
  

  

Abstract—In this paper, an incompressible, two-dimensional 

(2D), time-dependent, and laminar Newtonian fluid flow in a 

square cavity is simulated in order to investigate vortex 

dynamics in cavities. Navier-Stokes equations in 

vorticity-stream function formulation are solved numerically 

using the finite difference method (FDM) and alternating 

direction implicit (ADI) technique as they are computationally 

effective. Two original, distinguished, and unexplored cases of 

the three-sided lid-driven cavity have been investigated. In case 

(1) the upper and lower walls are translated to the right whereas 

the left wall is translated upward and the right wall remains 

stationary. Furthermore, in case (2) the upper wall is translated 

to the right but the lower wall is translated to the left whereas 

the left wall is translated downward and the right wall remains 

stationary. Moreover, the speed magnitude is unity for all 

moving walls. However, a MATLAB© code is developed, used, 

and validated by studying the one-sided lid-driven cavity. The 

results were in a very good agreement. Besides, stream function 

and vorticity values in addition to the location of primary and 

secondary vortices’ centers inside the square cavity have been 

revealed at low and intermediate Reynolds numbers, typically 

(Re=100 to 2000). Moreover, as Reynolds number increases, 

more secondary vortices are generated near the cavity corners 

and the main primary vortex approaches the cavity center. 

 

Index Terms—Finite difference method, lid-driven cavity, 

navier-stokes equations, vorticity-stream function formulation. 

 

I. INTRODUCTION 

Since the mid of the past century, the flow inside a 2D 

lid-driven square cavity was an interesting research field for 

several fluid dynamics investigators as it serves as a 

benchmark problem. Also, it is popular due to its simple 

geometry and the importance of studying vortices formation 

and location as well as the flow inside containers especially at 

the corners where cavitation occurs. The objective of solving 

this problem relies on its importance in several industrial 

applications such as short-dwell coaters utilized for the 

manufacturing of high-quality photographic films and papers, 

roll coating, several color printings, polymer processing 

apparatus design, Bingham plastics flows, dryers, and solar 

collectors  [1]-[6].  

Ghadimi et al. [7] simulated the flow in a square as well as 

the L-shaped cavity using fourth-order FDM. There are two 

review articles on the lid-driven cavity flows stated in  [8] and 

[9] for all curious readers. The accuracy can be achieved by 

choosing an appropriate mathematical technique for solving 

the Navier-Stokes equations. However, they will be solved 
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numerically in vorticity-stream function formulation (ψ-ω) 

for incompressible, 2D fluid flow using Finite Difference 

Method (FDM) and an implicit technique known as 

Alternating Direction Implicit (ADI) scheme as stated by 

Peaceman and Rachford, Jr [10]. One-sided, two-side and 

four-sided lid-driven cavity flows have been studied in these 

articles  [11] and [12] because of the rapid evolution of cavity 

flows. However, a MATLAB© code is developed, used, and 

validated by studying the one-sided lid-driven cavity at (Re = 

2000) and the results were compared with Gupta and Kalita 

[13] and they were in a very good agreement. Unlike 

two-sided and four-sided lid driven cavities, the three-sided 

lid driven cavity has no symmetry about any of its axes. The 

aim of the present study is to investigate the three-sided 

lid-driven cavity since it was not studied previously besides 

its academic value for vortices dynamics at corners.  

 

 
 (a) 

 
(b) 

Fig. 1. 2D three-sided lid-driven cavity flow configuration and boundary 
conditions for (a) case (1) and (b) case (2). 
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II. PROBLEM STATEMENT  

Consider an incompressible, two-dimensional (2D), 

time-dependent, and laminar Newtonian internal fluid flow in 

a square cavity of size (1×1), where, two distinguished 

unexplored cases of three-sided lid-driven square cavity flow 

will be investigated as shown in Fig. 1. In case (1) the upper 

and lower walls are translated to the right whereas the left 

wall is translated upward and the right wall remains 

stationary. Moreover, in case (2) the upper wall is translated 

to the right but the lower wall is translated to the left whereas 

the left wall is translated downward and the right wall 

remains stationary. Moreover, the speed magnitude is unity 

for all moving walls. These movements induce several 

vortices depending mainly on the Reynolds number (Re) and 

they are classified as Primary Vortex (PVx) and Secondary 

Vortex (SVx), where the subscript (x) is denoted for the 

vortex number. The no-slip boundary condition is applied to 

the right wall in both cases. However, the grid used for (Re = 

100) is (151×151) whereas for (Re = 500, 1000, and 2000) is 

(201×201). The selected Re values are based on a 

transformation in vortices generation, intense, and location. It 

is noteworthy that there are another two unexplored 

configurations for a three-sided lid-driven cavity without 

repetition. But we decided to simulate the two mentioned 

cases because they generate more vortices. 

