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Abstract—Working with Quasi-Newton methods in 

optimization leads to one important challenge, being to find an 

estimate of the Hessian matrix as close as possible to the real 

matrix. While multisecant methods are regularly used to solve 

root finding problems, they have been little explored in 

optimization because the symmetry property of the Hessian 

matrix estimation is generally not compatible with the 

multisecant property. In this paper, we propose a solution to 

apply multisecant methods to optimization problems. Starting 

from the Powell-Symmetric-Broyden (PSB) update formula and 

adding pieces of information from the previous steps of the 

optimization path, we want to develop a new update formula for 

the estimate of the Hessian. A multisecant version of PSB is, 

however, generally mathematically impossible to build. For that 

reason, we provide a formula that satisfies the symmetry and is 

as close as possible to satisfy the multisecant condition and vice 

versa for a second formula. Subsequently, we add enforcement 

of the last secant equation to the symmetric formula and present 

a comparison between the different methods. 

 
Index Terms—Non-linear, optimization, quasi-Newton 

formulas, multisecant equations, symmetric gradient. 

 

I. INTRODUCTION 

Solving high-dimensional or complex problems is now a 

common situation in engineering. Thanks to the combination 

of the increasingly available computational power and the 

development of specific solver tools, numerical methods 

make it possible to solve problems that are increasingly 

complex and heavier. In most industrial applications, the 

computation can simply be considered as a black box solving 

a problem based on given input variables. 

When such a black box is available, optimization is a 

logical further step. Indeed a new question quickly arises: 

which value should be given to the variables in order to 

optimize some objective function? 

For root finding problems, one important strategy in recent 

research and applications, in particular in interaction 

problems, is the use of multisecant methods [1]-[4]. However, 

this strategy has been very little explored in the context of 

optimization where symmetrical methods (BFGS in the lead) 

are the most used. The fact that the combination of 

symmetrical and multisecant properties is generally 

impossible is probably the cause of the weak exploration of 

this solution [5]-[9]. In our new approach, we impose the 

symmetry of the new estimate of the Hessian matrix and 

minimize the non-satisfaction of the multiple sequential 

equations, in order to get as close as possible to the 
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multisecant property.  

In this paper, we are solving problems expressed as the root 

finding problem  

 

∇𝑔(𝒙) = 𝒇(𝒙) = 𝟎 

 

where 𝑔: 𝐷𝐹 ⊂ ℝ𝑛 → ℝ 𝑔:𝐷𝐹⊂ℝ𝑛→ℝ is the objective 

function of the optimization problem 

 

min
𝒙

 𝑔(𝒙)minxg(x) 

 

We assume the problems we want to solve have the 

following characteristics. 

1) The objective function value 𝑔(𝒙) can be calculated 

with some code.  

2) The analytic form of 𝑔(𝒙) is unknown, the Hessian is 

not available. Therefore, Newton’s method cannot be 

used. 

3) It is possible to estimate the gradient of the problem 

∇𝑔(𝒙), for instance with methods like adjoint state [1], 

[10].  

4) The evaluation of 𝑔(𝒙)  and ∇𝑔(𝒙)  is 

computationally costly, because of the size or the 

complexity of the root finding problem. We therefore 

use the required number of evaluations (or ‘function 

calls’) as a measure of the performance.  

 

II. QUASI-NEWTON LEAST CHANGE 

 As it is not possible to use the exact Jacobian of the 

gradient vector 𝒇(𝒙) , due to the characteristic 2), we use 

Quasi-Newton methods. 

To estimate the Jacobian matrix, one can define different 

suitable properties. In most cases, it is not sufficient to define 

one unique estimate for the Jacobian by imposing those 

properties. We add the Least Change principle: the new 

estimate of the Jacobian is the matrix that has the desired 

properties and that is the closest to the previous estimate in a 

given norm. 

The choice of the estimate of the Jacobian matrix can thus 

be summarized as:  

 

arg min
𝐵𝑖+1

1

2
‖𝐵𝑖 − 𝐵𝑖+1‖𝐹

2

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 some properties
  

 

where “some properties” lists the properties we want to be 
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fulfilled.  

Overviews of Quasi-Newton Least Change methods and of 

the properties that can be used are available in [11]-[13]. We 

list some of them.  

