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Abstract—A multi–objective inventory models of 

deteriorating items have been developed with Weibull rate of 

decay allowing shortages, in which demand is taken as a 

function of time and production is proportional to demand rate. 

Here objectives are to maximize the profit from different items 

with space constraint on infinite planning horizon for non- 

integrated and integrated business. Objectives are also made 

fuzzy in nature for non- integrated business. The compromised 

solutions of the optimization problem are obtained by the 

application of Zimmermann’s technique and Fuzzy Additive 

Goal Programming technique. Crisp and fuzzy weights are used 

to incorporate the relative importance of the objective and 

constraint goals. The models are illustrated numerically and the 

results of those models each with crisp and fuzzy weights are 

compared. The results for the model assuming them to be Single 

House Integrated Business (SHIB) are obtained by using 

Generalized Reduced Gradient method. The costs like cost per 

unit items, holding costs, set up costs, shortage costs, selling 

prices are taken in fuzzy environment as triangular fuzzy 

numbers and trapezoidal fuzzy numbers also. When costs are 

imprecise, optimistic and pessimistic equivalent of fuzzy 

objective function is obtained by using credibility measure of 

fuzzy event by taking fuzzy expectation. The problems have 

been solved by formulating them as a single objective with fuzzy 

costs.  The results of fuzzy SHIB model is illustrated with 

numerical example and those are compared with the best 

possible solution of the non- integrated business.  

 

Index Terms—Multi–objective, crisp/fuzzy weights, 

multi–item, expected value with possibility/necessity. 

 

I. INTRODUCTION 

In most of the inventory model, the production rate and 

demand rate are uniform throughout the period.  

But it is usually observed in the market that sales of the 

fashionable goods, electronic gadgets, seasonable products, 

food- grains etc. change with time. So, the production rate and 

demand rate is varied. Demand varies according to the time, 

quality of items, festivals, weathers etc. For these reasons, 

dynamic models of production inventory systems have been 

considered and solved by assuming that demand is a 

continuous function of time which may increase or decrease 

with time and production depends on many factors like man 

power, introducing new technology, availability of new 

material, power supply, time, demand etc. A number of 
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research papers have already been published on the topic in 

which production of many retail items is proportional to 

demand [1]-[3] and others]. Marketing researchers recognize 

that the production of many retail items is proportional to the 

demand along with factors like man power, new technology, 

power supply, time etc. [4]. Many times, the holding cost of 

perishable items increases with time. [5] developed an 

inventory model for deteriorating items with price-dependent 

demand and time-varying holding cost.  

Recently much work has been done regarding inventory 

models for deteriorating items. The life–time of perishable 

items like perfumes, medicines, blood etc. are fixed and they 

cannot be used after the date of expiry.  [6] have reviewed 

inventory models for deteriorating items. [7]-[9] have been 

developed some inventory models for perishable items like 

perfumes, medicines, blood etc. which have the fixed lifetime 

and cannot be used after the expired date.  [10] developed an 

inventory model with Weibull rate of decay having selling 

price dependent demand. However, they considered the case 

of instantaneous replenishment. In many practical situations 

like food processing industries, photochemical industries, the 

production is not instantaneous. [11] discussed a perishable 

inventory model with finite rate of replenishment having 

Weibull lifetime and price dependent demand. [12] 

developed an inventory model for items with Weibull 

ameliorating. [13] gave a model on Weibull distributed 

deterioration. [14], [15] and others presented inventory 

models with Weibull distribution deterioration, time-varying 

demand and shortages.  

In many problems more than one objective can be 

considered. But there is a multi item multi objective inventory 

model for integrated and non–integrated business developed 

by [16]. [17] Developed a multi–objective fuzzy inventory 

model of deteriorating items with available storage area. To 

give the relative importance to the objective they have 

assigned cardinal weights (crisp/fuzzy). [19] and others 

presented a model with necessity/ possibility constraint by 

using expected value of fuzzy variable. Muti item classical 

inventory model under resource constraints such as capital 

investment, available storage area, number of orders and 

available setup time etc. are presented in well known books 

[19], [20] and others]. Taking space limitation as constraints 

several workers [21], [22] have considered multi item 

inventory models in crisp and fuzzy environments. [4], [23] 

have developed two inventory models, in the first model, the 

production rate is assumed to be a function of the on hand 

inventory level and in the second model, the production rate is 

assumed to be a function of demand rate. 

Fuzzy Inventory Models of Perishable Multi-Items for 

Integrated and Non-integrated Businesses with 

Possibility/Necessity Measure of Trapezoidal Fuzzy Goal 

Savita Pathak and Seema Sarkar (Mondal) 

International Journal of Modeling and Optimization, Vol. 2, No. 2, April 2012

119



 

 

Nowadays, almost every important real world problem 

involves more than one objective. So, decision makers try to 

model them as multi criteria decision making (MCDM) 

problems identifying the different criteria. The importance of 

such models is to produce the best alternative satisfying the 

objectives and the constraint which best fulfills the 

requirement of decision makers. Recently various new 

methods [cf. [24]-[26] have been outlined to find the 

compromise solutions of MCDM problems. 