 

III. GOVERNING EQUATIONS  

Consider an incompressible, 2D, time-dependent, viscous, 

and Newtonian fluid flow in a three-sided lid-driven square 

cavity. The dimensionless governing equations are the 

continuity (1) and 2D Navier-Stokes (2) and (3) in Cartesian 

coordinates which are given as follows [14]: 
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where, (u, v, p, and Re) are the velocity components along (x 

and y) axes, pressure, and Reynolds number, respectively.  

For a two‐dimensional flow, the vorticity ω at a certain 

fluid point is given by 

 

ω =
∂v

∂x
−

∂u

∂y
                                           (4) 

 

Defining, the stream function ψ in Cartesian coordinate 

through 

u =
∂ψ

∂y
,   v = −

∂ψ

∂x
                             (5) 

 

As the difference between two streamlines gives the 

volumetric flow rate between them and in order to derive the 

vorticity transport equation, the pressure is eliminated from 

the momentum equations by cross-differentiation. 

Differentiating (2) with respect to y and differentiating (3) 

with respect to x then subtracting the final equation from the 

earlier one, and by using (5) to replace velocity components 

with stream function, we get 
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Now, after the substitution of (5) in (4) the differential 

form of the elliptic stream function equation, known as 

Poisson equation (7), is given by 

 
∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω.                               (7) 

 

Once the stream function has been computed, the velocity 

components can be found using (5). Equations (4, 5, 6, and 7) 

are made dimensionless using a reference time, length, and 

velocity. 

 

IV. NUMERICAL DISCRETIZATION 

In order to discretize the computational domain, a 

structured collocated grid having (nx) horizontal grid lines 

and (ny) vertical grid lines, will be chosen for this problem, 

where the value of any variable (𝜔, 𝜓, 𝑢, and 𝑣 ) will be 

stored at the same point (i, j) and at two different time steps 

on a five-point stencil. The FDM will be used and 

Navier-Stokes equations are solved by the ADI scheme 

which is well established by [14]. However, the forward 

difference for time discretization and central difference for 

spatial discretization known as (FTCS) will be applied for the 

first as well as the second partial derivatives in (6) and (7).  

The resulting accuracy from using ADI technique along 

with FDM will be from the second-order in time and space 

O((∆𝑡)2, (∆𝑥)2, 𝑎𝑛𝑑 (∆𝑦)2) and it is unconditionally Stable 

according to [14]. Therefore, a larger time step can be used. 

Moreover, the benefit of using the vorticity-stream function 

form is the decoupling of pressure from velocity as well as 

guarantee satisfaction of the continuity (1). By solving the 

vorticity transport equation (6), the value of vorticity can be 

obtained in the computational domain. The values of the 

vorticity will then be introduced to the stream function 

Poisson equation (7). The resulting system of linear equations 

from the ADI scheme will be solved simultaneously, by 

means of the Tri-Diagonal Matrix Algorithm (TDMA) 

known as the Thomas algorithm. 

 

V. BOUNDARY CONDITIONS  

Consider the structured collocated grid for a description of 

the boundary conditions for three physical quantities: 

velocity, stream function, and vorticity, respectively on the 

four cavity sides as shown in Table I. Since stream function is 

constant along a wall, all its derivatives along the wall vanish. 

Therefore, the stream function Poisson equation (7) reduces 

to 
∂2ψ

∂N2|
𝑤𝑎𝑙𝑙

= −ω𝑤𝑎𝑙𝑙 .                        (8) 

 

where (N) is the normal direction. Moreover, Taylor series 

expansion has been used so that, the boundary conditions for 

vorticity (ω) were obtained with truncation error of first 

order. 

