
  

  

Abstract—The roughness grade analysis on fitness landscape 

is helpful for obtaining the difficulty of the multi-dimensional 

function optimization problem, improving the optimization 

algorithms, and finding all local minima. Firstly, comparison 

studies are carried out on several commonly used indicators 

that depict the roughness of fitness landscape, such as 

autocorrelation function index, the improved fitness distance 

correlation (FDC) coefficient index, which are calculated using 

samples instead of differentiability of the function. A 

comprehensive index called roughness grade (RG) is 

constructed to measure the roughness of the fitness landscape 

by utilizing indices such as total variation of the function, rate of 

decline, FDC, etc. The advantages and disadvantages of the 

roughness indicators are summarized according to the results of 

experiments, which show that the improved FDC index and RG 

index are qualified for measuring different aspects of the 

roughness characteristics, and the improved FDC index has 

advantages over RG on fixed value range, less samples required, 

and simple calculation, thus can be used as main index, while 

RG index can be used as aided index for designing roughness 

grade based optimization algorithms of multi-dimensional 

function. 

 
Index Terms—Fitness landscape, fitness distance correlation 

(FDC), multi-dimensional function, roughness grade. 

 

I. INTRODUCTION 

The fitness landscape is one of the most influential 

concepts in evolutionary biology, which is a mapping from a 

set of genotypes to fitness, where the set of genotypes is 

organized according to which genotypes can mutate from one 

to another [1]. In 1990, Weinberger[2] brought the concept of 

fitness landscape to the performance analysis of heuristic 

algorithms, where the fitness landscape is used to help 

understand the mechanism of heuristic algorithm and predict 

its performance, as well as help design efficient algorithms. 

Today, lots of studies build relationships between fitness 

landscape and the difficulty of heuristic algorithm [2], [3], 

while some other studies utilize the fitness landscape to help 

find all local minima of multi-dimensional functions [4]. This 

paper is for the second case, that is, we study the roughness of 

the fitness landscape to help search for local minima and 

improve algorithm. In many practical problems, such as 

multi-parameter design, optimization via simulation, we 

hope to obtain not only all global minima, but also those good 

local minima to help us make decisions [5]. However, the 

commonly used optimization algorithms, such as genetic 
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algorithm, ant colony algorithm, simulated annealing 

algorithm, can only find the global minima and some local 

minima, but not all local minima. Understanding the 

roughness of fitness landscape is helpful for designing 

efficient algorithm in generating initial search points and 

setting search step length, which are key issues for finding all 

local minima with least time and resources. 

The indices that depict the fitness landscape are mainly 

statistic features of the fitness landscape surface, such as 

G-measure index proposed by [4] and fitness distance 

correlation (FDC) index by [6]. In [4], a gradient based 

quality measure, called G-measure, is designed to measure 

the local minima distribution of a multi-dimensional 

continuous and differentiable function, and they allocated 

more initial search points in the region with higher 

G-measure, which means the fitness landscape of the region 

is possibly rougher and more likely to have more local 

minima. However, during the calculation of G-measure, the 

function is limited to a continuous and differentiable function 

because G-measure needs to calculate the first derivative and 

second derivative, e.g., the amount of convexity and 

concavity requires second derivative. This is not available for 

many cases where the function is not explicit, such as 

black-box function, simulation function, etc. In [3], fitness 

distance correlation (FDC) coefficient has been shown to be a 

reasonable measure to quantify problem difficulty in genetic 

algorithm and genetic programming for a wide set of 

problems, and GA problems can be classified in three types 

depending on the value of FDC coefficient. At the same time, 

the limitations of FDC are also pointed out: the calculation of 

FDC asks for the global optima to be known a priori, which is 

not available in many optimization problems, and for this 

reason, they think FDC is not a predictive measure, but can 

only be used as a theoretical indication. As a result, we have 

to improve the FDC coefficient firstly so that it can be used as 

a predictive measure to predict the roughness grade 

distribution of fitness landscape. 