1) In optimization, the matrix 𝐵𝑖+1  is a symmetric 

matrix (called Hessian matrix). This property can be 

written as 𝐵𝑖+1 = 𝐵𝑖+1
𝑇 . 

2) Another interesting property, used in the well-known 

Broyden’s good method [14]-[15], consists in using 

the information available from the previous step on 

the optimization path by choosing the estimate such 

that 𝐵𝑖+1𝒔𝑖 = 𝒚𝑖  where 𝒔𝑖 = 𝒙𝑖 − 𝒙𝑖−1  and 𝒚𝑖 =
𝒇(𝒙𝑖) − 𝒇(𝒙𝑖−1). This is called Secant Update.  

3) Using multiple previous points on the optimization 

path, the previous property can be generalized to 

multiple secant equations 𝐵𝑖+1𝐬𝑘 = 𝐲𝑘  for 𝑘 =
1 … 𝑚 ≤ 𝑛. Grouping the vectors into a matrix, this 

can be reformulated as 𝐵𝑖+1𝑆𝑖 = 𝑌𝑖 . We call the 

methods using this generalisation multisecant 

methods [1], [2], [16]-[17]. 

 

One can of course combine some of those properties. The 

Powell-Symmetric-Broyden (PSB) method, for instance, uses 

the combination of the Least Change principle, the symmetry 

and the Secant Update property [18], [19]. 

Our objective is to improve PSB by combining the least 

change and multisecant properties with the symmetry, which 

would lead to a generalized PSB (gPSB).  

 

arg min
𝐵𝑖+1

1

2
‖𝐵𝑖 − 𝐵𝑖+1‖𝐹

2

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐵𝑖+1 = 𝐵𝑖+1
𝑇

𝐵𝑖+1𝑆𝑖 = 𝑌𝑖

                  (2.1) 

 

Unfortunately, it has already been proved by Schnabel that 

the system (2.1) can only be solved if 𝑌𝑖
𝑇𝑆𝑖  is symmetric, 

which is a very restrictive condition [20].  

Our strategy in order to tackle the impossibility of the 

construction of a gPSB update formula is to develop a 

multisecant version of PSB as close as possible of being 

symmetric and a symmetric version as close as possible of 

satisfying the multisecant condition. 

 

III. GENERALIZED PSB 

In order to combine the different characteristics that we 

want to give to the new update formula, we will use a method 

called the alternating projections. It is the successive 

projection 𝑃𝑖  of a point 𝑥 on different subspaces (𝐾𝑖). Each 

projection maps 𝑥 to the point 𝑃𝑖𝑥 ∈ 𝐾𝑖 , the closest to 𝑥. If 

we note  𝑗𝐵 , the 𝑗-th projection of 𝐵  on 𝐾𝑖  and we project 

alternatively on 𝐾1 and 𝐾2, the alternating projections lead to 

the following sequence of matrices. 

 

 0𝐵 → 𝐵1 𝐾1
→ 𝐵1 𝐾2

→ 𝐵2 𝐾1
→ 𝐵2 𝐾2

→ ⋯ 

 

We start with a generalisation of Broyden’s update formula 

[14]-[15]. Broyden’s update formula is a Secant Update 

formula. The generalisation we use is a multisecant version 

of the same formula. It projects a matrix 𝐵𝑗  on a matrix 𝐵𝑗+1  

such that to  𝑗+1𝐵𝑆𝑖 = 𝑌𝑖 . 

 

 𝑗+1𝐵 =  𝑗𝐵 + (𝑌𝑖−𝑗𝐵𝑆𝑖)(𝑆𝑖
𝑇𝑆𝑖)

−1𝑆𝑖                   
𝑇  (3.1) 

 

As the previous formula is not symmetric, we combine it 

with a projection that creates a symmetric matrix. This is 

given by the formula (3.2). 

 

 𝑗�̅� =
1

2
(𝑗𝐵+𝑗𝐵𝑇)                       (3.2) 

 

Taking 𝐵0  symmetric, alternating formula (3.1) and (3.2) 

and taking the limit of the sequence leads to the following two 

expressions. 

 

 
 

  
(3.4) 

 

In the previous formulas, we used the Moore-Penrose 

pseudo-inverse 𝑆+𝑆 = 𝐼  where 𝑆+ = (𝑆𝑇𝑆)−1𝑆𝑇 . Based on 

characteristic 4) in Section I, we consider that the cost of the 

needed inversion is negligible compared to the calculation of 

the function value and gradient value. 