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

69



  

TABLE I: BOUNDARY CONDITIONS FOR STREAM FUNCTION, VORTICITY, AND VELOCITY

Cavity side 

Physical Quantity 

Stream Function (𝜓) Vorticity (𝜔) 
Velocity (u, v) 

Case (1) Case (2) 

Top wall 𝜓𝑖,𝑛𝑦 =  0 𝜔𝑖,𝑛𝑦 = −
𝜕2𝜓

𝜕𝑦2
=

2(𝜓𝑖,𝑛𝑦 − 𝜓𝑖,𝑛𝑦−1 − 𝛥𝑦 ∗ 𝑢𝑖,𝑛𝑦)

(𝛥𝑦)2
 𝑢𝑖,𝑛𝑦 =  1, 𝑣𝑖,𝑛𝑦 =  0  𝑢𝑖,𝑛𝑦 =  1, 𝑣𝑖,𝑛𝑦 =  0  

Bottom wall 𝜓𝑖,1   =  0 𝜔𝑖,1   = −
𝜕2𝜓

𝜕𝑦2
=

2(𝜓𝑖,1 − 𝜓𝑖,2 + 𝛥𝑦 ∗ 𝑢𝑖,1)

(𝛥𝑦)2
 𝑢𝑖,1 =  1, 𝑣𝑖,1 =  0  𝑢𝑖,1 =  −1, 𝑣𝑖,1 =  0  

Left wall 𝜓1,𝑗   =  0 𝜔1,𝑗   = −
𝜕2𝜓

𝜕𝑥2
=

2(𝜓1,𝑗 − 𝜓2,𝑗 − 𝛥𝑥 ∗ 𝑣1,𝑗)

(𝛥𝑥)2
 𝑢1,𝑗 =  0, 𝑣1,𝑗 =  1  𝑢1,𝑗 =  0, 𝑣1,𝑗 =  −1  

Right wall 𝜓𝑛𝑥,𝑗 =  0 𝜔𝑛𝑥,𝑗 = −
𝜕2𝜓

𝜕𝑥2
 =

2(𝜓𝑛𝑥,𝑗 − 𝜓𝑛𝑥−1,𝑗 + 𝛥𝑥 ∗ 𝑣𝑛𝑥,𝑗)

(𝛥𝑥)2
 𝑢𝑛𝑥,𝑗 =  0, 𝑣𝑛𝑥,𝑗 =  0  𝑢𝑛𝑥,𝑗 =  0, 𝑣𝑛𝑥,𝑗 =  0  

 

VI. NUMERICAL COMPUTATIONS 

The numerical computation of the flow variables u, v, ψ, 

and ω have been obtained for the current problem with the 

assistance of computer software. The solution convergence 

for each Reynolds number (Re) was measured by the residual 

of the vorticity (9) as indicated in [7], which is given as:   

 

𝑅𝜔 = ∑ (𝜔𝑖,𝑗
𝑛+1 − 𝜔𝑖,𝑗

𝑛 )
2

                        
𝑖=𝑛𝑥,𝑗=𝑛𝑦
𝑖=2,𝑗=2 (9) 

 

where (𝑅𝜔) is the vorticity residual and (n) represents the old 

iteration. However, the convergence criterion is set to  (10-10) 

for each Reynolds number (Re). 

 

VII. NUMERICAL RESULTS 

An incompressible, two-dimensional (2D), 

time-dependent, viscous, Newtonian internal fluid flow in a 

square cavity of size (1×1) is simulated, in which the upper 

wall is translated to the right while the other three walls 

remain stationary. This movement induces a flow 

characterized by a large Primary Vortex (PV) near the cavity 

center and smaller secondary vortices namely, Right 

Secondary Lower Vortex (RSLV), Left Secondary Upper 

Vortex (LSUV), and Left Secondary Lower Vortex (LSLV) 

at (Re = 2000). The results were tabulated in Table II. 

For case (1), Figs. 2 and 3 show the streamlines and 

vorticity contours, respectively inside the three-sided 

lid-driven square cavity at different Reynolds numbers 

specifically (100, 500, 1000, and 2000). Fig. 2 shows the two 

primary vortices, where PV1 occurs near the center whereas  

PV2 forms near the lower right corner of the cavity. They 

also illustrate the three secondary vortices, SV1, and SV2 that 

form at the lower half of the right wall and they appeared at 

(Re=500) whereas SV3 appeared near the lower-left corner at 

(Re=2000). Additionally, it can be seen from Fig. 2 that the 

higher the Reynolds number the bigger the size of secondary 

vortices and PV1 approaches the cavity center. 

Fig. 4 shows the alternation of centerline velocity 

components’ profiles (u and v) along the vertical as well as 

the horizontal lines, respectively through the center of the 

three-sided lid-driven square cavity. It is observed that, as 

Reynolds number increases the profile of the centerline 

velocity (u) approaches the lower-left corner of the cavity 

whereas the profile of the centerline velocity (v) approaches 

the lower right and the upper left corners of the cavity. 