In this work, we study the roughness grade of fitness 

landscape for optimization problem of undifferentiable 

multi-dimensional function, including black-box function, 

simulation function. Based on samples from the function, we 

compare several roughness grade indicators, such as 

autocorrelation function index, the improved FDC coefficient 

index, total variation, and rate of decline of the function, and 

the result shows that the improved FDC coefficient can 

effectively depict the roughness distribution of fitness 

landscape in most cases. In order to better describe the 

roughness grade of fitness landscape, a comprehensive index 

called roughness grade (RG) is designed, and experimental 

results show that the improved FDC coefficient and RG are 

effective in representing the roughness distribution of fitness 
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landscape. 

The remainder of this paper is organized as follows:  

In the next section, we introduce the concept of fitness 

landscape. This is followed by definition of several 

roughness grade indicators in Section III. Our computational 

results are presented in Section IV, and in the last section we 

summarize our findings and highlight some research issues. 

 

II. FITNESS LANDSCAPE 

Viewing the search space (generally the set of all possible 

solutions) as a landscape, the height of a point in the search 

space reflects the fitness (objective) of the solution associated 

with that point, and a heuristic algorithm can be thought of as 

hill-climbing through it in order to find the highest peak of 

the landscape (for maximization problems) [7], or the lowest 

valley (for minimization problems). The hill-climbing 

process is shown in Fig.1, where initial points navigate on 

fitness landscape with certain step length and search rules to 

find their local minima. We can also find from Fig.1 that as 

the landscape becomes rougher, the hill-climbing to the 

global optimum will be more difficult. In this article, we will 

mainly tackle with minimization problems.  

Definition 1  A fitness landscape is defined as (S, f, d) that 

consists of three ingredients: the search space S, element 

distance d(x1, x2 ) where x1, x2∈S, and fitness function f(x): 

S→R, x∈S.  

There are two potential applications of the roughness grade 

analysis on fitness landscape: 

1) Reduce the initial points. Multi-start algorithm [8] has 

been widely used to solve all local optima. With less 

initial points, search time on finding all local optima 

can be greatly shortened. Generally, the regions with 

high roughness grade may have lots of peaks and 

valleys, which means more initial points are needed in 

these regions to allocate the local optima, e.g., the 

regions S1 and S3 in Fig.2 are rougher than S2 and S4, 

thus more initial points should be allocated in S1 and 

S3 when using multi-start algorithm. 

2) Allocate search step length according to the roughness 

grade. The regions with higher roughness grade may 

have lots of peaks and valleys, which means more 

detailed search should be taken to find those local 

optima, e.g., the region S1 and S3 in Fig.2 are rougher 

than S2 and S4, thus more detailed search are needed, 

i.e., the search step length d1 and d3 should be 

relatively smaller than that of d2 and d4 to find all local 

optima in S1 and S3. 

 

III. ROUGHNESS INDICATORS OF FITNESS LANDSCAPE 

Researchers have designed several indices to measure the 

structure features of fitness landscape. The roughness grade 

is one of the most important structure features. 

There are many factors that influence the roughness grade, 

which include correlation coefficient of neighbour points on 

fitness landscape, number of local minima, amount of 

convexity and concavity, etc. Generally, the rougher the 

fitness landscape is, the more difficult for algorithms to find 

the optimum. 

Fitness

search space 

Global maximum

Local maximum

Local maximum

Local maximum

Initial points

 
Fig. 1. Hill-climbing process on fitness landscape. 
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Fig. 2. Hill-climbing on fitness landscape regions with different roughness. 

 

It is easy to imagine the fitness landscape of one or two 

dimensional functions, e.g., fitness landscape of one 

dimensional function is in fact a curve in two-dimensional 

space, and two dimensional function is a surface in 

three-dimensional space. However, for function with 

dimension greater than three, the fitness landscape cannot be 

depicted as visualized image[1]. For such situations, the 

question is how we could reflect the structure features to a 

visualized index. We will introduce several indices in earlier 

studies, and make necessary modifications to tailor for 

undifferentiable function. 

