
 

 
Abstract—Stock portfolio optimization is the process of 

constant re-distribution of money to a pool of various stocks. In 
this paper, we will formulate the problem such that we can 
apply Reinforcement Learning for the task properly. To 
maintain a realistic assumption about the market, we will 
incorporate transaction cost and risk factor into the state as 
well. On top of that, we will apply various state-of-the-art Deep 
Reinforcement Learning algorithms for comparison. Since the 
action space is continuous, the realistic formulation were tested 
under a family of state-of-the-art continuous policy gradients 
algorithms: Deep Deterministic Policy Gradient (DDPG), 
Generalized Deterministic Policy Gradient (GDPG) and 
Proximal Policy Optimization (PPO), where the former two 
perform much better than the last one. Next, we will present 
the end-to-end solution for the task with Minimum Variance 
Portfolio Theory for stock subset selection, and Wavelet 
Transform for extracting multi-frequency data pattern. 
Observations and hypothesis were discussed about the results, 
as well as possible future research directions.1 
 

Index Terms—Reinforcement learning, stock trading, deep 
learning, deterministic policy gradient, proximal policy 
optimization, stock portfolio optimization. 
 

I. INTRODUCTION 

In this project, we will explore the task of stock trading 
using reinforcement learning. To be specific, we will work 
on the task of portfolio optimization, where the stock weight 
distribution of the portfolio will be adjusted at the beginning 
of each day to maximize profits and constraining some 
certain risks [1].  

The current main applications of machine learning to 
stock trading is through a price prediction network of the 
next market price state. As a supervised regression learning 
problem, this idea is straightforward to implement. 
Unfortunately, the network prediction is not equal to the 
actions that the trading agents should take. Translating from 
price prediction to agent action usually involves hard-coded 
logic layer, which is not extensible and generalized. 
Therefore, reinforcement learning was applied to utilize the 
price prediction model for the trading agents to devise 
optimal action plans. 

The first wave of research on applying reinforcement 
learning to financial market dates back to 1997 [2]. There 
are existing works on portfolio management using 
reinforcement learning [3]. However, they test it on crypto-
currency market which might not generalize well to stock 
market since crypto-currency is more volatile and stochastic, 
and the strong overall increasing trend given the recent hype. 
Besides, they test it only on the baseline of Deep 
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Reinforcement Learning. So, we will extend the work to 
stock market which is fluctuating in both directions in 
contrast with the increasing trend of cryptocurrency. Besides 
that, in contrast with the basic assumptions about stock 
market [4]-[6], we will incorporate transaction cost and risk 
factor into our state and reward system as well. We will 
explore different state-of-the-art schemes of Deep 
Reinforcement Learning for this task. 

Next, we use Minimum Variance Portfolio Theory to 
select a subset of stocks to construct the portfolio, since we 
can get a lower-risk portfolio. If we choose all the stocks to 
construct the portfolio, our portfolio will rely heavily on the 
overall market trend, so it is hard to make profit in bear 
market. We also perform Price Data Denoising using 
Wavelet Transform, so our agent can exploit both high-
frequency patterns in original data(since it has all the noise 
from high-frequency trading) and low-frequency patterns in 
denoised data(since it removes the noise and uncover the 
underlying low-frequency pattern). 

After that, we discuss about the algorithms we implement 
for this task. First, we go through the common Deep 
Deterministic Policy Gradient (DDPG) used by many 
existing works. Then, we discuss about two new variants of 
DDPG: GDPG and PPO. Finally, we reach to our results and 
observations. The overview pseudo-code of each deep 
reinforcement learning implementation is attached in the 
appendix. 

Our main contributions in this paper are summarized as: 
- Extend the work to stock market which is more realistic 

than cryptocurrency market, and propose a better problem 
formulation for more realistic simulations. 

-Explore newer state-of-the-art deep reinforcement 
algorithms for the task. 

- Better end-to-end optimization with Minimum Variance 
Portfolio Theory and Price Data Denoising using Wavelet 
Transform. 

 

II. PROBLEM FORMULATION 

Given a period of time, for example one year, the investor 
will invest in a portfolio of stocks. To decrease the portfolio 
risk, as commonly done, we maintain a portfolio of m+1 
assets, with 1 risk-free asset (Money) and m risky stock 
assets. 

