
  

  

Abstract—A prolonged campaign of peaceful interstate 

competition is an ideal strategic application of artificial 

intelligence.  Monte Carlo simulation, based on validated war 

analytics, must be at the heart of this capability.  Otherwise the 

system will not know how to assess the potential consequences of 

failed solutions, chief among them combat fatalities resulting 

from interstate war.  Although the power law has been used 

since 1960 to model the statistical distribution of deaths 

resulting from violent conflict, it is not a valid candidate for use 

in Monte Carlo simulation because it is mathematically 

divergent for the case of interstate war. Probing Correlates of 

War Project data, investigators found that combat fatalities in 

interstate war follow log-gamma or log-normal distributions, 

depending on whether a state is attacking or defending.  Both 

distributions are valid for use in Monte Carlo simulations. 

Moreover, they are strong quantitative evidence that war should 

be modeled as a zero-sum, non-cooperative, high-risk game. 

 
Index Terms—Combat deaths, interstate war, log-gamma, 

log-normal, monte carlo, power-law.  

 

I. INTRODUCTION 

Russian President Vladimir Putin, speaking about artificial 

intelligence (AI), said “whoever is the leader will become the 

ruler of the world” [1].  Whether hyperbolic or prophetic, his 

assertion is difficult to dismiss.  At the very least, effective 

innovation and use of AI systems is essential to global 

leadership in the 21st century. Thus far, however, most 

discussed AI applications fall far outside the strategic level of 

decision-making, to include killer robots, antimissile systems, 

and even an AI-enabled “dead hand” [2].   

AI-assisted systems, where humans actively play a role in 

decision-making, can have more impact at the strategic level. 

We are a significant distance, both technologically and 

ethically, from complete AI control of strategic retaliatory 

strikes.  Even taking advice from an AI system about whether 

to launch on an attack warning seems unlikely.  There is not 

enough time to crosscheck the validity of the AI’s solution 

for so consequential a decision given the possibility of a false 

alarm. Conversely, complex and prolonged periods of 

interstate competition are ideal for strategic application of AI 

because there is time to understand AI advice that is difficult 

to understand. Although each decision is not as consequential, 

the true power of AI will be in its ability to ensure that 

cumulative results are optimized.  

Monte Carlo simulation, based on validated war analytics, 

are essential to decision-enhancing systems.  The Monte 

Carlo method, widely used in many fields, relies on repeated 

random sampling and statistical analysis.  After carrying out 
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and comparing many simulations of possible courses of 

action, an AI system can chart the best path.  Moreover, 

Monte Carlo is one of the computing methods that can be 

accelerated by quantum computers [3]. Large and complex 

Monte Carlo problems that are currently intractable will be 

solved in reasonable times. However, without validated 

analytics describing the risk associated with interstate 

competition, Monte Carlo analysis will not be able to 

correctly estimate the potential consequences of failed 

solutions.  

The most straightforward and tangible consequence of the 

failure of peaceful interstate competition is combat fatalities.  

Beginning in 1960 with Lewis Fry Richardson’s famous “The 

Statistics of Deadly Quarrels” [4], the power law has been 

used almost exclusively to model the statistical distribution 

of war fatalities. A phenomenon may be probabilistically 

distributed according to the power law if the logarithm of the 

exceedance probability P(S>s) plotted against the logarithm 

of severity s (in deaths) appears as a straight line with a 

negative slope –q.  This is written as 𝑃(𝐶 > 𝑐) = 𝑐−𝑞 .  

Intuitively, the power law states that the probability of 

exponentially increasing consequences is observed to 

decrease exponentially.   

An exceedance probability indicates how often a random 

variable S will exceed a value of s, written as P(S>s).  

Exceedance probabilities are relevant to disasters, natural or 

manmade, because disaster conditions exist for all values 

above a value of s [5].  To construct a building to survive 

strong earthquakes, for example, the architect cares about the 

probability that the earthquake will be greater than some 

specified Richter value, such as “9”.  Above that severity the 

building will be damaged.  We would write this as P(S>9). 