A. Autocorrelation Function Index 

Definition 2 [6] For function y=f(x), let {f(x0), f(x1), …f(xn)}

 denotes the time series of the fitness value when a navigator 

point moves step by step on the fitness landscape, the 

autocorrelation function index r is defined as 

2
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where E[f(xt)] denotes the mathematical expectation of f(xt), 

and h denotes the step length between two consecutive 

neighbor points in the time series. 

Autocorrelation function index r actually measures the 

correlation degree of current surface and a future surface 

moved by a step length h. For example, in Fig.3(a), r denotes 

the correlation coefficient between f(x) and f(x+h). As a result, 

r is between -1 to 1, and the closer it is to 0, the lower 

correlation the neighboring points will have, thus the fitness 

landscape is rougher. On the contrary, the closer r is to 1, the 

closer the neighbor points will be, thus the fitness landscape 

is smoother. However, r is not fixed, but varies greatly with 

step length h. As shown in Fig.3(b), when h changes from 0.2 

to 2, the value of r reduces from 0.9212 to 0.2032. Generally 

speaking, for a continuous function, r becomes smaller as h 

grow bigger, which means it will be meaningless to compare 
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the roughness grade of two functions by r when they don’t 

have the same h. In other words, the roughness grade of two 

functions are comparable by r only when h is the same. 
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(a) When h=0.2, we have r=0.9212 
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(b) When h=2, we have r=0.2032 

 Fig. 3. Examples of r with different h. 

 

Meanwhile, before we calculate r for a multi-dimensional 

function, the direction of time series should be known. For 

example, for a two dimensional function y=f(x1, x2), if the 

direction of time series follows x1 axis, i.e., x2 keeps 

unchanged and y becomes f(x1+h, x2) after a time step; if the 

direction of time series follows x2 axis, i.e., x1 keeps 

unchanged and y becomes f(x1, x2+h) after a time step; or if 

the direction of time series follows certain angle between x1 

and x2 axis, e.g., y becomes f(x1+h/ 2 , x2+h/ 2 ) after a 

time step. Apparently, different directions of time series will 

result in different r, which is like cutting through an irregular 

ball, different cutting directions will get different cutting 

surfaces, thus get different roughness grade. However, 

cutting directions are infinite, as a result, r cannot be 

determined if the direction of time series is unknown. 

Therefore, although r is capable of describing the structure 

feature of the fitness landscape, it is not suitable to be a 

roughness grade index for a multi-dimensional function 

because of the limitations by h and cutting directions.  

B. Fitness Distance Correlation Coefficient 

Fitness distance correlation (FDC) coefficient, firstly 

proposed by Jones[9], is used to describe the correlation 

degree between distance to optimum and fitness of points on 

the fitness landscape. The essence of FDC is Pearson 

correlation coefficient, which means FDC has the feature of a 

normal Pearson correlation coefficient: if the fitness 

landscape is smooth and continuous, FDC should be closer to 

one; if it is rough and fluctuant, FDC should be small, which 

means little relationship exists between distance to optimum 

and fitness. As stated earlier, the calculation of FDC asks for 

the global optima to be known a priori[3], which is not 

available in many optimization problems, thus we cannot 

directly use FDC as an index to measure the roughness grade 

distribution of fitness landscape. Here, we make some 

improvement to FDC in (2): firstly, a set of sample points are 

collected on the function, from which the best sample point is 

chosen to approximately represent the global optima. This 

may cause calculation error to FDC since the sample best 

may differ from global optima, however, the influence of 

such error should be small, because if the fitness landscape is 

rough, the correlation coefficient between distance to any 

benchmark point (including the global optima) and fitness 

will be relatively low, let alone sample best point may be near 

to global optima. Therefore, compared with traditional FDC, 

the improved FDC by (2) can not only reflect the roughness 

of fitness landscape, but also overcome the disadvantage of 

knowing the global optima beforehand.  