 
TABLE II: PRESENT STUDY VERIFICATION FOR THE ONE-SIDED 

LID-DRIVEN CAVITY FOR (RE =2000) 

Vortex Position Property Present  Gupta and Kalita [13] 

PV 

𝜓𝑚𝑖𝑛 -0.1180 -0.118 

𝜔𝑣.𝑐. -1.9477 -------- 

x 0.5250 0.5250  
y 0.5500 0.5500 

RSLV 

𝜓𝑚𝑎𝑥 0.0024 0.00241 

𝜔𝑣.𝑐. 1.6721 -------- 

x 0.8450 0.8375  

y 0.1000 0.1000 

LSLV 

𝜓𝑚𝑎𝑥 7.1188e-4 8.58e-4 

𝜔𝑣.𝑐. 0.8006 -------- 

x 0.0850 0.0875  

y 0.1050 0.1000 

LSUV 

𝜓𝑚𝑎𝑥 1.1892e-4 1.22e-4 

𝜔𝑣.𝑐. 0.7774 -------- 

x 0.0300 0.0375  

y 0.8800 0.8875 
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(a)
(b)

Fig. 4. Case (1) centerline velocity profiles for the three-sided lid-driven cavity flow (a) u, (b) v.

(c) (d)

Fig. 2. Case (1) streamlines for the three-sided lid-driven cavity for different Re (a) 100, (b) 500, (c) 1000, (d) 2000.

(a) (b)

(c) (d)
Fig. 3. Case (1) vorticity contours for the three-sided lid-driven cavity for different Re (a) 100, (b) 500, (c) 1000, (d) 2000.



  

TABLE III: 𝜓𝑚𝑖𝑛 , 𝜓𝑚𝑎𝑥, 𝑎𝑛𝑑 𝜔𝑣.𝑐. VALUES AND LOCATION OF VORTICES’ CENTERS FOR THE THREE-SIDED LID-DRIVEN CAVITY FOR CASE (1) 

Vortex Position Property 
Reynolds number (Re) 

100 500 1000 2000 

PV1 

𝜓𝑚𝑖𝑛 -0.1384 -0.1621 -0.1695 -0.1731 

𝜔𝑣.𝑐. -3.4176 -3.1335 -3.0305 -2.9703 

x 0.4533 0.4650 0.4650 0.4700 
y 0.7067 0.6300 0.6050 0.5900 

PV2 

𝜓𝑚𝑎𝑥 0.0670 0.0607 0.0565 0.0541 

𝜔𝑣.𝑐. 5.4998 7.4313 8.1911 8.8112 

x 0.6867 0.7850 0.8100 0.8200 

y 0.1467 0.1400 0.1300 0.1250 

SV1 

𝜓𝑚𝑎𝑥 -------- 2.7712E-5 3.2834E-4 9.6992E-4 

𝜔𝑣.𝑐. -------- 0.3761 1.5538 3.3078 

x -------- 0.9800 0.9600 0.9450 

y -------- 0.3850 0.3650 0.3450 

SV2 

𝜓𝑚𝑖𝑛 -------- -1.2416E-5 -2.5166E-4 -8.2331E-4 

𝜔𝑣.𝑐. -------- -0.2824 -1.5368 -3.7609 

x -------- 0.9850 0.9650 0.9500 
y -------- 0.3250 0.2950 0.2800 

SV3 

𝜓𝑚𝑎𝑥 -------- -------- -------- 0.0222 

𝜔𝑣.𝑐. -------- -------- -------- 9.8357 

x -------- -------- -------- 0.2750 

y -------- -------- -------- 0.0600 

 

It is noticeable from Table III that as the Reynolds number 

increases the |ψmin| values of PV1 increase and the 

ψmax values of PV2 decrease and this is shown in Fig. 2 by 

the sizes of PV1 and PV2 that increase and decrease, 

respectively as the Reynolds number increases. Also, the 

reason for the shrinkage of PV2 is the formation of secondary 

vortices SV1, SV2, and SV3. 

For case (2), Figs. 5 and 6 show the streamlines and 

vorticity contours, respectively inside the three-sided 

lid-driven square cavity for different Reynolds numbers 

specifically (100, 500, 1000, and 2000). Fig. 5 shows the two 

primary vortices, where PV1 occurs near the center whereas 

PV2 forms near the left wall of the cavity. They also illustrate 

the two secondary vortices, SV1 that forms near the lower 

right corner and it appeared at (Re=500) whereas SV2 

appeared near the upper left corner at (Re=1000). 