Similarly, in war the probability of losing soldiers in an 

amount greater than some value is much more important than 

the probability of losing a specific number of soldiers.  There 

are, of course, a multitude of issues that contribute to nations 

building armies and engaging in war, but for the purposes of 

the present research, soldier deaths as a measure of severity s 

is the focus.  The probability density function is the derivative 

of the exceedance probability function.  Likewise, the 

exceedance probability is the complement (i.e. subtracted 

from one) of the integral of the probability density function 

from zero to S. 

The power law, sometimes also referred to as the Pareto 

distribution, is mathematical divergent when its parameter q 

is less than one.  Unfortunately, most research reports q to be 

less than one for interstate war combat deaths. The present 

study sought one or more valid distributions to enable the 
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application of Monte Carlo simulation to strategic 

competition and to draw inferences from the results to 

advance the field of strategic deterrence. 

 

II. LITERATURE REVIEW 

Recent literature about the distribution of war combat 

deaths fit into one of three areas: application of the power law, 

alternative distributions, and use in Monte Carlo simulation.  

A. Power Law 

Researchers continue to hold that “Richardson’s finding 

that the severity of interstate wars is power law distributed 

belongs to the most striking empirical regularities in world 

politics” [6], many reporting q values near 0.5 [7].  A power 

law fit with q = 0.5 is shown in Fig. 1 with a dashed red line.  

Unless the use is qualified, applications of the power law to 

interstate war when q<1 are in error [8]. A value less than one 

indicates that the exceedance probability decreases slower 

than the increase in number of deaths, implying that the 

number of deaths increases arbitrarily such that the mean is 

mathematically divergent.  A proper qualification will 

recognize that “data held to be power-law distributed 

represent samples from some underlying population. As these 

samples often cover a narrower scale range than that of the 

population as a whole they are truncated” [9]. Some 

researchers use q when it is less than one to estimate the 

likelihood of war and terrorist attacks [10], [11], an 

application that is in error even with the aforementioned 

qualification. It is noted that there is some overlapping 

research where war is reported to have a q value greater than 

one [12] and are, therefore, not divergent.   

B. Alternative Distributions 

Curvature in log-log data suggest the applicability of 

logarithmic distributions other than the power law, such as 

the log-normal distribution [13].  A log-normal (LN) 

distribution is a normal distribution applied to the logarithm 

of the statistic.  Curvature is evident in many of the plots 

meant to demonstrate the applicability of the power law to 

war death statistics [6], [7]. The log-normal is a symmetric 

distribution containing values less than zero, which is 

problematic because the number of deaths should be greater 

than or equal than one.  A non-symmetric distribution 

favoring higher statistics is the log-gamma distribution.  The 

log-gamma (LG) distribution, conspicuously absent from the 

literature about interstate combat deaths, is the gamma 

distribution applied to the logarithm of the statistic. It may be 

written as follows:  

1 log( )/1
LG[log( ); , ] log( )

( )

a x

a
x a b x

a




− −=  (1) 

The gamma function is the exponential distribution when 

α=1. 

C. Use in Monte Carlo Simulation 

Distributions governing violent conflict are being 

combined with the Monte Carlo method to study conflict and 

cooperation.  However, research continues to rely exclusively 

on the power law for the distribution of combat deaths [14].  

While some research recognizes the applicability of the 

exponential and log-normal distribution to the times between 

violent events [15], their use has not been incorporated into 

Monte Carlo methods for modelling severity (i.e. deaths). 