Definition 3  For function ( )y f= x , x , let P={xi, 

i=1, 2,…, n}

 

denotes a set of sample points on the fitness 

landscape, where minx  is the sample point with greatest 

fitness (or best sample point). The FDC on P is defined as:  

1
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where yi denotes the fitness of xi; y  denotes the mean of yi, 

i.e., 
1
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=  ; di denotes Euclidean distance from xi to 

minx , i.e., 
mini id = −x x ; d  denotes the mean of di, i.e., 

1
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i

i

d d
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Since FDC is Pearson correlation coefficient, we have fdc

∈[-1, 1]. When fdc=1, the relationship between yi and di is 

linear, that is, the closer to the best sample point (di is 

smaller), the better fitness it becomes (yi is smaller). In other 

words, there exists certain route on the fitness landscape from 

sample point to optimum point. When |fdc| is smaller, it 

means that fitness doesn’t become better as sample points 

approaching optimum point, because there may be some 

peaks and valleys blocking the route to optimum point. 

Therefore, we can conclude that as |fdc| is small, fitness 

landscape will be rough. 

Examples of FDC for several typical function curves are 

given as follow. 

1) For a simple one dimensional function, siny x= , 

[ ,2 ]x   , the function curve is shown in Fig.4(a). 

We collect 100 sample points uniformly on the 

feasible region, and the set of sample points P is 

obtained as P={π, 1.01π, 1.02π,…, 2π}. The best 

sample point is xmin=3π/2. As shown in Fig.4(b), the 

closer to xmin (d is smaller), the better fitness we have. 

Apparently, it is the most ideal situation where we can 
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see a clear and smooth route to optimum point from 

any sample point on P. By (2), fdc=0.9791, which is 

very close to one. It means that the roughness of the 

landscape is very low, and it is very easy to navigate to 

optimum point.  

2) For the same function but with different feasible 

region, siny x= , [0,2 ]x  , the function curve is 

shown in Fig.5(a). Similarly, 100 sample points are 

collected where xmin=3π/2. As shown in Fig. 5(b), the 

relationship between d and fitness can be divided into 

two parts: when distance to xmin is smaller than π, the 

closer to xmin, the better fitness we have; when 

distance to xmin is greater than π, the closer to xmin, the 

worse fitness we have, that’s because the route to 

optimum point is blocked by a peak on [0, π/2]. 

However, the roughness of fitness landscape in 

Fig.5(a) is generally not so complicated, and we 

obtain fdc=0.8376 by (2). Although fdc is relatively 

lower than in Fig.4, the correlation of d and fitness is 

still great since in most region they are correlative 

positively. As a result, the roughness of the landscape 

is still acceptable, and not difficult to navigate to 

optimum point.  

Obviously, as the fitness landscape becomes rougher, the 

route to optimum point will encounter more and more blocks, 

thus fdc will be reduced gradually. The problem is to what 

extent the fdc value being reduced that we can consider the 

roughness of fitness landscape acceptable. We define a 

threshold acceptable fdc, denoted as fdc0: when fdc is higher 

than fdc0, the roughness of fitness landscape is considered 

acceptable, thus local minima are easy to obtain by 

algorithms; on the contrary, when fdc is lower than fdc0, the 

roughness of fitness landscape is considered unacceptable, 

thus local minima on this region are difficult to find, or at 

least some local minima may be missed. By lots of tests and 

experiments, the results show that it is highly suggested to set 

fdc0 in [0.4, 0.6]. 
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(a) Function curve                              (b) Fitness varies with d 

Fig. 4. Roughness and fdc of typical function curve. 
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 (a) Function curve                        (b) Fitness varies with d 
Fig. 5. Roughness and fdc of typical function curve. 
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Fig. 6. Example of TV for a two dimensional function. 