In many realistic situations, it is difficult to assign precise 

aspiration levels to objectives. Moreover, in some cases, it is 

not even possible to articulate precise boundaries of the 

constraints. In such situations a fuzzy goal model is more 

appropriate. In these cases, normally, linear and non- linear 

shapes for the membership functions of the fuzzy objective 

and constraint goals are proposed. To reflect the decision 

maker’s performances regarding the relative importance of 

each objective goal, crisp / fuzzy weights are used [cf. [27]. 

The fuzzy priorities may be “linguistic variables” such as 

“very important”, “moderately important” and “important”. 

Membership functions can be defined for these fuzzy 

priorities in order to develop a combined measure of the 

degree to which the different goals are attended. Recently, [28] 

presented a multi-objective inventory model of deteriorating 

items with space constraint in a fuzzy environment. Till now 

the cost of items are taken as constant, but in real life 

situations these costs may be of imprecise type. The costs of 

the items may decrease or increase according to the demand 

and stock etc.  That’s why the costs (units holding setup 

shortage deterioration) are taken in fuzzy environment as 

triangular and trapezoidal fuzzy numbers. The 

possibility/necessity and credibility measures of objective are 

also considered. [29], [30] introduced the necessity and 

possibility constraints which are very relevant to the real life 

decision making problems and presented the process of 

defuzzification for their constraints. Roy et.al [31], [32] and 

[18] have developed models with necessity and possibility 

constraints by using expected value of fuzzy variables 

[cf.[33]].  

In this paper, a multi–objective inventory model of 

deteriorating items have been developed with Weibull rate of 

decay allowing shortages, in which demand is taken as a 

function of time, and production is proportional to demand 

rate. Here the objectives are to maximize the profit from 

different deteriorating items with space constraint on infinite 

planning horizon for non- integrated and integrated business. 

It is assumed that the deteriorating rates of different items 

follow the two parameter Weibull distributions and observed 

that the deteriorating cost along with distribution parameters 

have a tremendous influence on the optimal profit for both 

type of businesses. The objectives for profit maximization for 

each item are separately formulated. These objectives are also 

made fuzzy in nature for non-integrated business. The 

impreciseness of inventory parameters and goals for 

non-integrated business has been expressed by linear 

membership functions. The compromised solutions of the 

multi–objective non-linear optimization problem are obtained 

by the application of two different fuzzy optimization 

methods – (i) Zimmermann’s technique and (ii) Fuzzy 

Additive Goal Programming technique (FAGP) based on 

gradient method. Crisp and fuzzy weights are used to 

incorporate the relative importance of the objective and 

constraint goals. The models are illustrated numerically and 

the results of those models each with crisp and fuzzy weights 

are compared.  

The results for the model assuming them to be Single 

House Integrated Business (SHIB) are obtained by using 

Generalized Reduced Gradient method (GRG).  Till now the 

cost of items are taken as constant.  But in real life situation 

these cost may be of imprecise type. So uncertainty is to be 

imposed, that’s why in this paper the costs like cost per unit 

items, holding costs, set up costs, shortage costs, selling 

prices are taken in fuzzy environment as triangular fuzzy 

numbers and for more realistic situations, these are taken as  

trapezoidal fuzzy numbers also. The fuzzy SHIB model with 

imprecise inventory cost is formulated to optimize the 

possibility necessity measure of fuzzy goal of the objective 

function. When costs are imprecise, optimistic and 

pessimistic equivalent of fuzzy objective function is obtained 

by using credibility measure of fuzzy event by taking fuzzy 

expectation. Also the problems have been solved by 

formulating them as a single objective with crisp and fuzzy 

costs.  The results of crisp and fuzzy SHIB model is illustrated 

with numerical example and those are compared with the best 

possible solution of the non- integrated business.  

 

II. ASSUMPTIONS AND NOTATIONS 

The following assumptions and notations have been used in 

developing the model:  

1) n = number of items. 

2) Shortages are allowed and backlogged. 

3) The lead time is zero. 

4) Planning horizon is infinite. 

5) W= available floor or shelf – space (sq. ft.), 

For i – th (i = 1, 2, 3………, n) item. 

6) W
i  

=
  
storage space required per unit item (sq. ft.), 

7) Ki  = stock level at time t1i,  

8) Si = shortages level at time t3i, 

9) Items are deteriorated and its rate is θi (t) i.e.,   
 1

)(


 itt iii
 , 0 < α i< 1,  t > 0,   βi ≥ 1. 

Holding cost hi (t) units time is linearly time 

dependent i.e., hi (t) = h1i + h2i t where h1i and h2i are 

positive constants ($).  

10) Ti = the time period for each cycle (years), 

11) Hi = the shortage cost per unit per time ($), 

12) Ci = the ordering cost per cycle ($), 

13) Time dependent demand at a time t is defined as Ri(t) 

= ai  - bi t, ai  > 0 and bi (0 < bi ≤ 1 ) are constants.  

14) Ni = the purchase cost per unit per time ($). Also,    

       selling price per unit is mi Ni, where mi > 1, 

15) Ii = the total average profit ($), 

16) qi(t) be the inventory level at time t in cycle (0, Ti ), 

17) Demand dependent production at time t is  

                Pi = γi Ri (t), γi >1.   

