

Abstract— Increasing demand for storage and computation

has driven the growth for the environment with tremendous
computer resources. To make huge resources available,
virtualization technology provide flexible and manageable
execution environment that is specialized for variety of
applications using shared and manageable resources [1]-[3].
One of the major problems in computing systems and service
processing is managing the available resources to support more
demands. In this paper we have introduced some advantages of
virtualization technology and proposed an intelligent virtual
resource allocation method for virtualized data center. Since
this problem is NP-hard, the solution has been focused on
approximate methods based on genetic algorithm to find an
optimum solution in a multi-tier distributed environment. Here,
some mathematical analysis and technical evaluation have been
presented to certify the advantage of the proposed method.
Results of our evaluation compare with other methods appear
to perform well in finding an approximate solution with less
resource consumption ratio.

Index Terms—Virtualization, data center, resource
allocation, genetic algorithm.

I. INTRODUCTION
Modern data centers are comprised of tens of thousands of

dedicated servers, and perform the processing for many
applications. An alternate approach is to maintain a pool of
resource capacity and allocate virtual resources to different
applications. Virtualization is a technology that combines
computer resources and provides different operating
environments using methodologies like hardware and
software partitioning or aggregation, partial or complete
machine simulation, emulation, time-sharing, and more.
More recently, virtualization at all levels has become
important again as a way to improve system security,
increase reliability and availability, reduce costs, create better
adaptability to workload variations, support easier migration
of virtual machines among physical levels has become
important again as a way to improve system security,
increase reliability and availability, reduce costs, create better
adaptability to workload variations, support easier migration
of virtual machines among physical machines, and prepare
easy coexistence of legacy applications in data center
applications. Virtualization provides flexible and
manageable execution environments that are specialized for
different applications using share resources and delivering
expected performance, security and isolation [2]-[4]. One of

Manuscript received September 20, 2011; revised October 8, 2011.
M.R. Ahamdi is a member of Information Technology Department in

Institute of ICT, Tehran (e-mail: M.ahmadi@itrc.ac.ir).
S. Ebrahimi and F. Ebrahimi is a MSC candidate in Azad University,

Research and Science Branch Tehran, (e-mail: s.science.e@gmail.com,
h.farzanehebrahimi1982@gmail.com).

the important challenges in datacenters is resource allocation
and dynamic resource management for virtualized resources.
Resource allocation needs to not only guarantee enough
virtual resources to meet the performance goals, but also
prevents over-provisioning in order to reduce cost and allows
concurrent hosting of many applications. Resource control
functions are integrated in a data center at two different levels
of abstraction: virtual machine and virtual resource pools.
The central management is responsible for determining the
necessary resources which are needed by each service based
on framework of service level agreement. By doing so, the
local controller minimizes leasing costs by avoiding
over-provisioning for the applications running on the virtual
machines. The key to service oriented resource allocation is
the ability to efficiently find the minimum amount of
resources that an application needs to meet the desired
quality constraint [5]-[7]. We can consider the procedure as a
classical 0/1 knapsack problem which could be represented
as a specific instance of resource allocation. Consider a 0/1
knapsack problem with knapsack capacity, weight item and
service quality. This is a multidimensional problem with
different weight items and knapsack capacity with different
vectors. We can add more dummy knapsacks to have a
multiple knapsacks generalization, and these knapsacks can
be described via different capacity vectors. As a result, the
problem to be tackled is NP-hard. Here an approximate way
to solve the formal problem is proposed [8]. To solve this
problem, a dynamic resource management approach based on
genetic algorithm that enables automatic and adaptive
resource provisioning in accordance with quality of service
and Service Level Agreements (SLA) specifying dynamic
tradeoffs of service quality and cost has been considered. An
intelligent technique to characterize the relationship between
application workload and available virtual resources has been
introduced. A prototype of the proposed resource
management system has been deployed on a simulated test
bed. The rest of this paper is organized as follows. Section 2
provides optimization methods for data center resources.
Section 3 presents resource management methods. Section 4
presents the experimental results. Finally we have concluded
the paper in section5.

II. DATA CENTER OPTIMIZATION METHODS
In this section we introduce three major techniques which

are effective for resource optimization in data centers.