 

C. Total Variation and Rate of Decline 

A gradient based comprehensive measure called 

G-measure is designed to describe the roughness of fitness 

landscape in [4]. Actually, G-measure is the function of total 

variation, rate of decline and the amount of convexity and 

concavity. Since the amount of convexity and concavity is 

unavailable for an undifferentiable functions, such as black 

box function, G-measure is also unavailable. However, the 

other two indices, total variation and rate of decline, are 

capable of describing the roughness of fitness landscape and 

available for any given functions. Suppose the feasible region 

Ω is equally divided by grids with step length h, and 
ix (i=1,2,…,k) denotes points on the grids, or we call grid 

points. 

Definition 4  For function 1 2( ) ( , , , )ny f f x x x= =x , 

x , total variation (TV) is a measure that reflects the sum 

total of variations on the region. TV is defined as integrals of 

gradient mode on the region Ω, which can be approximated 

by sum of gradient modes of the grid points. Thus TV(Ω) is 

defined as follow. 

1
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where m(Ω) denotes the measure of the region Ω, e.g., m(Ω) 

represents length for one dimensional region, area for two 

dimensional region, and volume for three dimensional region, 
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Take a two dimensional function f(x1, x2) for example, as 

shown in Fig.6, the step length h=1, and Ω is x1∈[-1,1], x2∈

[-1,1]. Then we have m(Ω)=4, and TV(Ω)= 

{-1,0,1} {-1,0,1}

4 (1, ) ( 1, ) ( ,1) ( , 1)

3 2 2i i

f i f i f i f i

 

 − − − −
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 
   by (3) 

and (4). 

Definition 5  For function 1 2( ) ( , , , )ny f f x x x= =x , 

x , rate of decline (RD) is a measure that reflects the 

decline speed of the function value on the region. max ix  

and min ix  (i=1,2,…,k) denotes the grid point with 

maximum and minimum function value respectively, where 
ix (i=1,2,…,k) denotes points on the grids. RD(Ω) is defined 

as follow.  
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                   (5) 

 

where max mini ix x−  is the Euclidean distance between 

the grid points with maximum and minimum function values.  

D. Roughness Grade 

Generally, TV and RD should be used together to reflect 

the roughness of fitness landscape. Specifically, when TV is 

great and RD is small at the same time, that is, the sum of 

gradient modes is great but the average decline speed of the 

function value is small, it means there should have great 

fluctuates on the region, perhaps lots of peaks and valleys, 

thus it is relatively rougher on the region. As mentioned in 

Section Ⅲ(C), m(Ω) denotes the measure of the region Ω. 

Obviously, for two regions with different m(Ω), the 

roughness measure, such as TV and RD, will be 

incommensurable. To deal with such situation, we should 

compare these indicators on unit measure. Also, as 

mentioned before, fitness landscape will be rough as |fdc| is 

small. Above all, a comprehensive roughness measure called 

roughness grade (RG) is defined as   

10 TV( )
( ) 1 ( )

( ) RD( )
RG fdc

m


 = −    

               (6) 

where the coefficient 10 is used to avoid too low value of RG. 

Obviously, the fitness landscape on the region Ω will be 

rougher as RG(Ω) becomes greater. 

 

IV. ILLUSTRATIVE EXAMPLES 

Two simple examples are given below to compare whether 

the roughness indicators listed in Section Ⅲ can reflect the 

roughness degree of the fitness landscape. Note that we use 

fdc to represent the improved FDC in Section Ⅲ. 

Example 1. A piecewise function is given as below. 
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We will discuss the roughness indicators on different sub 

regions. The sample points are collected uniformly on each 

region with step length 0.01 for (2), and each region is 

equally divided by grids with step length 0.01 for (3) to (5). 

1) Divide the feasible region S: x∈[0, 11.388] into two 

sub regions, S1: x∈[0, 5.6941], and S2: x∈[5.6941, 

11.388], see Fig.7(a).  

