistic movements. 

 

III. RESULTS 

In this section we describe the results obtained using 

described methodology. The prototype uses Netlogo [15] for 

the ABM and the nonlinear solver MINOS [16] with AMPL 

[17] for the optimization model. The computer is a Dell 

Alienware M17 with an Intel i7-9750H. The timestep for the 

following models are 5min. 

For our example, the objective is to find optimal search 

plans for a 5-hour search operation over a maritime domain. 

This domain is modeled after the maritime domain east of 

Delaware USA. The search domain is 1,000 km^2 with the 

searchable sub-domain 𝛺𝑠  being the same as the whole 

domain Ω. The area to the north contains a strong surface 

current that flows west to east. The missing object is a boat 

that most likely has power and is moving towards the 

northeast of the map. The last known location is near the 

center of the map one hour before search assets can be 

deployed. To create a prior distribution two circular regions 

were used: one has a 50% probability region of radius 1.6 km 

and is surrounded by a 40% region which has a radius of 6.5 

km with the rest of the domain having a 10% chance the target 

is there. The initial target agents are; boat with power at 60%, 

boat without power at 30%, raft at 5%, and person in the water 

at 5%. The ABM will use 501 agents. The weather is clear 

skies with variable winds at 10 knots. 

We will examine three search pairs. A cutter modeled on 

the Legend Class cutter [18] transporting a UAV modeled on 

the ScanEagle [19]. This will represent the situation where 

the passenger is faster than its carrier. In fact, the United 

States Coast Guard (USCG) produced a draft request for 

0
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proposal (RFP) for this capability [20]. A helicopter modeled 

on the HH-60 “Jayhawk” [21] transporting a theoretical 

“smart” buoy. This represents the case where the passenger is 

stationary. The third search team is a helicopter on the HH-

60 “Jayhawk” transporting a theoretical USV with the 

performance of the 29 Defiant [22]. This is the case where the 

passenger is slower than its carrier but is still mobile. We 

excluded the case where a passenger is the same speed as its 

carrier since it is trivial. We focus our experiments on using 

these three search teams and we use USCG documentation 

[23] and [24] to create our initial search plans.  

 We will also perform some preliminary analysis on 𝐷𝑃  
and 𝐷𝜀 for each case. This variable determines how quickly 

D(t,𝐷𝑃,𝐷𝑘)  and D(t,𝐷𝜀,𝐷𝑘), will transition from 1 to 0. This 

function is critical since it determines how quickly a 

passenger can deploy and get to full speed. We will examine 

the range of 0.001 to 2 for both 𝐷𝑃 and 𝐷𝜀. This range was 

chosen because the value of 2 represents a transition within a 

timestep of this model and 0.001 represents a transition time 

that is too long to be realistic. 

A. Cutter Transporting a UAV  

The initial search plan is the cutter and UAV traveling to 

near the target center-of-mass and the cutter deploying the 

UAV at 𝐷𝑘 = 95 min. The UAV searches the target-center-

of-mass with a ladder pattern while the cutter searches the 

area south of it with a ladder pattern. The cutter has a 

destination to the east while the UAV does not have a 

destination. figure 2 is the visualization of this search plan. 

This plan also has a POD of 8.48%.   

 This search pair was successfully optimized and we 

found several optimal search plans. With the initial search 

plan Fig. 2 we get the optimal search plan in Fig. 3. with 𝐷𝑘 =
129.5 min 𝐷𝜀 = 0.5, and 𝐷𝑃 = 1.5 plus a POD of 9.19% and 

a runtime of 22 minutes. This is an 8.4% increase in POD.  

 
Fig. 2. The initial search plan of a cutter (orange) transporting a UAV 

(yellow) with Dk = 95 min and POD of 8.48%. The red line is the path of 

the search team before deployment. 