18) K= space covered by all the items (sq. ft.) i.e. 

 
 n

i
i

iwKK
1

, 

19) I = profit in totality ($) i.e.  
 n

i iII
1

. 
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III. MODEL AND FORMULATIONS 

Here, inventory model for i-th deteriorating item is shown 

in Fig.1. Initially, the stock is assumed to be zero. Demand 

dependent production starts at t=0 and simultaneously supply 

also starts to satisfy the time dependent demand Ri (t). At t = t1i, 

the stock level reaches Ki units. The production is then 

stopped. The inventory accumulated during the production 

period (0, t1i) after meeting the demand during the period and 

the deterioration, the inventory reaches to the zero level at 

time t = t2i. Now, the shortages are accumulated to the level Si 

at time t = t3i and demand dependent production starts with the 

time dependent demand Ri (t). The backlog is filled during the 

time (t3i, Ti), till the backlog becomes zero. The cycle then 

repeats itself after time Ti.  

 

 
Fig. 1. Pictorial representation of the inventory system for 

the i-th item. 

The differential equations describing the inventory level qi 

(t) of i-th item in the interval 0 ≤ t ≤ Ti, is given by: 

  iiii
i tttRtqt

dt

tdq
10),(1)()(
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          (1) 

iiii
i ttttRtqt
dt

tdq
21),()()(

)(
         (2) 

iii
i ttttR
dt

tdq
32),(
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  iiiii
i TtttRtqt

dt

tdq
 3),(1)()(

)(
        (4) 

The conditions are , qi (t) = 0 at t = 0, t2 i  and Ti ; qi (t) = Ki  

at t = t1i . Using the conditions, the solution of (1) is  

where 
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Now, the solutions of (3) and (4) are:
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Deteriorating units = DEi = (DE1i + DE2i ), where 

deteriorating units in (0, t1i) and    (t1i, t2i) are :     
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Holding cost = HCi=HC1i+HC2i, where holding costs in (0, 

t1i) and (t1i, t2i) are:  
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Total shortage cost in (t2i, Ti) = SCi = Hi(SC1i), where 

inventory level in (t3i,Ti) are : 
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     Relations between t1i, t2i, t3i and Ti (by equality conditions 

at t1i and t3i) are: 
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                                                                                         (16) 

    Now, selling price - production cost =    QRNm iiii 1              

                                                                                         (17) 
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                                                                                          (19) 

Total average profit per unit time,  

Ii = (selling price- production cost–holding cost–shortage 

cost–deteriorating cost– set up cost)/Ti;                                           (20) 

Here, our objective is to maximize the above profit for 

three items with the following types of models. 

 

IV. TYPES OF MODELS  

There are four types of models. 

Model 1–Crisp, Integrated; Model 2-Fuzzy, Integrated; 

Model 3-Crisp, Non-integrated; and Model 4-Fuzzy, 

Non-integrated. 

A. Model 1–Crisp, Integrated 

     Assuming that the items are dealt collectively as a single 

integrated business process, the corresponding single 

objective model is to 

Maximize {I1, I2, I3} 

Subject to,  equations (15), (16),  

3,2,1,0, 2  itandWK i                            (21) 

B. Model 2-Fuzzy, Integrated 

In practical situation, every cost is imprecise, so we take 

{Ni, Ci, Hi, h1i; i = 1, 2 and 3}  as fuzzy numbers i.e. 

as  3,2,1;~,~,~,~
1

andihHCN iiii
 . Then due to this 

assumption, the crisp functions (I, I1, I2, I3) will become the 

fuzzy functions 






IIII ~,~,~,
~

321
. The optimization of a 

fuzzy objective is not well defined. So instead 

of 






IIII ~,~,~,
~

321
 one can optimize its equivalent 

optimistic and pessimistic returns. Accordingly optimization 

of this model - 2 can be described as follows: 

To optimize the optimistic and pessimistic equivalent of 








IIII ~,~,~,
~

321
  by lemma-1 (c.f. Appendix-A), the 

problem reduces to, 

Maximize     


3
1

~~
i iIEIE   Subject to, equations (15), 

(16),  

3,2,1,0, 2  itandWK i
                    (22) 

in which,         3,2,1;~,~,~,~
1 andihEHECENE iiii  are 

expected values of  3,2,1;~,~,~,~
1

andihHCN iiii
  

respectively. If N i
~  be a triangular fuzzy number i.e. 

 NNNN iiii 321 ,,~   then E ( N i
~ ) = (½) 

  NNN iii  3211   and if N i
~ be a trapezoidal fuzzy 

number i.e.  NNNNN iiiii 4321 ,,,~  , E ( N i
~ ) = (½) 

  ))1( 4321 ( NNNN iiii   , 

where ρ (0 < ρ < 1) is the managerial attitude factor. ρ = 1 and 

ρ = 0 represent most optimistic and pessimistic attitude 

respectively and ρ = 0.5 represents the credibility measure. 

Similar will be the case for  3,2,1;~,~,~
1

andihHC iii
 . 