From the fitness landscape on region S, we can see that the 

landscape is rough with three peaks (or local maxima) and 

three valleys (or local minima), and the best sample point is 

xmin=7.4641. As shown in Fig.7(b), when d<0.785, the closer 

to xmin, the better fitness we have; on the contrary, when 

d>0.785, the relationship between Fitness and d becomes 

clutter because three peaks appear successively on that region, 

see Fig.7(a).  

By (2), fdc(S)=0.0032, which means that the landscape is 

very rough with many peaks and valleys, and it will be tough 

to navigate to optimum if the initial points are far from xmin. 
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Fig. 7. Function curve and fdc on different regions. 

  

On region S1, the best sample point is x1min=4.7124. As 

shown in Fig.7(c), when d<π, the closer to x1min, the better 

fitness we have; when d>π, the relationship between Fitness 

and d becomes negative because there is a peak in the region 

[0, π/2], which lowers the fdc value. But overall, it is not so 

rough on S1, see Fig.7(a), and fdc(S1)= 0.8346 using (2). 

On region S2, the best sample point is x2min= 7.4641. As 

shown in Fig.7(d), when d<0.785, the closer to x2min, the 

better fitness we have; when d>0.785, the relationship 

between Fitness and d becomes clutter because two peaks 

appear successively on that region, see Fig.7(a), thus the 

landscape is rough and fdc should be low. By (2), fdc(S2)= 

0.4915, which is consistent with our prediction. 

Meanwhile, several other roughness indicators are 

calculated by (1), (3), (4) and (5), as well as the 

comprehensive roughness index RG by (6), as shown in 

TableⅠ . Since TV and RD cannot be used to measure 

roughness degree independently, we will mainly compare 

three roughness indicators: r, fdc and RG.  

From Table I, we can see that fdc(S)< fdc(S2) < fdc(S1), 

which means the roughness degree in descent order is 

S S2 S1. The same roughness order can also be obtained by 

RG(S)> RG (S2) > RG (S1). However, for the indicator r, we 

have r(S2)< r(S) < r(S1) when h=0.5, so the roughest region is 

S2 according to the indicator r. This is because r is not only 

decided by the roughness of the landscape, but also the step 

length h, and by its definition, r is greater when the landscape 

varies sharply within a smaller region, see Fig.3(a).  

2) Divide the feasible region S into four sub regions, S1: 

x∈ [0, 1.5708], S2: x∈ [1.5708, 6.6759], S3: x∈

[6.6759, 9.0321], and S4: x∈[9.0321, 11.388], see 

Fig.8. 

Similarly, roughness indicators are calculated as shown in 

Table II. From Fig. 8, there are no peaks inside each region, 

which means the roughness of each region are very low. 

Compared with Table I, the fdc value of these four regions are 

much higher, while RG value are much lower, which can also 

demonstrate that fdc and RG can reflect the roughness of 

fitness landscape. Meanwhile, r(S3) in Table Ⅱ is very low, 

i.e., r(S3)= 0.052342, but S3 is not rough. Again, r is not fit for 

a roughness indicator, and we should use fdc and RG as 
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roughness indicators. 

 
TABLE I: ROUGHNESS INDICATORS OF DIFFERENT REGIONS IN FIG.7(A) 

Region 
r (with 

h=0.5) 
fdc RG 

Roughness 

order by RG 

Roughness 

order by fdc 

S 0.6231 0.003166 4.8878 1 1 

S1 0.90187 0.8346 1.569 3 3 

S2 0.38513 0.4915 3.9167 2 2 

 

TABLE II: ROUGHNESS INDICATORS OF DIFFERENT REGIONS IN FIG.8 

Region 
r (with 

h=0.5) 
fdc RG 

Roughness 

order by 

RG 

Roughness 

order by 

fdc 

S1 0.98946 0.97876 0.20998 3 3 

S2 0.60126 0.89875 0.64509 2 1 

S3 0.052342 0.90913 1.1297 1 2 

S4 0.80175 0.99204 0.079462 4 4 
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Fig. 8. Function curve and fdc on four different sub regions. 