After we train the agent, we will do back-testing on test 
dataset to assess its performance. To ease the purpose of 
back-testing, here are two hypotheses about the market that 
we assume. Note that these assumptions are realistic given 
market with high volume transactions: 

1) Zero Slippage: The market’s liquidity is high enough 
that a trade can be transacted at exactly the price when 
order is placed. 
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2) Zero Market Impact: The investment by the agent is 
insignificant to not affect the market at all.  

Here is the process for updating a portfolio daily. The 
portfolio at the beginning of the day will change during the 
day, due to the price fluctuation of each individual stock. At 
the end of the day, we will reallocate the weights of each 
stock to get a new profit, which result in a portfolio that 
remains the same until next day market open. The same 
process happens again. Note that we assume the closing 
price of the current day is equal to the open price of the next 
day, which we believe is reasonable. 

We can see that the action now are actually the portfolio 
weights. Therefore, this task is actually a continuous action 
space reinforcement learning task. Next, we are going to 
define the states, actions and rewards of this agent. Before 
that, we will go through some terminologies: 

1) Price Vector: 𝑣௧ of period t stores the closing price of 
all assets in period t: 𝑣{௜,௧} is the closing price of asset I 
in period t. Note that the price of first asset is always 
constant since it is risk-free cash. 

 
𝑣௧ = ൫𝑣, 𝑣ଵ,௧, 𝑣ଶ,௧, . . , 𝑣௠,௧൯                          (1) 

 
2) Price Relative Vector: 𝑦௧  is defined as the element-

wise division of 𝑣௧ and 𝑣௧ିଵ 
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Fig. 1. During day t, market movement (represented by Price Relative 
Vector 𝑦௧) transforms the portfolio weights and portfolio values from 𝑤௧ିଵ  
and 𝑝௧ିଵ  to 𝑤௧

ᇱ  and 𝑝௧
ᇱ . Then, at the end of day, we adjust the portfolio 

weights from 𝑤௧
ᇱ   to 𝑤௧  , which incurs transaction cost and shrinks the 

portfolio from 𝑝௧
ᇱ  to 𝑝௧. 

 

3) Portfolio weights and values after market movement: 

 

𝑤௧′ =
௬೟⊙௪೟షభ

௬೟⋅௪೟షభ
                          (3) 

 
where ⊙ is element-wise multiplication, and ⋅ is dot 
product between two column vectors 𝑦௧  and 𝑤௧ିଵ 
 

𝑝௧
ᇱ = (𝑦௧ ⋅ 𝑤௧ିଵ)𝑝௧                    (4) 

 

A. State 

State stores the history of prices of each stock in the 
portfolio over a window of time. 

Therefore, the shape of the state will be (batch size, 
number of assets, window size, number of features). 

B. Action 

Action now will become the weight distribution of the 

portfolio at each period’s end, after the effect of market 
movement during the day. Therefore, the action space will 
be continuous and will need to use continuous action space 
policy gradient to tackle this task.  

C. Reward 

A simple scheme of reward of each action is the change in 
the portfolio value during the market movement. However, 
this reward is not realistic because it is missing two 
important factors. Firstly, it lacks the transaction cost 
incurred with re-allocating portfolio at the end of day. 
Furthermore, the reward does not take into account the risk 
or volatility factor of the asset. We will encode this 
information inside our reward function. 

We observe that for normal Markov Decision Process, the 
reward takes a form of discounted sum of rewards 
∑ γ௧𝑟்

௧ୀଵ (𝑠௧ , 𝑎௧) , however for the case of portfolio 
management, the next wealth at period t actually depends on 
the wealth at period t−1 and the reward r in the form of 
product instead of sum: 𝑁𝑒𝑤_𝑊𝑒𝑎𝑙𝑡ℎ =  𝑂𝑙𝑑_𝑊𝑒𝑎𝑙𝑡ℎ ∗
 𝑅𝑒𝑤𝑎𝑟𝑑 . Therefore, a slight modification of taking the 
logarithm of reward is used to transform the product form to 
normal summation form. 

Therefore: Reward = log(wealth change - transaction cost) 
+ (sharpe ratio that represents volatility factor). 