C. Model  3-Crisp, Non-Integrated 

In crisp environment multi-objective production inventory 

problem with space constraint is to 

Maximize {I1, I2, I3} 

Subject to,  equations (15), (16), 

3,2,1,0, 2  itandWK i                    (23) 

D. Model  4-Fuzzy, Non-Integrated 

When the above average profit of every item and 

availability of space area become fuzzy, the said crisp model 

(20) is transformed to a fuzzy model as: 

  Maximize {I1, I2, I3} 

Subject to,  equations (15), (16) and  

3,2,1,0,
~

2  itandWK i                   (24) 

 

V. MULTI-OBJECTIVE MATHEMATICAL PROGRAMMING 

A general multiple objective non-linear programming 

problems are of the following form:   

Minimize F(x) = [f1 (x), f2 (x), ----------, fk (x)] 

Subject to    gt (x) ≤ ct, t=1,2,…..,T 

                    hj (x) = bj ,j=1,2,…..,J 

                    x є S, where S = [x / x є Rn]. 

Here, x = [x1, x2, ----------, xn]
 T

 is an n-dimensional vector 

of decision variables, f1 (x), f2 (x), --------, fk (x) are k distinct 

objective functions. S is the set of feasible solutions. An 

optimal solution of a single objective problem is defined as 

one that minimizes the objective function fi (x), subject to the 

constraint set x є S. To define a vector minimal point at which 

all components of the objective function vector f (x) are 

simultaneously minimized, is not an adequate generalization. 

Since such points are seldom attainable. Zimmerman [1978] 

showed that fuzzy programming technique can be used 

effectively to solve the multi-objective programming problem 

as follows: 

 

VI. FUZZY PROGRAMMING TECHNIQUE TO SOLVE CRISP 

MULTI-OBJECTIVE PROBLEM 

The above multi-objective programming problem (22) is 
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defined completely in crisp environment. To solve this crisp 

problem by fuzzy technique, we first have to assign two 

values Uk and Lk as upper and lower bounds of the k-th 

objective for each k = 1, 2, 3. Here Lk = aspired level of 

achievement, Uk= higher acceptable level of achievement and 

dk  = Uk - Lk = degradation allowance. The steps of the fuzzy 

programming technique are as follows: 

Step-1:  Each objective function I1, I2 and I3 of the multi– 

objective programming problem (22) is optimized separately 

subject to the constraint of the problem (22). Let these 

optimum values be I1 
*
, I2

*
 and I3

*. 
 

Step-2:  At each optimal solution of the three 

single-objectives programming problem solved in step-1 find 

the value of the remaining objective functions and construct a 

pay-off matrix of order 3 × 3 as follows:            

 

From the pay-off matrix, find lower bounds LI1 , LI2 , LI3, 

and upper bounds UI1 , UI2 , UI3 as follows: the lower bounds 

LI1 = Min{ I1 (t21) , I1 (t22)  , I1 (t23)}, LI2 = Min{ I2 (t21) , I2 (t22) , 

I2 (t23)}, LI3 = Min{ I3 (t21), I3 (t22) , I3 (t23)}.   And the upper 

bounds UI1 = Max { I1 (t21) , I1(t22) , I1(t23)}, UI2 = Max 

{ I2(t21) , I2(t22) , I2(t23) },UI3 = Max { I3(t21) , I3(t22) , I3(t23) }. 

Step-3:  To solve this crisp problem by Zimmermann [1978] 

method, we take the membership functions
I1

,
I 2

, and 


I 3

respectively of the objective functions I1, I2, I3   in the 

linear form as follows:  

;
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Step-4:  Using the above membership functions, the crisp 

non-linear programming model (22) is formulated and solved 

by Zimmermann’s technique and Additive Goal 

Programming technique.  

 

VII. FUZZY NON-LINEAR PROGRAMMING (FNLP) 

ALGORITHM TO SOLVE FUZZY MULTI–OBJECTIVE PROBLEM 

 Taking the profit goal as Bi  with tolerance Pi  ( i = 1,2,3) 

and  space constraint goal as W with  tolerance Pw the linear 

membership functions μi (i = 1,2,3) and μw for three objectives 

and one constraint are as follows: 

;
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where, K = K1w
1
 + K2w

2 
+ K3w

3
 , 

Using the above membership functions, the fuzzy 

non-linear programming model (23) is formulated and solved 

by following the methods of Zimmermann (1978). 

 

VIII. CRISP WEIGHTS 

Sometimes decision makers are able to provide crisp 

relative weights for objective goals to reflect their relative 

importance. Here, positive crisp weights wi ( i = 1,2,…….., n) 

for  crisp model  are used which can be normalized by taking   

1
1

 
n
i iw . To achieve more importance of the objective 

goal we chose suitable inverse weight in the fuzzy non-linear 

programming technique. Similarly, in fuzzy inventory model 

we may choose the smallest of the inverse weighted 

membership function corresponding to the most important 

objective goal.  

 

IX. FUZZY WEIGHTS 

When the decision maker can only provide linguistic or 

imprecise weight (e.g. profit of first objective is very 

important, profit of second objective is very important etc), 

we may use fuzzy weights according to Narsimhan [1980]. 

Here, membership functions of fuzzy weights are introduced 

to develop a combined measure of the degree to which 

objective goals are attended. Let 
wi

 {µi(x)} represent the 

weighted contribution of the i-th goal to the overall 

aggregated objective, where 
wi

 (µi (x)) is the membership 

function corresponding to the fuzzy weights associated with 

the i-th goal. Then by using min operation, the membership 

function µD (x) of the decision (D) is:  µD (x) = 
w1

 (µ1 (x)) 

^ 
w2

 (µ2 (x)) ^ -------- ^ 
wn

 (µn (x))   = min {
w1

 (µ1 

(x)), 
w2

 (µ2 (x)), --------- 
wn

 (µn (x))}  

The maximized decision x* is obtained by: µD (x*) =max 

{min { 
wi

 (µi (x))}}, i= 1, 2,……,n. 