Additionally, it can be seen from Fig. 5 that the higher the 

Reynolds number the bigger the size of secondary vortices 

and PV1 approaches the cavity center. 

Fig. 7 shows the alternation of centerline velocity 

components’ profiles (u and v) along the vertical as well as 

the horizontal lines, respectively through the center of the 

three-sided lid-driven square cavity. It is observed that, as 

Reynolds number increases the profile of the centerline 

velocity (u) approaches the upper and lower walls of the 

cavity whereas the profile of the centerline velocity (v) 

approaches the upper wall and the lower right corner of the 

cavity. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Case (2) streamlines for the three-sided lid-driven cavity for different Re (a) 100, (b) 500, (c) 1000, (d) 2000. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Case (2) vorticity contours for the three-sided lid-driven cavity for different Re (a) 100, (b) 500, (c) 1000, (d) 2000. 

 

 
(a) 

 
(b) 

Fig. 7. Case (2) centerline velocity profiles for the three-sided lid-driven cavity flow (a) u, (b) v. 

 

TABLE IV: 𝜓𝑚𝑖𝑛 , 𝜓𝑚𝑎𝑥, 𝑎𝑛𝑑 𝜔𝑣.𝑐. VALUES AND LOCATION OF VORTICES’ CENTERS FOR THE THREE-SIDED LID-DRIVEN CAVITY FOR CASE (2) 

Vortex Position Property 
Reynolds number (Re) 

100 500 1000 2000 

PV1 

𝜓𝑚𝑖𝑛 -0.1044 -0.1422 -0.1418 -0.1396 

𝜔𝑣.𝑐. -2.5182 -3.0234 -3.2169 -3.3583 

x 0.6267 0.6050 0.6250 0.6450 

y 0.6400 0.5200 0.5100 0.5200 

PV2 

𝜓𝑚𝑎𝑥 0.0574 0.0668 0.0829 0.0931 

𝜔𝑣.𝑐. 6.8794 7.5997 7.2145 7.0216 

x 0.1267 0.1400 0.1650 0.1750 

y 0.5333 0.6350 0.6650 0.6500 

SV1 

𝜓𝑚𝑎𝑥 -------- 1.4637E-6 0.0011 0.0040 

𝜔𝑣.𝑐. -------- 0.1468 2.1760 3.5239 

x -------- 0.9950 0.9400 0.9150 

y -------- 0.1700 0.1350 0.1100 

SV2 

𝜓𝑚𝑖𝑛 -------- -------- -0.0131 -0.0154 

𝜔𝑣.𝑐. -------- -------- -27.0323 -22.5939 

x -------- -------- 0.1250 0.1050  
y -------- -------- 0.9700 0.9650 

 

Unlike Table III, it is obvious from Table IV that as the 

Reynolds number increases the |ψmin| values of PV1 

increase but they decrease at (Re = 1000 and 2000) whereas, 

the ψmax values of PV2 continued to increase. Additionally, 
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this is shown in Fig. 5 by the sizes of PV1 that increase but 

they decrease at (Re = 1000 and 2000) whereas, sizes of PV2 

increase as the Reynolds number increases. Also, the reason 

for the shrinkage of PV1 at (Re = 1000 and 2000) is the 

formation of secondary vortices SV1 and SV2 combined with 

the increase in the size of PV2. 

 

VIII. CONCLUSION 

An incompressible, 2D, unsteady Newtonian fluid flow in 

a square cavity is simulated in this study using FDM and ADI 

technique. The one-sided lid-driven cavity is examined at (Re 

= 2000) in order to validate the results and they are in a very 

good agreement with published results in the literature. Two 

distinguished unexplored cases of the three-sided lid-driven 

cavity have been investigated. In this work, the speed 

magnitude is unity for all moving walls. It is observed from 

the streamlines’ Figs. that as Reynolds number increases, the 

main primary vortex approaches the cavity center and the 

secondary vortices get bigger in size and strength. Also, in 

case (1) the sizes of PV1 and PV2 increase and decrease, 

respectively as the Reynolds number increases. On the other 

hand, in case (2) the sizes of PV1 increase but they decrease at 

(Re = 1000 and 2000) whereas, the sizes of PV2 increase as 

the Reynolds number increases. As the current numerical 

solution for the flow established in the three-sided lid-driven 

square cavity like no other, these outcomes offer a vital 

source to researchers to verify their outcomes. The 

MATLAB© code used in this study can be used to solve 

several fluid flow problems with accurate results, these 

problems may be either internal or external flows such as 

channel flow or flow over obstacles with simple geometry. 
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