 

III. METHOD 

Quantitative methods are necessary to build validated war 

analytics.  The Correlates of War (COW) Project began 

publishing war data in 1963 and has continuously improved 

and added to this data ever since.  Its data is quantitative and 

subject to careful quality control.  Of interest to the present 

research is COW’s interstate classification of wars based 

upon the status of territorial entities and focusing on those 

classified as members of the state system.  This dataset exists 

within COW’s War Data, 1816 - 2007 (v4.0) [16].  It includes 

wars that took place between or among recognized states 

where there are at least 1,000 fatalities.  The data exists as 

rows of named wars that include start and end dates, combat 

deaths, outcome, and which state was the initiator. Because 

the focus of this study is strategic war, which requires a level 

of resources achievable only by nation states, other datasets 

were not used. The interstate dataset contains 91 named 

interstate wars from 1816 to 2007, most of which involve 

more than two states.  Accordingly, COW data includes a row 

for each state in a named war, indicating when the state 

entered the war and on which side it fought as well as 

corresponding deaths.   

Based merely on casualties, “asking who won a given 

war… is like asking who won the San Francisco earthquake” 

[17].  There is more to victory in war than simple casualty 

numbers.  But to prevent judgements from intermingling with 

potential conclusions of the study, investigators removed 

themselves from that aspect and relied specifically on the 

determinations of the COW Project.  Moreover, the Monte 

Carlo method requires that whatever factors causing a war 

and its severity are stipulated and will result in a statistical 

distribution.  Despite being probabilistic, one can still learn 

about the severity of war to better understand the concept of 

war, its causes, and decision makers’ willingness to begin a 

war or how they react to war. Critics of COW often state that 

the project fails to consider many of the classical – or 

qualitative – approaches to studying warfare and its numerous 

variables.  Despite these alleged shortcomings, the 

investigators believe that COW data supports a quantitative 

approach to studying a large problem that may indeed have 

no immediate comprehensive explanation. 

Common sense suggests that all combat deaths of all 

nations participating in a single named interstate war be 

treated as one statistic. However, this turns out to be wrong.  

In a Nash [18] zero-sum game where the objective is to 

minimize the maximum number of casualties, the so-called 

“minimax” strategy where there is no cooperation, each 

nation decides unilaterally which strategy to employ.  

Speaking about this situation, Schelling observed that a zero-

sum “minimax strategy converts the situation into one 

involving two essentially unilateral decisions” [19].  

Interstate war is thus strictly a unilateral risk calculation 

involving multiple belligerents as each state makes its own 

risk decision.  As a result, each nation’s losses in the war, not 

simply the total of a named war, are considered separate.  A 

war in which three nations combat two enemy nations 
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therefore results in five rows of data rather than one.  Thus, 

the 91 named COW interstate wars become 337 “unilateral 

decisions”.  The veracity of this claim is borne out by the 

results of the study.  

 

 

Fig. 1. Exponential distribution fit ( = 0.51 wars/yr) to COW [16] Inter-

State war data where fit goodness R2 = 0.93. 

IV. DATA ANALYSIS AND DISCUSSION 

The probability of war is distinct from the severity of war, 

the latter being dependent on the former.  First, the temporal 

statistics of the 91 named interstate wars is analyzed, 

specifically counting the frequency of the number of years 

between consecutive wars.  The result is that the time between 

wars follows an exponential distribution where there is on 

average one interstate war every two years, yielding an 

exponential distribution parameter λ=0.5 wars/yr.  The data 

and exponential fit to the data is shown in Fig. 1. Because of 

a mathematical connection between the exponential and 

Poisson distributions, it is known that the probability of there 

being one or more wars per year follows the Poisson 

distribution with the same parameter. A Poisson distribution 

based on COW data predicts that in any given year there is a 

31% chance that there will be one interstate war somewhere 

in the world.  The average deaths and number of states 

participating in wars has remained nearly constant in the last 

200 years. Thus, consideration of additional temporal 

changes across the dataset is not warranted.  

 

 

Fig. 2. Probability density and exceedance probability P(S>s) curves comprised of COW [16] interstate war data and a parameterized log-gamma (LG) for 

all interstate wars from 1816 to 2007.  The probability density functions (PDF) track the right-side scale and the exceedance curves track the left-side scale.  

A power-law (PL) fit with q=0.50 is shown for comparison.  Circled areas A and B indicate where the power law is deficient. 