Note that the membership functions of fuzzy weights are 

functions of the membership function of the goal. The 

rationality for constructing these membership functions is that 

the more important the goals are, the higher are the degrees of 

their membership, and so the higher are the membership grade 

of their fuzzy weights.  

X. CLASSIFICATION AND FORMULATION OF MODEL 3 (CRISP, 

NON-INTEGRATED) 

This model is further developed with crisp and fuzzy 

weights as follows: 

 Crisp weighted crisp model,  

  Fuzzy weighted crisp mode 

A. Crisp Weighted Crisp Model 

   Let w1, w2, and w3 are the intuitive crisp weights for the 

first item, second item and third item respectively. Then the 

model in (23) can be formulated by using two techniques: 

Zimmermann’s technique and Additive Goal Programming 
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technique as follows:  

(i) Zimmermann’s model: 

     Maximize     λ  

Subject to,  ;












ILIU

ILI
w

ii

ii
i equations (15), (16), 

,1;3,2,1,0, 3
12   i ii witandWK  0≤ λ ≤1. 

(25)                

(ii) Additive Goal Programming model: 

Maximize   V (λ1, λ2, λ3) = w1 λ1 + w2 λ2 + w 3 λ3   

Subject to,    , i
ii

ii

II

II
LU

L





equations (15), (16), 

 ,1,3,2,1,0, 3
12   i ii witandWK  0≤λi ≤1. 

(26)                                                                   

Observing the optimal results of Zimmermann’s model and 

Additive Model with crisp weights, we have developed 

further only Zimmermann’s model with crisp and fuzzy 

weights in fuzzy environments and with fuzzy weights in crisp 

environments. 

B.    Fuzzy Weighted Crisp Model 

let w1, w2, and w3 are the intuitive fuzzy weights for the 

first item, second item and third item respectively, then the 

model (23) can be formulated by using Zimmermann’s 

technique as follows: 

Maximize        λ  

Subject to,    ; 












ILIU

ILI

ii

ii
wi

equations (15), (16), 

3,2,1,0,
~

2  itandWK i , 0 ≤ λ ≤ 1.                     (27) 

 

XI. CLASSIFICATION AND FORMULATION OF MODEL 4 

(FUZZY, NON-INTEGRATED) 

This model is further developed with crisp and fuzzy 

weights as follows: 

(a) Crisp Weighted Fuzzy Model  

(b) Fuzzy Weighted Fuzzy Model 

A. Crisp Weighted Fuzzy Model 

Let w1, w2, w3 and w4 are the intuitive crisp weights for the 

first item, second item, third item and floor space respectively, 

and then the model (24) can be formulated by using 

Zimmermann’s technique as follows: 

Maximize     λ                                                                                                                                 

Subject to, ;1;1 4   






 



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

 


P

WK
w

P

IB
w

Wi

ii
i   

w1 + w2 + w3 + w4 = 1, equations (15), (16),  

3,2,1,0, 2  itandWK i , 0 ≤ λ≤ 1.                    (28) 

B. Fuzzy Weighted Fuzzy Model 

Let w1, w2, w3 and w4 are the intuitive fuzzy weights for the 

first item, second item, third item and floor space respectively, 

then the model (24) can be formulated by using with crisp 

weights i.e. (25) and (26) are presented in TABLES   III and 

IV respectively. 

Zimmermann’s technique as follows: 

Maximize     λ                                                                                                                            

Subject to, ;1;1
4

   






 







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P
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W
w

i

ii
wi

 

K1w
1
 + K2w

2 
+ K3w

3
 ≤ W, equations (15), (16), 0 ≤ λ≤ 1,  

t2i ≥ 0, i =1, 2, 3.                                   (29)   

 

XII. ILLUSTRATION OF THE MODELS   

To illustrate the above crisp and fuzzy models for 

integrated and non-integrated businesses, we assume the 

following input data shown in Table I. 

Optimal results of non-integrated businesses Using LINGO 

Software are given below: 

For the above data, the following pay-off matrix (cf. 

TABLE II) is constructed and then the optimum results for the 

different representations of the crisp inventory model  

Here, optimum results of the crisp model by two different 

methods are presented. In each method, four different cases 

have been made out, depending upon the relative importance 

given among the three objectives. In case-1 equal weightage 

to all objectives; in case–2, more importance to 1
st
 objective 

than the other two objectives; in case-3, more care to 

maximization of 2
nd

 objective than others; and similarly in 

case-4, 3
rd

 objective received more weightage than others. As 

expected, case-2 gives maximum return when maximum 

attention is paid to the 1
st
 objective; similarly case–3 and 

case–4 give better results if the decision maker gives 

maximum importance to the maximization of 2
nd

 and3
rd

   

objectives respectively.  

Now, we find the optimum results of the crisp inventory 

model with fuzzy weights i.e. (26), which are shown in 

TABLE V.  