A. Parallelism Processing
In Parallelism Processing, separable and independently

practicable pieces from an algorithm or even independent
practicable parts from a series of attached orders are
distributed among the independent processors and they are
calculated simultaneously. The Parallel architects in

Intelligent Resource Allocation Method Using an
Innovative Algorithm for Virtualized Data Center

M. R. Ahamdi, S. Ebrahimi, and F. Ebrahimi

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

354

programs that have dealings with huge mass of data, such as
data mining programming. They are categorized in different
classes. For example, the architects in "Shared–Memory", all
processors use a shared main memory. In "Shared–Disk", the
disk memory is the same among the processors. In architect
"Shared–Nothing", every processor has its own main
memory and related disk. Hence, increasing the resources is
more convenient than other methods. The architect
"Shared–Something", is a combination of "Shared–Memory"
and "Shared – Nothing".

B. Clustering
A cluster includes several machines connected to each

other in a local network that perform the processing functions
by a timing program and harmonizing among the machines of
the network [9]. In this design, the dynamic cluster-wide
resource management problem is a constrained optimization
problem, with the resource allocations on individual
machines as independent variables, and the desired
cluster-wide resource allocations as constraints. Periodically
collected resource usages serve as further inputs to the
problem. It is certified that, in a number of different scenarios,
cluster reserves are effective in ensuring performance
isolation while enabling high utilization of the server
resources.

C. Virtualization
Virtualization is the process of presenting a logical

grouping or subset of computing resources so that they can be
accessed in ways that give benefits over the original
configuration. It is the most significant progress since the
microprocessor introduction, in providing information and
business secure systems. The idea of virtualization can be
used for most of the components in IT infrastructure such as
networks, storages, servers, operating systems and
applications. In server virtualization, the virtual environment
allows for creation of multiple independent occurrence of an
operating environment (logical or virtual servers) to run on a
single physical server. Virtualization allows physical servers
to be carved into multiple virtual machines, and enabling a
virtualized data center where applications hosts and managed
in their dedicated virtual environment. Storage virtualization
implements a virtual layer on top of the physical storages so
that all physical devices hid from clients and prepare a
pooling environment for using virtual spaces [10].

III. RESOURCE MANAGEMENT METHODS
In resource management technique, it's not sufficient to

guarantee that virtualized environments always provide the
necessary resources for all application programs, but we
should decrease the costs by optimum allocating of resources
until more application programs can use the available
resources. The static methods can't be used to attain this aim
because the combination of the workload is changing
continuously. For this reason, the system behavior must trace
the actual needs at any time [11]. To manage this procedure, a
proposed method based on genetic algorithm has been
introduced.

A. Genetic Algorithm
In this technique, the genetic algorithm for allocating the

virtual resources in multilayer distributed is suggested. This
problem is from the ones in the group of NP-hard, for this
reason, using the genetic algorithm to find the optimum
response is a successful solution. Here, an important point is
the understanding concept of the workload to serve the
current and future services by identifying it worthily using
collection of the virtual resources or pooling system. The
noticeable aim in this research is the autonomous recognition
of the optimum uses of the existing resources in the pool,
when various hosts want to employ different services [12].
To solve this problem, we have proposed the genetic
algorithm as a successful solution. Generally, a genetic
algorithm is a search technique used in computing to find
exact or approximate solutions to search and optimization
problems. The GA algorithm repeatedly modifies with
genetic operators and seeking for the answer with the best
fitness. Since problem to be tackled is NP-hard. Here an
approximate way to solve the formal problem has been
proposed.

B. Capacity Management Processing
In this section, we deal with the processes that we consider

for managing the capacities and also its analogous services.
These processes are based on the combination of the
sub-processes that take place for the resource pool in various
manners. To protect these cases, we need to define the
concept and the meaning of the needed capacity. RC is the
minimum needed capacity in order to gratify the request of
the implemented workload on the resources of the server [10].
To recognize the RC, following conceptions must be
considered.

a) The Service of Permitting Control
This service decides whether the pool of services, has the

adequate service to host the now workload or not? If so,
which workload of the server must be granted? However, the
workload extracted from several resources, will be
implemented in from of a unique workload so that we may
have a limitation for the place of the considered workload.
The role of the service of appointing the workload is giving
the address to this load.

b) The Service of Workload Placement
This service expresses a categorized technique to identify

the requested resource and represent its solution.
Fundamentally, each request demands different resources.
The service of appointing the workload uses the greedy
algorithms to unite the resources. To optimize these inquires,
that causes these greedy solution to improve the genetic
algorithm is used. In every condition, the algorithm simulated
several scenarios. Each scenario determines the number of
the workloads on each server. The entire workload request is
resulted by the given rate to each server by the help of the
different times of the previous workload. This service finds
the best place for the workload in the entire server. In the end,
it should be stated this service should accept a limitation for
the place of the workload that involves the dependence
between the workloads. As an example, workloads can or,
can aversely, can't too reserve in a physical server together.