 
𝑟(𝑠௧ିଵ, 𝑤௧ିଵ) = 𝑙𝑜𝑔൫𝑦௧ ⋅ 𝑤௧ିଵ − μ ∑ ห𝑤௜,௧ିଵ − 𝑤௜,௧ିଵ

ᇱ หெ
௜ୀଵ ൯ (5) 

+β𝐴 
 

where 
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Preprocessing 
 

D. Stock Selection for Portfolio 

To reduce the vast search space of the portfolio state, we 
will reduce the number of stocks in a portfolio. We will find 
a minimum variance portfolio of 6 stocks from the overall 
stocks list [7]. The empirical covariance for each pair of 
stocks is obtained using historical data from the training set. 
For every combination of 6 out of 50 stocks, we compute its 
optimal weight  

𝑤∗ =
𝐶ିଵ1

1்𝐶ିଵ1
 

that produces the minimal variance 

σଶ =
1

1்𝐶ିଵ1
 

 

E. Data Denoising 

The time series data of stock usually oscillates frequently. 
To understand this, we may consider two kinds of trading 
participants: one is to take rational actions of buying or 
selling, and this is represented by main tendency of the data. 
The other one is to take random actions since they may have 
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other consideration (e.g. need to get money for emergency 
usage), and this is represented by oscillations (noise) in data. 
Denoising is necessary to help us understand the rational 
strategy, and then develop good policy [8]. 

We use the discrete wavelet transform to denoise on 1-D 
data, because it is applicable to non-stationary series [9], 
which means the frequency could change in time. Wavelet 
Transform has been frequently applied to the financial 
market as well [10], [11]. It firstly decomposes the original 
data to generate the approximation and detail coefficients. 
The approximation coefficients approximate the tendency of 
the data with less oscillation, and the detail coefficients 
provide the frequency of the oscillation based on the 
approximation. Fig. 2 shows an example of two coefficients 
generated from the original data. 

 
Fig. 2. Original data and coefficients. 

 
Fig. 3. Original data and denoised data. 

 
This decomposition is reversable, meaning that we can 

reconstruct the original data by these coefficients. To 
denoise, we should remove some of the detail coefficients. 
Therefore, we use a threshold T to filter out small noise. 
Using the formula below adapted from [12]: 

 

𝑇 =
√ଶ ୪୬ ே∗௠௘ௗ௜௔௡(|஽|)

଴.଺଻ସହ
                         (6) 

 
where N is the size of original data, and D is the detail 
coefficients. 

Next, for each d in detail coefficients, apply: 

 

     𝑑  ←  0        |𝑑| ≤ 𝑇 
                 𝑑 ← 𝑑 − 𝑇|𝑑| > 𝑇                 (7) 

 
Then when we reconstruct by filtered detail coefficient, 

the result will tend to approximation and less oscillate 
because zero in detail coefficient prevent oscillating based 
on approximation data. Fig. 3 using the same example as Fig. 
2 above shows the effect of denoising. 

 

III. METHODS 

A. Deep Deterministic Policy Gradient 

To tackle this problem, we need a Reinforcement 
Learning paradigm that can deal with continuous action 
space. Recall that Deep-Q Learning will take in a state s and 
return a vector 𝑎 = [𝑎ଵ, 𝑎ଶ, … , 𝑎஺]where 𝑎௜   represents the 
probability of action i. Naively extending this scheme to 
continuous action space means to extend the size of vector a 
to a very large number, which will not work well. 

  
Fig. 4. Actor-critic architecture. 

 
DDPG solves this issue by following the actor-critic 

architecture in Fig. 4. An actor is used to output a vector that 
represents the expected action, which can be seen as a policy 
gradient method. Next, a critic is used to evaluate the 
effectiveness of the output of the actor, and output Q-value 
that measures the efficiency of the actor. Critic loss can be 
used to update back the actor.  

DDPG is based on the actor-critic architecture, with some 
modifications. Firstly, the actor and critic networks are 
approximated using a Deep Neural Network (θஜ  for actor 
and θொ for critic). Next, we use the idea of separate target 
network for both actors and critics, similar to Deep-Q 
Learning, in order to stabilize the learning. The networks are 
also randomly noised as a scheme to balance the 
exploration-exploitation issue in Reinforcement Learning. 
More information can be found in [13]. 