This optimal plan is reasonable since the UAV is faster 

than the cutter. The UAV searches the target-center-of-mass 

with a ladder pattern while the cutter uses more of a wave 

pattern. The optimization model increases the POD primarily 

by slowing down the searchers while they are near agents and 

by removing suboptimal waypoints. In this experiment 

Pathfinder shortened the path of the cutter by 68% and 

shortened the distance of the UAV by 22%. Thus, decreasing 

fuel costs while increasing the POD. 

After several experiments appears that the optimization 

model is sensitive to 𝐷𝜀  and 𝐷𝑃 . For example, a small 𝐷𝑃 

results in more challenging optimization problem. This can 

be explained since 𝐷𝑃  determines the distance between the 

search pair. A larger 𝐷𝑃  will result in the pair distance 

constant increasing faster after the passenger is deployed. 

Thus, an easier model for the optimization application to 

solve. 

 

 
Fig. 3. Optimal search plan of a cutter (orange) transporting a UAV (yellow), 

with a destination, 𝐷𝑘 = 129.5 𝑚𝑖𝑛, 𝐷𝜀 = 0.5, and 𝐷𝑃 = 1.5. The POD was 

9.19% and 22 minute runtime. The red line is the path of the search team 

before deployment. Note how the paths of the searchers diverged slightly 

before the deployment time, this is due to the values of 𝐷𝜀 and 𝐷𝑃 and the 

performance of the UAV. 

 

As we leave a more detailed analysis of sensitivity of 

optimization problems to 𝐷𝜀 and 𝐷𝑃 for future research, here 

we report the results of a few experimental runs.  

B. Helicopter transporting a Smart Buoy 

 The second search team is a helicopter transporting a 

“smart” buoy. Figure 4. shows the initial search plan used to 

experiment with this team. The helicopter travels to the target 

center-of-mass and searches it with a ladder pattern. At 

deploy time 𝐷𝑘 = 225 min the helicopter deploys the buoy 

then continues following the ladder pattern. This smart buoy 

is intentionally deployed very close to an area of primary 

concern. Finally, it travels to its destination location to the 

east. This initial search plan has a POD of 7.99% 

 

 
Fig. 4. The initial search plan of a helicopter (orange) transporting a smart 

buoy (yellow) with Dk = 225 min and POD at 7.99%. The red line is the 

path of the search team before deployment. 

 

With this initial search plan, we get the optimal search 

plans in Fig.  5. The constraints were Dk = 225 min, Dε =
0.25  and DP = 1.5. This plan has a POD of 11.85% and a 

runtime of 19 minutes and 50 seconds. This is an 48.3% 

increase in POD. This search plan also shows how pathfinder 

uses nontraditional search paths including loops and wave 
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patterns to condense the ladder pattern into only areas of high 

concern.  

 

 
Fig. 5. Optimal search plan of a helicopter (orange) transporting a “smart” 

buoy (yellow), 𝐷𝑘 = 225 𝑚𝑖𝑛, 𝐷𝜀 = 0.25  and 𝐷𝑃 = 1.5. This plan has a 

POD of 11.85% and a runtime of 19 minutes and 50 seconds. The red line is 

the path of the search team before deployment. 

 
Fig. 6. Initial search plan of a helicopter (orange) transporting a USV 

(yellow),  Dk = 155 min and POD of 6.07%. The red line is the path of the 

search team before deployment. 

 

 
Fig. 7. Optimal search plan of a helicopter (orange) transporting a USV 

(yellow), without a destination, 𝐷𝑘 = 75 𝑚𝑖𝑛 , 𝐷𝜀 = 1  and 𝐷𝑃 = 1. This 

plan also has a POD of 11.01% and a runtime of 17 minutes and 48 seconds. 

The red line is the path of the search team before deployment. 

 

C. Helicopter Transporting a USV 

The final search pair we will examine is a helicopter 

transporting a USV. In this scenario a helicopter travels to the 

target center-of-mass and searches it with a ladder pattern. At 

𝐷𝑘 = 155 min  the helicopter deploys the USV. The USV 

continues searching while the helicopter finishes its search 

and heads to its destination. The POD of this initial search 

plan is 6.07%. The visualization of this initial search plan is 

in Fig. 6. 