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

355

c) The Service of Prediction Request of the Workload
This service has a lot of aims.
 Implementing a technique for the exploratory model.

 Recognizing the chief changing's in requesting the
workload momentarily.

 Protecting the producing of combinative technique that
the next requests show each workload and also protecting the
similar plans for resources.

Processing the management is its capacity based on the
meaning of the capacity management design. The capacity
management design includes a memory that some cases
include the type of the workload, predicting, the quality of
the needed services and giving the workloads to the
resources.

C. Algorithm Functions
Genetic algorithm is a successful method for optimization

problems, although it may not directly lead to the best answer.
GA population repeatedly modifies with genetic operators in
a search space and seeking for an answer with the best fitness.
GA initializes a population to random individuals of [0/1]
and over successive generations, the population "evolves"
toward an optimal answer. Moreover, this method includes
several genetically isolated groups including the CPU,
storage, network and I/O which evolves in a parallel model.
Individual member from each group collaborate with other
members through "representative population" and improves
their fitness according to a specific objective function. This
method can proceed in a competitive or cooperative model.
In cooperative method the groups are encouraged to
cooperate with one another by rewarding them based on how
well they work together to solve a target problem. In
competitive method, the amount of reward resulting from
each success is a function of other members in the population
who can defeat the same opponent. We have employed both
methods in our proposed system [13].

IV. EXPERIMENTAL RESULT
In this section the proposed algorithm and evaluation

scenario with the obtained results have been introduced.

A. Problem Hypothesis
There are certain common hypotheses about this research.

Any request for using a data center services consist of
demands with different resources, and the data center should
satisfy those requests. Since the requested jobs are vital for
business continuity of the organizations, a small interruption
in system may create heavy loss and limitation. Characteristic
of the proposed model:

 In this model, the resources have been unified in a
pooling system.

 Four kinds of resources have been considered: CPU, I/O,
NETWORK, and STOEAGE.

 100 derivative contents have been used in this model
with similar format.

 About 0-20 requests per second have been imported to
data center for resources demands.

 Derivative content may share resources commonly or it
may respond to request jointly.

 About 5-3 vectors from resources vector have been
returned to resources and it has been transmitted to consider

virtual container.
As mentioned before each virtual container has been

considered as a vector with four resource fields as Fig.1:

VCi[1] VCi [2] VCi[3] VCi[4]

I/O NETWORK STORAGE CPU
Fig.1.Format of resource vectors

Each resource has measured with its standard

measurement, for example the size of CPU is accounted in
megabyte. Each unit may be defined based on predefined
values. For example, one unit of memory can be defined 20
megabyte or 100 megabyte this kind of definition not only
unified the values, but also it increases flexibility of model.
Because, it is possible those values changes in different data
centers, it is necessary that unified the measurement or define
it for each data center differently. For example, in one
datacenter, each unit of CPU may be regarded about 50
megabyte but in other one it may be regarded about 180
megabyte. It is noted that units are changeable for different
data centers. But, in certain data center, size of each unit
should be regarded unchangeable. In our proposed model,
amount of each resource is assigned with value between 0-30
unite in each virtual container. In our proposed genetic
algorithm, chromosomes with length of 400 genes have been
used. In total state, 100 virtual containers are defined. Every
vector includes four types of resources CPU, STORAGE,
NTWORK, I/O. At first, we create primitive generation. In
every generation crossing and mutation happen. 60% and
30% respectively and 10% is unchanged. We continue this
algorithm for 2000 iteration in order to obtain optimum
answer. Fig.2 shows the cost. Rank method was applied for
selecting parents in crossing stage. In each repetition of the
algorithm the chromosomes having less cost, is selected to
virtual container. After end of the process, the chromosome
which has less cost is regarded as the best answer.