A log-gamma probability density with parameters α = 9 

and β = 0.39 fits the COW data for all 337 data points as is 

indicated in Fig. 2 [20]. This is written as LG[α=9, β=0.39].  

The R2 of the probability density fit compared to the COW 

data is 0.99, indicating an excellent fit.  Equally important, 

the log-gamma fit holds for s > 106. This can be seen in the 

exceedance probability P(S>s) curve, derived from the 

probability density, that follows the logarithmic scale on the 

right-side of Fig. 2. A side effect of converting 91 named wars 

to 337 state wars is that the maximum number of deaths for a 

given war falls below 107.  Because the P(S>s) curve follows 

the complement of the integral of density, there are also no 

data points for P(S>107).  This asymmetric log-gamma 

distribution, which favors the higher statistics, fits the data 

better than any log-normal distribution.  Even though a log-

normal provides an overall excellent fit, it fails to adequately 

fit the high-consequence portion of the data. 

To check the fit for the most extreme values of combat 

deaths, the average slope of the power law and log-gamma 

curves between severities s=104 and s=108 were compared.  

They are found to be in good agreement (0.62 versus 0.55).  

Thus, the log-gamma distribution fits the entire range of 

severity covered by the COW data when the wars are 

analyzed only by state (i.e. treating wars as unilateral 

decisions). Critically different than the power law, however, 

is that the slope of the log-gamma increases in negativity so 

that the distribution is valid for higher death values. 

Specifically, the slope of the P(S>s) curve between 108 and 

109 is -3.0.  As this slope is less than negative one, and 

subsequent slopes are decreasing, the fit is valid. The same 

cannot be said for the power law.   

Much is gained by correcting the distribution of combat 

deaths.  First and foremost, the log-gamma is valid as a 

probability distribution.  The area under the curve and its 

mean are bounded and convergent with increasing deaths.  

The log-gamma covers all ranges of combat deaths where the 

power law does not. Specifically, the power law does not 

provide results for regions A and B identified by dashed green 

lines in Fig. 2.  Region A covers combat deaths below 1,000.  

Certainly, one can expect and does observe that states suffer 
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interstate combat deaths below 1,000.  However, they were 

not intended to be included in the COW interstate war dataset 

and only appear because the named wars were broken apart 

into their state components.  Region B is the estimated 

combat deaths above ten million.  Being able to estimate this 

region has important implications about the probability of 

wars not yet fought.  The log-gamma fit can be used to 

estimate the probability of wars having 10M, 100M, and even 

1B causalities.  If there is an interstate war, it turns out that 

the probability of this many deaths is 2%, 0.5%, and 0.1%, 

respectively.  The power law cannot be used to predict these 

probabilities. The fact that the log-gamma fits the data for all 

ranges of combat deaths is a strong indication of its 

correctness over the use of the power law.   

Knowing a proper distribution for interstate war deaths, 

one can begin to ask questions about the underlying 

probabilities.  In general, log-gamma distributions are the 

combination of different samples from an exponential 

distribution.  The log-gamma distribution that fits all COW 

interstate war data, having two parameters α and β is 

generated by taking nine samples (α = 9.0) from an 

exponential distribution of the logarithm of combat deaths 

having the same value for the beta rate parameter (β = 0.39). 

The significance is that the deaths in interstate war are a 

multiplicative combination of α independent random samples, 

or the addition of the logarithm of α samples.  The 

exponential distribution used to create the log-gamma 

distribution is unique in that it is completely “memoryless”, 

meaning that the past has no bearing on its future.   

 

 

Fig. 3. Log of attack risk (expected deaths) vs. log deaths. 

 

The statistics indicate that war behaves like a board game 

involving two different random spinners.  Call the first the 

“war spinner” and the second the “severity spinner”. The war 

spinner is governed by the Poisson distribution and the 

severity spinner is governed by the exponential distribution.  