Again, Pathfinder was successful in finding optimal search 

plans. The initial search plan gave us the optimal search plan 

in Fig. 7 with 𝐷𝜀 = 1 and 𝐷𝑃 = 1. The deploy time of the 

USV was 𝐷𝑘 = 75 min.  The new POD is 11.01% and the 

runtime is 17 minutes and 48 seconds. Pathfinder increased 

the POD by 81.4% for this search pair. 

To increase the POD the optimization model condensed the 

search paths and slowed down the searchers. In this 

experiment Pathfinder shortened the path of the helicopter by 

84.4% and shortened the distance of the USV by 41%. 

 

IV. CONCLUDING REMARKS 

The results demonstrate that Pathfinder can find optimal 

search plans for search pairs consisting of a carrier and 

passenger. This is important to SAR operations and 

particularly ASW operations. In ASW there are several 

searcher types that can transport and deploy other searcher 

types. For example, surface ships can transport helicopters, 

aircraft can transport sonar buoys, and so on. Therefore, the 

proposed methodology could potentially benefit ASW and 

naval operations.  

All the calculated runtimes are less than 25 minutes as 

expected for the performed computational experiments. The 

increase in POD and decrease in travel times over initial 

search plans are significant. In particular, the increase of the 

POD is more than 46% comparing to traditional ladder 

pattern search plans with optimal search plans that 

incorporate wave patterns.  

Preliminary analysis of 𝐷𝜀  and 𝐷𝑃  also gave us some 

important insight. The resulting optimal search plans depend 

on the values of 𝐷𝜀 and 𝐷𝑃. In some cases, we can use large 

values for of 𝐷𝜀  and 𝐷𝑃 , which results in having realistic 

scenarios that Pathfinder can address. We also note that the 

analysis of sensitivity of the optimal search path to 𝐷𝜀 

indicate that there may be an optimal range of values for this 

important parameter. Finally, we note that the analysis of the 

sensitivity of the optimal search paths to 𝐷𝑃  indicates that 

larger values may be optimal. 

 

V. FUTURE RESEARCH AND APPLICATIONS 

There are several research directions worth pursuing in the 

future. First, further analysis of the effect of 𝐷𝜀 and 𝐷𝑃 on the 

model will be necessary. In some search pairs a higher 𝐷𝜀 and 

𝐷𝑃 may be more realistic but optimization software may not 

be able to solve the model quickly or at all. It appears that 

larger values of 𝐷𝑃 increase the chance of search trajectories 

to be successfully found. It also appears that there may be an 

optimal range for 𝐷𝜀 . Both seem to depend heavily on the 

differences in performance of the carrier-passenger search 

pair with and without the passenger. This analysis includes 

experiments with other optimization solvers. Another 

direction of research is investigating how to solve 

optimization problems for a larger range of 𝐷𝜀 and 𝐷𝑃 values. 

Both 𝐷𝜀  and 𝐷𝑃 have an effect on the optimal plans found. 

Thus, further analysis will be performed to discover how the 

magnitude of  𝐷𝜀  and 𝐷𝑃 affect optimal search plans. 

In addition, future research should be done to find 

performance baselines. This will be important if this 

methodology is used in a production application. 

Future research will also focus on optimizing more 

complex problems. The scenario and search pairs in this 

paper are relatively trivial. Future research would focus on 
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searchers that could deploy multiple searchers, adding 

constraints to when a searcher returns to its transport, and 

searchers that could redeploy from the same searcher.  

 These enhancements could make Pathfinder immensely 

useful for ASW. For example, a P-8 ASW aircraft [25] could 

be given optimal search plans that include where it will 

deploy several sonar buoys. In areas like the Greenland, 

Iceland, and United Kingdom Gap, this could be useful in 

international border enforcement. For example, P-8s could be 

teamed with submarines, ships, sonar arrays, and other 

aircraft to prevent submarines from traversing this strategic 

area. This would be an important path forward for this line of 

research.  
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