So the question now is how to update the actor policy. We 
need to calculate the gradient of policy loss with respect to 
actor parameters ∇஘ಔ𝐽 . According to the Deterministic 
Policy Gradient Theorem in the original paper: 
 

∇஘ಔ𝐽 ≈ 𝐸௦೟∼஡ಊ ቂ∇஘ಔ𝑄(𝑠, 𝑎|θொ)|
௦ୀ௦೟,௔ୀஜ൫𝑠௧หθஜ

൯ቃ

= 𝐸௦೟∼஡ಊൣ∇௔𝑄(𝑠, 𝑎|θொ)|௦ୀ௦೟,௔ୀஜ(௦೟)∇஘ಔμ(𝑠|θஜ)|௦ୀ௦೟
൧ 
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Fig. 5. DDPG actor-critic architecture. Note that actor and critic deep 
neural networks take in both current state and previous portfolio weights. 
This is because it needs to learn not to diverge too much from the previous 
weights to prevent high transaction cost. 
 

  
Fig. 6. GDPD augmented critic network. 

 

B. Generalized Deterministic Policy Gradient: 

One of the problems with DDPG is that it assumes 
stochastic state transition. In fact, for most planning 
problems such as autonomous vehicle, the state transition 
might be a combination of both stochastic state transition 
(when in dynamics) and deterministic state transition (when 
noises are weak). However, the gradient of DDPG in such a 
new assumption is not well-defined, and can lead to weird 
behavior frequently. Main problem is that the model-free 
DDPG is known to have high sampling complexity, which 
makes learning difficult. Transforming DDPG into 
completely model-based can reduce the sampling 
complexity. Unfortunately, purely model-based 
reinforcement learning can lead to slow convergence rate(or 
sometimes huge divergence) if the environment is highly 
dynamic (which is especially true for stock market). 

An idea is to combine model-free and model-based 
approaches in some meaningful ways. With the above 
mentioned insights, a new variation of DDPG is proposed, 
which is called General Deterministic Policy Gradient [14]. 
GDPG intuition is to maximize the long-term reward of the 
augmented MDP(which is approximated by a model-based 
network) to reduce sample complexity, but at the same time 
constrain it to be less than the long-term reward of the 
original model-free MDP: 
 

max
஘

𝐽∗ (θஜ),        s.t    𝐽∗(θஜ) ≤ 𝐽(θஜ) 

 
Using Lagrangian dual theorem, the new objective 

function is transformed into: 

min
஑ஹ଴

max
஘

𝐽∗ (θஜ) + α൫𝐽(θஜ) − 𝐽∗(θஜ)൯ 

 
To update policy of actor, we will find gradient of 

𝐽∗(θஜ) + α൫𝐽(θஜ) − 𝐽∗(θஜ)൯ 

  
∇஘ಔ𝐽(θஜ) =

ଵ

ே
∑ (1 − α)௜ ∗ ∇θஜμ(𝑠|θஜ)∇௔𝑄∗(𝑠, 𝑎|θொ∗) +

α∇஘ಔμ(𝑠|θஜ)∇௔𝑄(𝑠, 𝑎|θொ)                  (8) 
 

The main difference between DDPG and GDPG is that 
GDPG maintains a prediction neural network model, which 
can predict the next market state given the current state. This 
prediction neural network is used to build an augmented 
critic network as in Figure 6. The actor is updated based on 
a combination of gradients from both original model-free 
critic network and augmented model-based critic network.  

C. Proximal Policy Optimization 

Proximal Policy Optimization (PPO) is another variant of 
DDPG, which aims to improve updating actor policy.  

  
Fig. 7. Policy loss function. 

 
Recall the original policy gradient objective function in 

Fig. 7, we find that it is appealing to perform multiple steps 
of optimization on this loss using the same trajectory. Doing 
so is not well-justified, and empirically it often leads to 
destructively large policy updates [14]. 

To tackle this problem, PPO was proposed to make use of 
a surrogate objective function of the original policy loss 
function. Instead of using log to trace impact of action, we 
will use the ratio between the probability of action under 
current policy divided by the probability of the action 
under previous policy. The ratio is formally defined as:  

 

𝑟௧(θ) =
π஘(𝑎௧|𝑠௧)

π஘old
(𝑎௧|𝑠௧)

 

 
With this new definition, the objective function now 

becomes:  
 

𝐿஼௉ூ(θ) = 𝐸௧
෡ ቈ

π஘(𝑎௧|𝑠௧)

π஘old
(𝑎௧|𝑠௧)

𝐴௧
෢቉ = 𝐸௧ൣ𝑟௧(θ)𝐴௧

෢൧ 

 
However, without any constraint, this policy still leads to 

excessive large policy updates. PPO proposed to clip the 
objective function to penalize changes in policy that lead 
ratio 𝑟௧(𝜃)  far away from 1. Therefore, the ratio is clipped 
to the range of [1−ε,1+ε]. This net surrogate objective 
function can constrain the update step in a much simpler 
manner, and experiments in the PPO paper show it does 
outperform the original objective function in terms of 
sample complexity. 