Each year of the game, the first spinner is spun to decide if a 

war occurs. If war is the outcome, each player spins the 

severity spinner nine times.  The results of the nine spins, 

which are the logarithm of the deaths, are added together to 

obtain the total combat deaths for that player.  It does not 

matter who attacks or defends in this version of the game.  On 

the other hand, if COW data is analyzed in terms of attack 

versus defend and win versus lose cases, one finds that the 

distribution of Fig. 2 is comprised of different distributions 

for each of these cases. Table I reports the individual 

distributions with win-lose and death statistics.  When the 

game takes into account attack and defend strategies, it is the 

same except that an attacker must be chosen, and the attacker 

and defender spin different severity spinners.  The first row 

of the attack column in Table 1 indicates that the attacker 

would spin a log-gamma spinner with β=0.39 on average 8.6 

times.  What is more interesting is what probability 

distribution governs the severity spinner for the defend case.  

Overall, the best fit for defend is a log-gamma distribution.  

However, the defend-win case appears distinctly log-normal.  

The log-normal distribution is symmetric and, unlike the 

exponential distribution, is not “memoryless”, suggesting that 

defend-win statistics are influenced by past wars and possible 

evidence of learning. 

   
TABLE I:  FITS TO COW [16] INTERSTATE WAR ATTACK AND DEFEND 

STATISTICS 

 
 

 

Despite the subtleties between attack and defend, the 

overall result is confirmed from the perspective of combat 

deaths: Strategic war is zero-sum, non-cooperative, and high-

risk.  Strategic war based on combat deaths is zero-sum 

because each participant starts with a number of combatants 

and loses some number of them.  Neither side gains any 

combatants through enemy losses.  The non-cooperative 

aspect of war is confirmed by having achieved excellent 

statistical results based on using all 337 rows of the 91 named 

interstate wars. The research team attempted but could not 

achieve these good results using only the 91 named wars.  The 

high-risk nature is borne out by two results: (1) the 

distribution of combat deaths is based on the logarithm of war 

deaths and (2) the log of combat deaths follows a gamma 

distribution, which favors the right-side, high-severity part of 

the curve.   

Monte Carlo simulation can be used to assess the risks of 

different strategies applied to interstate competition. 

However, the Monte Carlo technique depends on having valid 

probability distributions.  The logarithmic distributions 

identified in Table I are valid in this context.  In a Monte 

Carlo simulation, they can be used to estimate the combat 

deaths that are likely if a strategy fails to maintain peaceful 

competition. In turn, results from data-driven simulations can 

be used to train and test AI systems so they are reliable in 

recommending courses of action.  

The importance of using the correct distribution is made 

clear in Fig. 3. It shows risk, the product of probability and 

deaths (i.e. expected deaths), as a function of deaths based on 

COW data.  The LN and LG fits to this data are from Table 1.  

The risk for the LG fit to the Defend-Lose data continues to 
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rise beyond 1011, whereas the LN fit to the Defend-Win data 

peaks at 108.  Expected deaths in neither case, however, 

exceed 105. 

The next phase of research will focus on the probability of 

war and possibility of it being conditional on factors such 

geographic proximity of states and/or their alliances. Results 

should allow Monte Carlo simulation of interstate 

competition strategies based on geography and/or alliances to 

estimate the risk of interstate war in terms of combat deaths. 

  

V. CONCLUSION 

Quantitative methods, not anecdotes, will be needed to 

train and test future military AI systems to help make 

decisions that avoid or minimize the risk of war.  

Richardson’s use of the power law is such a quantitative 

method.  However, use of the power law in this context is 

invalid.  Here forward, it should be replaced by a log-gamma 

or log-normal distribution depending on the attack and defend 

strategy. Despite their shortcomings, COW Project and 

similar data seems underutilized.  More emphasis should be 

placed on data-driven research because these are the 

foundation of future strategic AI technologies and made 

possible by the Monte Carlo technique.  Research is ongoing 

to understand why the probability distributions for interstate 

war are logarithmic.  In macroeconomic theory, wealth has a 

logarithmic utility, hinting that combat deaths exhibit the 

same sort of utility to a nation at war.    
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