 

From Table II, we can see that the roughness order by RG 

and fdc are basically the same except for the regions S2 and S3. 

According to RG, the roughness on S3 is much higher than S2, 

while the roughness of S2 and S3 are nearly the same 

according to fdc. This is because RG mainly reflects the 

roughness on unit measure, e.g., unit length for one 

dimensional function, unit area for two dimensional function, 

etc. Thus, we can conclude that the roughness on unit length 

for S3 is much higher than that of S2, which is clearly shown 

in Fig.8 that the function curve on region S3 is much more 

fluctuant than S2 for unit length. 

Above all, we can conclude that both RG and fdc can 

reflect the roughness of fitness landscape, and fdc mainly 

focuses on measuring the fluctuant of the landscape, the 

lower fdc is, the more peaks and valleys may exist on the 

region, while RG mainly focuses on measuring the fluctuant 

of unit measure landscape, the greater RG is, the sharper up 

and downs on a relatively smaller region may exist. Since 

RG>0, e.g., RG may be smaller than one, or in tens, in 

hundreds, it is capable of giving the roughness order of 

different regions, but not capable of indicating whether the 

landscape is with acceptable roughness. As mentioned before, 

since fdc∈[-1, 1], there exits a threshold acceptable fdc, 

denoted as fdc0, which can tell if the landscape is with 

acceptable roughness. By comparing the features of different 

roughness indicators, we suggest to use both RG and fdc to 

measure the roughness of different fitness landscapes to fully 

understand their roughness, and to use fdc0 to judge if the 

landscape is with acceptable roughness for optimization 

algorithms. 

Example 2. The six hump camel back function is given as 

below. 

2 4 6 2 4

1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
f x x x x x x x= − + + − +X  

where 1 23 , 3x x−   . 

The feasible range [-3, 3]2 is equally divided into nine sub 

regions, S1~S9, as shown in Fig.9. The RG and fdc for those 

sub regions are calculated with different intervals of sample 

points (assuming that samples step length for (2) and grids 

step length for (3), (4) and (5) are equal to the intervals), as 

shown in Table Ⅲ , Table Ⅳ  and Fig.9, and all six 

local/global minima P1~P6 are found, see Fig.9 and Table Ⅴ.  

1) When sample points are collected with interval [0.01, 

0.01], the calculation time increases greatly 

compared to interval [0.1, 0.1]. From Table Ⅲ and 

Table Ⅳ, we can see that both fdc and RG have not 

changed much as sample interval becomes smaller, 

where changes on fdc is even smaller. This means 

that fdc is robust to sample density, thus we don’t 

have to collect too much samples to ensure a 

relatively accurate fdc.  

2) As mentioned in Section Ⅲ(D), when TV(Ω) is great 

and RD(Ω) is small at the same time, the region Ω 

should have great fluctuates. Therefore, it is possible 

that TV(Ω)/(RD(Ω)*m(Ω)) can reflect the roughness 

of the region Ω. On one hand, for the region S5, there 

exist two global minima as shown in Fig.9 and Table 

Ⅴ, while the value of TV/(RD*m) is also the greatest 

in nine sub regions; On the other hand, for the regions 

S4 and S6, there exist two local minima respectively, 

but their values of TV/(RD*m) are smaller than that 

of S3, on which there exists no local minimum. As a 

result, TV/(RD*m) is not appropriate to measure the 

roughness independently, and that’s why we have 

designed a comprehensive index RG in Section 

III(D). 

3) The best value of RG and fdc are both on the region S5, 

S4 and S6 in the same descent order, which is because 

there exist two local/global minima on these regions 

respectively, thus relatively rougher than the other 

regions with no local minima, see Fig. 9 and Table V. 

Hence RG and fdc are capable of measuring the 

roughness of fitness landscapes. 
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Fig. 9. Contour graph and roughness indicators (when interval is [0.1, 0.1]). 