(Note that A is the advantage value, which is defined as 
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𝐴஠(𝑠, 𝑎) = 𝑄஠(𝑠, 𝑎) − 𝑉஠(𝑠) , which shows how good an 
action is compared to average of other actions at that state. 
In PPO, we will estimate the advantage value as 

∑ γ௧′ି௧𝑟
௧′௧′வ௧ − 𝑉(𝑠௧). 

 
Fig. 8. Result on safe portfolio with K=6. 

 
Fig. 9. Final result. 

 

IV. RESULTS 

We experimented with stocks in the training dataset from 
01/09/2012 to 31/12/2016. Then we back-test our agents 
from 01/01/2017 to 01/09/2017. We make use of 3 features 
(close price, high price, close price after wavelet transform). 

The network we use for actor and critic are Convolutional 
Neural Networks. The neural network used for model the 
state-transition of GDPG is a Long Short Term Memory 
Network. Since the focus of this project is on Reinforcement 
Learning, we will not go into details of these networks. 

Baselines: To compare with DDPG, GDPG and PPO, we 
use 3 baselines:  

[(a)]  

1) Uniform constant rebalanced portfolios 
(Benchmark): At the end of each day, the portfolio is 
adjusted such that the weights are same for all stocks. 
This is the common benchmark used for portfolio 
management research. 

2) Follow-the-winner: Shift all the portfolio weights to 
the stock that has the highest return yesterday. This is 
based on the belief that it will keep continuing today. 

3) Follow-the-loser: Shift all the portfolio weights to the 
stock that has the lowest return yesterday. This is based 
on the belief that it has highest chance to improve 
today.  

Firstly, we construct our portfolio with the K stocks with 

minimum variance portfolio among all possible combination 
of K stocks, as described in section 3.1. Unfortunately, the 
result seems not promising, as in Fig. 8. Our hypothesis is 
that choosing the combinations of stocks with lowest risk 
results in a lower-risk portfolio, but it also means the 
promising profits cannot be high as well. 

Instead, next we choose a portfolio of "AAPL", "PG", 
"BSAC", "XOM" from different industries to slightly 
diversify the portfolio. The result is illustrated in Fig. 9. 

A. Observations 

1) The best stock selection for initial portfolio, as 
presented in section 3.1, is not a good idea. It gives a 
too low-risk portfolio with also very low potential 
profits. 

2) Follow-the-winner and Follow-the-loser performs 
poorly due to transaction cost incurred. That’s why 
existing works do not take into account transaction 
costs will lead to very misleading results. 

3) DDPG has the best performance. However, in theory 
GDPG can reach a better performance than DDPG by 
reducing sample complexity. Our hypothesis for this 
discrepancy is that since GDPG is very sensitive to the 
accuracy of the model-based state-transition modelling 
[14], in this case we use LSTM which is not a very 
good model. Therefore, next price state prediction 
model is a very important component for GDPG 
performance, and it is a potential future work to 
explore how price prediction model accuracy affects 
GDPG. 

4) PPO performs much worse compared to other agents, 
despite the promising mathematical characteristics. 
Our observation is that if the PPO actor network takes 
in the previous portfolio weights, it will reach a similar 
path as UCRP. If we remove the previous portfolio 
weights from actor network, it will reach the path as in 
Figure 9. The reason still remains unclear to us, it 
could be because stock market might not be suitable 
for PPO. 

B. Conclusion and Future Work 

In this project, we have explored the task of portfolio 
management with reinforcement learning, and obtained 
some insights from the result. There are many future 
directions to continue from here. For example, we can 
include all stocks in the portfolio, and the agent can learn to 
put 0 in many stocks except a few stocks. However, this task 
is easy to get stuck in local minimum, and transaction cost 
prevents large shift of weights between days. Another 
direction is to provide better networks for actor, critic and 
especially the state transition network of GPDG. 
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