Fuzzy data: I
~

1
= ($219,$243),  I

~
2

 = ($663,$781), I
~

3
= 

($1630,$1660), W
~

=(sq.ft.175,sq.ft.225)with input data. 

Here, two different cases have been made out, depending 

upon the relative importance given among the three objectives. 

In case-1 equal fuzzy weightage to all the objectives; in 

case–2, more importance to 1
st
 objective than the other two 

objectives. As expected, both case 1 and 2 of fuzzy weighted 

crisp model  give better return than the crisp weighted crisp 

model (Zimmermann’s Model) in totality and 

when special attention is paid to a particular objective 

respectively.  

Now, we find the optimum results of the fuzzy objectives 

i.e. (27) with the crisp weights, which are shown below: 

The pay-off matrix is made (by equating t2i of the rest two 

objectives with t2i of the objective considered) in TABLE II. 

The optimum results of the crisp weighted crisp models are 

presented in TABLE III and IV respectively. TABLE III: in 

case-1 equal weightage to all objective; case-2 gives 

maximum return when maximum attention is paid to the 1
st
 

objective; similarly case-3 and case-4 give better results if 

DM gives maximum importance to the 2
nd

 and 3
rd

 objectives 
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respectively. TABLE V: as expected, gives maximum returns 

when maximum attention is paid to the 1
st
, 2

nd 
and 3

rd
 

objective in case 2, 3 and 4 respectively than TABLE III.     

Models presented  in TABLES VI and VII give maximum 

return when maximum attention is paid to the 1
st 

objective in 

case-1, than case-2 of Table III and V respectively.  Fuzzy 

weights: fuzzy model gives more profit than crisp model in 

both the cases. In terms of total profit, TABLE VIII gives 

better result than TABLE VII. This model can be extended to 

include discount, random planning horizon, salvage of 

deteriorated qualities; etc. Determination of exact weights for 

multi-item multi-objective fuzzy model and their solution 

may be the topic of the further research. 

Obviously, crisp model for integrated businesses gives best 

result than all type of models for the non-integrated 

businesses. Now, for integrated businesses, all costs are taken 

as triangular fuzzy numbers (TFNs) as shown in TABLE IX.  

 

             
         5.2,2,5.1,14,11,8,205,185,165,27,23,19,2.2,7.1,2.1

,13,10,7,195,175,155,14,20,16,2,5.1,1,12,9,6,185,165,145,22,18,14
~~~~~

~~~~~~~

1333312

22211111





hHCNh
HCNhHCN

 

The optimum results for the integrated representation of the 

fuzzy inventory model i.e. (21) are presented in TABLE IX. 

 
For the more realistic situations, we here consider all the 

costs to be trapezoidal fuzzy numbers (TrFNs) as shown 

below: 

            
           5.2,1.2,8.1,5.1,14,12,10,8,205,190,180,165,27,24,22,19,2.2,9.1,5.1,2.1,13,11,9,7

,195,180,170,155,14,21,19,16,2,7.1,3.1,1,12,10,7,6,185,170,160,145,22,19,17,14
~~~~~~

~~~~~~

13333122

2211111





hHCNhH
CNhHCN

And the corresponding optimum results for the integrated 

representation of the fuzzy inventory model given in (21) are 

presented in TABLE X. 

Here, optimal results of fuzzy model for integrated 

businesses are presented with possibility, necessity and 

credibility measures with triangular and trapezoidal fuzzy 

numbers shown in TABLE IX and X. Decision Makers can 

take decision according to the available situations. 

 

XIII. CONCLUSION 

    Till now, in the field of inventory, some multi-objective 

models of deteriorating items with two or more objectives are 

available in crisp and fuzzy environment. Here, inventory 

models having Weibull rate of decay with three objectives 

allowing shortages have been presented in crisp and fuzzy 

environments for integrated and non-integrated businesses. 

The models of non-integrated businesses have been solved by 

FNLP techniques and the model of integrated businesses has 

been solved by Generalized Reduce Gradient Method by 

analyzing possibility/necessity measure. The results have 

been presented with different types of weights admissible to 

the objectives for non-integrated businesses. Each weight, 

which implies the relative importance of the objective goals, 

can be determined through the practical experiences. Though 

the problem has been formulated in the field of inventory, the 

present methodology in formulation and solution can be 

adopted for a fuzzy non-linear decision making problem in 

any discipline. Moreover, in this paper, model has been 

formulated with time-dependent demand, demand-dependent 

production and time-varying holding cost allowing shortages 

for integrated and non-integrated businesses. All costs are 

taken as triangular fuzzy numbers and trapezoidal fuzzy 

numbers in the case of integrated business. The present 

analysis can be easily extended to other types of inventory 

models with constant demand, infinite replenishment, fixed - 

time horizon etc.  

  Our proposed model has a wide range of application in the 

field of businesses and management in which the economic 

conditions can also be developed. This model can be further 

extended to include discount, random planning horizon, 

salvage of deteriorated qualities; etc. Determination of exact 

weights for mult-item mult-objective fuzzy model and their 

solution may be the topic of the further research. 

 

TABLE I:  INPUT  DATA (FOR THREE ITEMS) 

Items mi Ni ($) ai Hi ($) Ci ($) bi h1i h2i αi βi γi wi W (Sq. Ft.) 