 

Comparing RG and fdc, both can reflect roughness degree, 

International Journal of Modeling and Optimization, Vol. 10, No. 3, June 2020

102



  

but fdc is much easier to obtain, and more robust to the 

sample interval h, which means less samples are needed. 

Besides, since fdc∈[-1, 1], we can easily find a threshold 

acceptable fdc, denoted as fdc0 to tell if the landscape is with 

acceptable roughness, which is not available for RG. 

Therefore, it is suggested that when analysing the fitness 

landscape for optimization algorithms, fdc can be regarded as 

main index, while RG as aided index. 

 
TABLE III: THE ROUGHNESS INDICATORS (INTERVAL IS [0.1,0.1]) 

Sub regions TV RD m TV/(RD*m) fdc RG 

S1 752.22 141.7 4 1.3271 0.93816 0.82073 

S2 574.16 108.62 4 1.3215 0.9034 1.2765 

S3 777.26 110.79 4 1.7539 0.83125 2.9597 

S4 209.03 50.494 4 1.0349 0.45312 5.6599 

S5 16.042 2.2163 4 1.8096 0.33025 12.12 

S6 208.05 33.191 4 1.5671 0.45312 8.57 

S7 778.85 156.95 4 1.2406 0.83125 2.0935 

S8 575.24 134.41 4 1.0699 0.9034 1.0335 

S9 752.81 161.15 4 1.1679 0.93816 0.72225 

 

TABLE IV: THE ROUGHNESS INDICATORS (INTERVAL IS [0.01, 0.01]) 

Sub regions TV RD m TV/(RD*m) fdc RG 

S1 776.75 160.6 4 1.2092 0.94028 0.72216 

S2 584.91 125.6 4 1.1642 0.90577 1.097 

S3 802.23 138.89 4 1.444 0.82899 2.4693 

S4 223.54 50.494 4 1.1068 0.45177 6.0676 

S5 17.076 2.2017 4 1.939 0.3036 13.503 

S6 223.45 48.501 4 1.1518 0.45177 6.3143 

S7 802.39 143.72 4 1.3958 0.82899 2.3869 

S8 585.02 128.58 4 1.1375 0.90577 1.0718 

S9 776.81 162.36 4 1.1961 0.94028 0.71439 

 

TABLE V: ALL LOCAL/GLOBAL MINIMA OBTAINED 

Local minima x1 x2 ymin 

P1 -1.7036 0.7961 -0.2155 

P2 -1.6071 -0.5687 2.1043 

P3 -0.0898 0.7127 -1.0316 

P4 0.0898 -0.7127 -1.0316 

P5 1.6071 0.5687 2.1043 

P6 1.7036 -0.7961 -0.2155 

 

V. CONCLUSIONS AND DISCUSSIONS 

The fitness landscape analysis is meaningful for finding all 

local minima. In this paper, several roughness indicators are 

tested to see if they are qualified to measure the roughness of 

fitness landscapes, among which two indices, improved FDC 

and RG, are proved to be good for indicating the roughness. 

We find that the improved FDC, denoted as fdc, overcomes 

the limitation of traditional FDC which needs to know the 

global optima beforehand, and mainly focuses on measuring 

the fluctuant of the landscape: the lower fdc is, the more 

peaks and valleys may exist on the region; while RG is a 

comprehensive index that mainly focuses on measuring the 

fluctuant of unit measure landscape: the greater RG is, the 

sharper up and downs on a relatively smaller region may exist. 

Since the improved FDC has advantages over RG on fixed 

range (fdc∈[-1, 1]), robust to the sample interval h (or 

sample density), and easier to calculate, thus it can be 

regarded as main index, while RG as aided index. The 

proposed indices, improved FDC and RG, are calculated 

using the samples collected on the function, thus the 

differentiability of the function is not required, which is 

suitable for undifferentiable functions such as black box 

function, optimization function [10]. 

In the future, we would like to investigate how to utilize 

the proposed indices to practical applications and explore 

efficient algorithms by these indices on multi-dimensional 

optimization problems. 
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