 

Formula (3.2) is symmetric and, because of its construction 

with alternating projection, it is as close as possible to the set 

of multisecant matrices. From this equation, we can then 

build a Quasi-Newton update formula which we call this 

formula gPSB Sym (3.5). Expressed formally, it gives:  

 

Let 𝐵𝑖 ∈ ℝ𝑛×𝑛 , 𝐵𝑖  symmetric, 𝑌𝑖  and 𝑆𝑖 ∈ ℝ𝑛×𝑚 , with 

𝑚 ≤ 𝑛 and 𝑆𝑖 full-rank. Let 𝐾𝑆𝑦𝑚⊳𝑀𝑆 be the set of matrices 

𝐵 such that:  

 • 𝐵 is symmetric  

 • 𝐵 is the closest to the set 𝐾𝑀𝑆 = {𝐴 ∈ ℝ𝑛×𝑛: 𝐴𝑆𝑖 = 𝑌𝑖}  

 Then, 𝐵𝑖+1 ∈ 𝐾𝑆𝑦𝑚⊳𝑀𝑆  such that ‖𝐵𝑖+1 − 𝐵𝑖‖𝐹  is 

minimal is given by 

 

 
(3.5) 

 

On the other hand, equation (3.3) fulfils the multisecant 

condition 𝐵∞ 𝑆𝑖 = 𝑌𝑖 . By its construction, it is as close as 

possible to the set of symmetric matrices. From this equation, 

we can then build a second Quasi-Newton update formula 

which we call gPSB MS (3.6). Formally:  

Let 𝐵𝑖 ∈ ℝ𝑛×𝑛 , 𝐵𝑖  symmetric, 𝑌𝑖  and 𝑆𝑖 ∈ ℝ𝑛×𝑚 , with 

𝑚 ≤ 𝑛 and 𝑆𝑖 full-rank. Let 𝐾𝑀𝑆⊳𝑆𝑦𝑚 be the set of matrices 

𝐵 such that:  

 • 𝐵𝑆𝑖 = 𝑌𝑖  

 • 𝐵 is the closest to the set 𝐾𝑆𝑦𝑚 = {𝐴 ∈ ℝ𝑛×𝑛: 𝐴 = 𝐴𝑇}  

 Then, 𝐵𝑖+1 ∈ 𝐾𝑀𝑆⊳𝑆𝑦𝑚  such that ‖𝐵𝑖+1 − 𝐵𝑖‖𝐹  is 

minimal is given by: 
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The two formulas being different, it confirms the 

conclusion of Schnabel [20]. We can also easily check that 

(3.5) and (3.6) are identical if and only if 𝑌𝑖
𝑇𝑆𝑖 = 𝑆𝑖

𝑇𝑌𝑖, which 

is the symmetry condition we mentioned at the end of Section 

II. 

 

IV. SECANT UPDATE GENERALIZED PSB 

 Compared to PSB, the gPSB Sym update formula (3.5) has 

one drawback. Indeed, while PSB is a Secant Update formula, 

gPSB Sym is not. So, if we want to maximize the amount of 

information from the previous steps when building the 

estimate of the Hessian matrix, we should add the Secant 

update property to (3.5). 

Therefore, we apply the alternating projections again. The 

first projection we use, is a generalisation of PSB for a non-

symmetrical start. In fact, we simply apply the formula (3.2) 

on the previous matrix 𝐵𝑗  before applying the PSB update 

formula. The projection is given by:  

 

 𝑗+1𝐵 = �̅�𝑗 +
�̅�𝑖𝐬𝑖

𝑇

𝐬𝑖
𝑇𝐬𝑖

+
𝐬𝑖�̅�𝑖

𝑇

𝐬𝑖
𝑇𝐬𝑖

−
�̅�𝑖

𝑇𝐬𝑖

(𝐬𝑖
𝑇𝐬𝑖)2 𝐬𝑖𝐬𝑖

𝑇  (4.1) 

 

where �̅�𝑖 = 𝐲𝑖−𝑗�̅�𝐬𝑖. 

For the second projection, we use the equation (3.3). This 

projection is better than (3.1) because apart from the 

multisecant properties the expression is already as close as 

possible to a symmetric matrix.  