1 1.6 18 30 9 165 0.85 1.5 0.003 0.14 1.3 1.2 5 

200 2 1.7 20 65 10 175 0.9 1.7 0.004 0.12 1.2 1.3 4 

3 1.8 23 100 11 185 0.95 2.0 0.005 0.10 1.1 1.4 3 

 
TABLE  II: PAY-OFF MATRIX 

I1  ($)                      I2  ($)               I3($) 

t21 

t22 

t23 

241.4155        701.3331           1632.692 

220.5831         779.8763           1651.422 

233.5547          664.4949           1658.836 

 
TABLE III: (CRISP WEIGHTED CRISP MODEL) ZIMMERMANN’S MODEL 

Case w1 w2 w3 I1($) I2($) I3($)     T I($)    SC (Sq. Ft.) 

1 1/3 1/3 1/3 234.73 748.17 1650.45 2.5645 2633.34 115.01 

2 0.2 0.3 0.5 238.37 737.97 1641.62 2.8940 2617.96 122.71 

3 0.5 0.2 0.3 233.59 779.85 1650.12 2.5116 2663.56 158.01 

4 0.3 0.5 0.2 231.94 778.63 1654.07 2.3895 2664.62 150.70 
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TABLE IV: (CRISP WEIGHTED CRISP MODEL) ADDITIVE MODEL\ 

Case w1 w2 w3 I1($) I2($) I3($)     T I($) SC (Sq. Ft.) 

1 1/3 1/3 1/3 233.28 779.83 1652.55 2.4679 2665.65 163.29 

2 0.6 0.2 0.2 238.33 778.32 1641.76 2.889 2658.41 184.87 

3 0.2 0.6 0.2 233.38 779.83 1657.18 2.4746 2665.63 163.65 

4 0.2 0.2 0.6 227.50 778.30 1657.18 2.1774 2662.98 147.60 

 
TABLE V:   CRISP WEIGHTED FUZZY MODEL (ZIMMERMANN’S MODEL) 

Case w1 w2 w3 w4 I1($) I2($) I3($)    T I($)   SC (Sq. Ft.) 

1 
1/

4 

1/

4 

1/

4 

1/

4 
235.0 774.53 1650.0 2.5838 2659.53 186.89 

2 .1 .2 .3 .4 239.16 776.31 1638.40 2.9977 2653.87 181.34 

3 .2 .1 .3 .4 232.50 779.85 1651.50 2.5116 2663.84 154.77 

4 .3 .2 .1 .4 226.37 777.80 1657.63 2.1317 2661.80 145.21 

  
TABLE VI: FUZZY WEIGHTED CRISP MODEL (ZIMMERMANN’S MODEL) 

Case w1 w2 w3 I1($) I2($) I3($) T I($) SC (Sq. Ft.) 

1 [.12,.42] [.12,.42] [.12..42] 235.25 778.81 1636.33 2.6662 2650.38 200.0 

2 [.8,1] [.4,.8] [0,.2] 238.64 737.69 1634.44 2.9271 2610.76 145.94 

 

TABLE VII: FUZZY WEIGHTED FUZZY MODEL (ZIMMERMANN’S MODEL) 

w1 w2 w3 W4 I1($) I2($) I3($) T I($) SC (Sq. Ft.) 

[0,1] [.25,1] [.434,.999] [.55,.98] 232.99 779.79 1652.90 2.4506 2665.68 161.23 

[.8,1] [.4,.8] [.1,.5] [.5,1] 239.57 775.77 1636.41 3.0589 2651.75 184.58 

 

TABLE VIII:  INTEGRATED MODEL (GRG  METHOD) 

I1($) I2($) I3($) T I($) SC (Sq. Ft.) 

232.58 779.76 1653.38 2.4262 2665.72 161.08 

 
TABLE IX: INTEGRATED FUZZY MODEL FOR TFNS (NECESSITY/POSSIBILITY ATTITUDE) 

ρ I4($)    T SC (Sq. Ft.) ρ I4($)   T             SC(Sq. Ft.) ρ     I4($)     T SC (Sq. Ft.)       

0 2413.44 2.5008 164.20 0.4 2615.23 2.4399 161.66 0.8 2817.28 2.3883 159.46 

0.1 2463.86 2.4845 163.53 0.5 2665.72 2.4262 161.08 0.9 2867.82 2.3767 158.95 

0.2 2514.30 2.4690 162.89 0.6 2716.23 2.4131 160.52 1 2918.38 2.3655 158.46 

0.3 2564.76 2.4541 162.26 0.7 2766.75 2.4005 159.98     

 
TABLE X: INTEGRATED FUZZY MODAL FOR TRFNS (NECESSITY/POSSIBILITY ATTITUDE) 

ρ I4($)    T    SC (Sq. Ft.) ρ I4($)   T                SC (Sq. Ft.) ρ     I4($)        T  SC (Sq. Ft.)       