Writing �̅� =
𝐵0 + 𝐵𝑇

0

20 , the limit of the new sequence 

leads to the following two expressions. 

 

 
 

 
    (4.3) 

 

In the same way as we have defined a pair of formulas for 

gPSB, we can now define a pair of formulas of SUgPSB. 

Equation (4.3) gives a symmetric expression. Noting that 

𝑆𝑖𝑆𝑖
+𝒔𝑖 = 𝒔𝑖  and 𝑌𝑖𝑆𝑖

+𝒔𝑖 = 𝒚𝑖 , we can easily check that it 

satisfies the Secant Update equation 𝐵∞ 𝐬𝑖 = 𝐲𝑖 . Thanks to 

the way we construct it, we also know it is as close as possible 

to satisfy multiple secant equations. We can thus build a 

Secant Update version of generalized PSB Sym (SUgPSB 

Sym):  

Let 𝐵𝑖 ∈ ℝ𝑛×𝑛 , �̅�𝑖 =
𝐵𝑖 +𝐵𝑖

𝑇

2
, 𝑌𝑖  and 𝑆𝑖 ∈ ℝ𝑛×𝑚  with 𝑚 ≤

𝑛, 𝒔𝑖  the last column of 𝑆𝑖 , 𝒚𝑖  the last column of 𝑌𝑖  and 𝑆𝑖 

full-rank. Let 𝐾𝑆𝑦𝑚𝑆𝑈𝑐𝑀𝑆 be the set of matrices 𝐵 such that:  

 • 𝐵 is symmetric  

 • 𝐵𝒔𝑖 = 𝒚𝑖  

 • 𝐵 is the closest to the set 𝐾𝑀𝑆 = {𝐴 ∈ ℝ𝑛×𝑛: 𝐴𝑆𝑖 = 𝑌𝑖}  

 Then, 𝐵𝑖+1 ∈ 𝐾𝑆𝑦𝑚𝑆𝑈𝑐𝑀𝑆 , such that ‖𝐵𝑖+1 − 𝐵𝑖‖𝐹  is 

minimal, is given by:  

 
 (4.4) 

 

We see that (4.2) is identical to (3.3). This is quite logical 

as gPSB MS already satisfies the Secant Update property. So, 

the update formula SUgPSB MS is the same as gPSB MS 

(3.3).  

One can easily verify that SUgPSB Sym (4.4) and SUgPSB 

MS (3.3) are equal if and only if 𝑆𝑖𝑌𝑖
𝑇 = 𝑌𝑖𝑆𝑖

𝑇 . This is the 

same result as for gPSB Sym and gPSB MS. 

Based on the two previous remarks, since SUgPSB MS 

does not bring any improvement compared to SUgPSB, we 

will use the acronym SUgPSB to refer to SUgPSB Sym. 

In order to help the reader to compare the properties of the 

different formulas exposed in this article, we provide a 

summary in Table I.  

 

V. NUMERICAL EXPERIMENTS 

To test the robustness of the algorithms we make use of a 

set of 146 unconstrained problems of the type "sum of 

squares" from the CUTEst collection [21]. Where it was 

possible to choose, we took the highest dimension from the 

standard available values in CUTEst. We used four different 

standard starting points. Testing the performance of the 

algorithms for different starting points helps to test the 

robustness by multiplying the number of test cases. 

We have implemented PSB, gPSB Sym (3.5), gPSB MS 

(3.6), SUgPSB (4.4) and BFGS. 

The algorithms are written in Matlab and the scripts have 

been run on a HPC cluster. An optional line search of the type 

MINPACK [22] is included within the algorithm. A QR 

filtering [23] makes it possible to avoid ill-conditioning, 

which arises when constituent vectors (secant equations) of 

the matrices 𝑆𝑖 and 𝑌𝑖 become (nearly) linearly dependent. 

The initial approximation for the Hessian is 𝐵0 = 𝐼. The 

iteration is terminated when ||∇𝑔(𝐱𝑖)||2 ≤ 𝛾  or after 𝑛𝑔 

gradient function calls. To limit the number of multisecant 

equations, we used 𝑚 = 2,4,8,16. 