0 2352.04 2.5340 165.65 0.4 2603.21 2.4471 162.11 0.8 2854.86 2.3775 159.17 

0.1 2414.78 2.5103 164.70 0.5 2666.08 2.4283 161.33 0.9 2917.84 2.3622 158.51 

0.2 2477.55 2.4880 163.80 0.6 2728.99 2.4105 160.58 1 2980.83 2.3476 157.88 

0.3 2540.37 2.4670 162.93 0.7 2791.91 2.3936 159.86     

 

 

 

APPENDIX   A 

A.1: Any fuzzy subset a~  of   (where represents a set 

of real numbers) with membership function µã (x) :   [0,1] 

is called a fuzzy number. Let  a~  and  b
~

 be two fuzzy 

quantities with membership functions  a~  (x) and  b
~

 (y) 

respectively. Then according to Dubois and Prade (1987), Liu 

and Iwamura (1998), Maiti and Maiti (2006) 

        yxyxyxbaPos ba  ,,,.minsup
~~ ~~   

        yxyxyxbaNes ba  ,,,.1maxinf
~~ ~~ 

 where the abbreviation `Pos’ represents possibility and `Nes’ 

represents necessity and ̀ *’ is any of the relations >, <, =, ≤, ≥. 

The dual relationship of possibility and necessity requires 

that 

  






  baPosbaNes
~~1

~~
 

Also necessity measures satisfy the condition,  

  0
~~,

~~ 






  baNesbaMinNes  

The relationships between possibility and necessity 

measures satisfy the following conditions (cf. Dubois and 

Prade (1988)}:  baPos
~~  ≥  baNes

~~ , then  

 baNes
~~  > 0⟹   1

~~ baPos  and  

    0
~~1

~~
  baNesbaPos . 

If ba
~

,~
Є   and  bafc

~
,~~    where f :   ×        

 

Be a binary operation, then membership function 

 c~ of c~ is defined as: 

       
  












zyxfandz

yxyx
z ba

c ,
,,.minsup ~~

~


  

 

Recently based on possibility measure and necessity 

measure, the third set function Cr, called credibility measure, 

analyzed by Liu and Liu (2002) is as follows: 

Cr ( A
~

) =1/2[Pos( A
~

)+Nes( A
~

)] for any A
~

  in 2
 , 

where 2
  is the power set of   . 

It is easy to check that Cr satisfies the following conditions: 
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(i)   1)(0  andCrCr  ; 

(ii)   BandABwheneverABCrACr  
2,)

~
(

~
 

Thus Cr is also a fuzzy measure defined on  2,  . 

Besides, Cr is self dual, i.e. 

  2
~

)~(1
~  inAforanyACrACr c  . 

In this paper, based on the credibility measure the 

following form is defined as 

    )~
()1(

~~
ANesAPosACr    

(cf. Liu and Liu (2002) for any A
~

 in 2
 and 0 < ρ <1. It 

also satisfies the above conditions. 
 

A.2. Triangular Fuzzy Number: 

Triangular fuzzy number (TFN) A
~

 (see Fig. A - 1) is the 

fuzzy number with the membership function  x
A ~ , a 

continuous mapping:     1,0~ x
A , 
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Lemma 1:  The expected value of triangular fuzzy number   

 aaaA 321 ,,
~
  is E( A

~
) = (1/2)   aaa 3211    

Proof 1.  Let  aaaA 321 ,,
~
  be a triangular fuzzy 

number.  

 
Fig. A – 1. Membership function of Triangular Fuzzy 

                      Number (TFN)  aaaA 321 ,,
~
  
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Based on the credibility measure, Liu and Liu (2002, 2003) 

presented the expected value operator of a fuzzy variable as: 

Let  A
~

be a normalized fuzzy variable. The expected value of 

the fuzzy variable A
~

 is defined by 

     


   0
0 ~~~

drrACrdrrACrAE  

When the right hand side of the above equation is of form ∞ 

- ∞, the expected value cannot be defined.  Also, the expected 

value operation has been proved to be linear for bounded 

fuzzy variable, i.e., for any two bounded fuzzy variables  

YandX
~~

 ,we have      YbEXaEYbXaE
~~~~

  for 

both real numbers a and b. Then the expected value of fuzzy 

variable A
~

  is defined as: 

     
    

 


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a
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a a
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    aaaAE 3211)2/1(
~

   

A.3.  Trapezoidal Fuzzy Number: 

Trapedoidal fuzzy number (TrFNs) A
~

  (see Fig. A - 2) is the 

fuzzy number with the membership function  x
A ~ , a  

 

 
Fig. A – 2. Membership function of trapezoidal fuzzy 
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The credibility measure for TrFNs can be defined as: 
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Based on the credibility measure, Liu and Liu(2002, 2003), 

as described in triangular fuzzy number. Then the expected 

value of trapezoidal fuzzy variable  is defined as: 

 

       aaaaAE 43211)2/1(
~

  . 

 

A.4. Multi – Objective Problem Under Fuzzy Expected 

Value Model: 

A general multi - objective mathematical programming 

problem with fuzzy parameters in the objective function is of 

the following form: 

         ,....,,,,,, 321 xfxfxfxfMax n  

Subject to,     0, xg i
,     j=1, 2 , ……, k, 

 where x and  are decision vector and fuzzy vector 

respectively. To convert the fuzzy objective and constraints to 

their crisp equivalents, Liu & Liu (2002) proposed a new 

method to convert the problem into an equivalent 

multi-objective fuzzy expected value model i.e. the equivalent 

crisp model is: 

             ,....,,,,,, 321 xfExfExfExfEMax n

Subject to,      0, xgE i ,     j=1, 2 , ……, k. 
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