Thanks to characteristic 4) in Secton I, the efficiency is 

compared on Performance Profiles based on the number of 

gradient function calls [24]-[25]. We apply the fixed-cost 

approach mentioned in [24] with a 1% tolerance as the 

solutions of the problems are not known in advance. 

TABLE I: OVERVIEW OF THE FORMULAS 

Formula 
Secant 

Update 

Multi 

Secant 
Sym Ref 

PSB YES NO YES [12]-[13] 

gPSB YES YES YES UC** [14]  

gPSB Sym NO ACAP* YES (3.5) 

gPSB MS YES YES ACAP* (3.6) 

SUgPSB YES YES YES (4.4) 

*ACAP= As close as possible 

**UC= Under condition 𝑌𝑖
𝑇𝑆𝑖 is symmetric 
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Fig. 1. Performance Profiles for m=16, 𝛾 = 10−6, 𝑛𝑔 = 5 × 105. 

 

 
Fig. 2. Performance profiles for 𝛾 = 10−6, 𝑛𝑔 = 5 × 105. Value of m is 

given into brackets in the legend. 

 

The results of the algorithm using the different update 

formulas are given in Fig. 1. For a value 𝜏, the graph gives 

the fraction of tested problems solved by the given algorithm 

in less than 𝜏 × 𝑛𝑚𝑖𝑛gradient function calls where 𝑛𝑚𝑖𝑛is the 

number of needed gradient function calls for the most 

efficient tested algorithm on this problem. If the curve is 

higher, the algorithm solves more problems. If the curve is 

more on the left side, the algorithm solves the problems more 

quickly. 

First of all, we observe an important difference between 

gPSB Sym and gPSB MS. The symmetrical version of the 

formula performs a lot better than the multisecant one. In our 

applications, the symmetric property seems to be more 

important than the multisecant property.  

Next, we observe that the two symmetric formulas being 

as close as possible to satisfy multiple secant equations, gPSB 

Sym (3.5) and SUgPSB (4.4), outperform the classical non-

multisecant formulas (PSB and BFGS). The addition of 

pieces of information coming from extra secant equations 

seems to make the difference with PSB.  

Finally, to a lesser degree, adding the secant update 

property to transform gPSB Sym into SUgPSB slightly 

improves the performance. Our tests also show that the choice 

of 𝑚 has a bigger influence on the performance of gPSB Sym 

than on SUgPSB. This tends to indicate that the Secant 

Update property contributes to the stability of the method. 

Fig. 2 shows the Performance Profiles of SUgPSB for 

increasing values of m. We clearly see that an increasing 

value of m improves the performance of the algorithm. So 

adding more secant equations helps to define a better estimate 

of the Hessian. 

The rate of improvement is however decreasing with the 

value of m. The contribution of extra secant equations (so 

older secant equation on the optimization path) is less 

important. Moreover, depending on the problem, we found 

out that sooner or later adding extra secant equations begins 

to degrade the efficiency of the algorithm. 

This is a consequence of the construction of SUgPSB. The 

formula is as close as possible to satisfy multiple secant 

equations at once. Additional older secant equations have the 

same importance as the most recent one, because we 

minimize ‖𝐵𝑖+1𝑆𝑖 − 𝑌𝑖‖𝐹  which encompasses every secant 

equation at once. Adding too old equations corresponds to 

introducing obsolete information, that will offset and 

eventually outweigh useful information. By adding too many 

secant equations, we finally degrade the quality of the 

estimate of the Hessian.  

As a further improvement we could try to implement some 

kind of forgetting mechanism in order to mitigate the impact 

of secant equations that are too old. 

 

VI. CONCLUSION 

 Our objective was to improve the PSB Quasi-Newton 

update formula by adding information from the former secant 

equations from the optimization path (multisecant property). 

As it is impossible to impose both symmetry and multisecant 

at the same time in general, we have enforced one of them 

and tried to be as closed as possible to the other one. This 

leads to gPSB Sym and gPSB MS. 

In a second phase, we added the Secant Update property to 

gPSB Sym, which was missing in the previous approach, in 

order to create the SUgPSB formula that can be seen as a 

generalisation of PSB being as close as possible to satisfy 

multiple secant equations.  

Finally, SUgPSB, used with a limited number of secant 

equations, clearly outperforms the existing PSB formula, the 

two versions of the gPSB we also developed, and even BFGS 

as shown by the numerical experiments. 
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