TABLE I: THE WEIGHTS RELATED TO CPU
Weight Unit Weight Unit

8 15≤Unit<16 10 0≤Unit<1

4 16≤Unit<17 9 1≤Unit<2

2 17≤Unit<18 9 2≤Unit<3

5 18≤Unit<19 9 3≤Unit<4

2 19≤Unit<20 5 4≤Unit<5

4 20≤Unit<21 3 5≤Unit<6

4 21≤Unit<22 6 6≤Unit<7

7 22≤Unit<23 7 7≤Unit<8

4 23≤Unit<24 3 8≤Unit<9

2 24≤Unit<25 2 9≤Unit<10

5 25≤Unit<26 7 10≤Unit<11

9 26≤Unit<27 2 11≤Unit<12

7 27≤Unit<28 3 12≤Unit<13

9 28≤Unit<29 4 13≤Unit<14

10 29≤Unit<30 2 14≤Unit<15

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

356

TABLE II: THE WEIGHTS RELATED TO STORAGE
Weight Unit Weight Unit

4 15≤Unit<16 8 0≤Unit<1

7 16≤Unit<17 5 1≤Unit<2

8 17≤Unit<18 7 2≤Unit<3

2 18≤Unit<19 6 3≤Unit<4

2 19≤Unit<20 3 4≤Unit<5

7 20≤Unit<21 9 5≤Unit<6

4 21≤Unit<22 10 6≤Unit<7

5 22≤Unit<23 8 7≤Unit<8

7 23≤Unit<24 5 8≤Unit<9

2 24≤Unit<25 6 9≤Unit<10

3 25≤Unit<26 4 10≤Unit<11

2 26≤Unit<27 7 11≤Unit<12

3 27≤Unit<28 8 12≤Unit<13

6 28≤Unit<29 8 13≤Unit<14

7 29≤Unit<30 9 14≤Unit<15

TABLE III: THE WEIGHTS RELATED TO NETWORK

Weight Unit Weight Unit

5 15≤Unit<16 6 0≤Unit<1

3 16≤Unit<17 5 1≤Unit<2

7 17≤Unit<18 8 2≤Unit<3

9 18≤Unit<19 6 3≤Unit<4

1 19≤Unit<20 5 4≤Unit<5

3 20≤Unit<21 3 5≤Unit<6

6 21≤Unit<22 4 6≤Unit<7

3 22≤Unit<23 4 7≤Unit<8

4 23≤Unit<24 8 8≤Unit<9

2 24≤Unit<25 2 9≤Unit<10

4 25≤Unit<26 10 10≤Unit<11

2 26≤Unit<27 4 11≤Unit<12

3 27≤Unit<28 7 12≤Unit<13

5 28≤Unit<29 7 13≤Unit<14

8 29≤Unit<30 7 14≤Unit<15

Fig. 2. Cost for each iteration

TABLE IV: THE WEIGHTS RELATED TO I/O

7 15≤Unit<16 5 0≤Unit<1

6 16≤Unit<17 9 1≤Unit<2

9 17≤Unit<18 9 2≤Unit<3

4 18≤Unit<19 6 3≤Unit<4

7 19≤Unit<20 7 4≤Unit<5

7 20≤Unit<21 6 5≤Unit<6

6 21≤Unit<22 3 6≤Unit<7

6 22≤Unit<23 4 7≤Unit<8

6 23≤Unit<24 3 8≤Unit<9

8 24≤Unit<25 8 9≤Unit<10

3 25≤Unit<26 10 10≤Unit<11

9 26≤Unit<27 6 11≤Unit<12

7 27≤Unit<28 5 12≤Unit<13

10 28≤Unit<29 4 13≤Unit<14

8 29≤Unit<30 3 14≤Unit<15

TABLE V IS SHOWN THE CUMULATIVE PROBABILITY DISTRIBUTION FOR

CPU RESOURCES.

cpd Unit cpd Unit

54.5415≤Unit<16 6.13 0≤Unit<1

56.9916≤Unit<17 11.65 1≤Unit<2

58.2117≤Unit<18 17.17 2≤Unit<3

61.2718≤Unit<19 22.69 3≤Unit<4

62.4919≤Unit<20 25.75 4≤Unit<5

64.9420≤Unit<21 27.59 5≤Unit<6

67.3921≤Unit<22 31.27 6≤Unit<7

71.6822≤Unit<23 35.56 7≤Unit<8

74.1323≤Unit<24 37.4 8≤Unit<9

75.3524≤Unit<25 38.62 9≤Unit<10

78.4125≤Unit<26 42.91 10≤Unit<11

83.9126≤Unit<27 44.13 11≤Unit<12

88.2227≤Unit<28 45.97 12≤Unit<13

93.7428≤Unit<29 48.42 13≤Unit<14

100 29≤Unit<30 49.64 14≤Unit<15

B. Cost Function
As mentioned, there is not any unique mathematical rank

between requested and granted resources. For this purpose,
we should try to create appropriate cost function in order to
optimize the answer in every generation of chromosomes.
After examine the quantities resources we found out, some of

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

357

quantities are more than other quantities, for this reason, we
devote certain weight to each unites according to the previous
requests for proper cost function. TABLE I and TABLE II
and TABLE III and TABLE IV illustrates the weight of CPU,
STORAGE, NETWORK and I/O.

C. The Cost Function Formula
Cost related to accounting weight of CPU is obtained by

the following function,

∑
=

=
4/1

1

)3-4()(

i

iweightjCOSTcpu (1)

Cost related to accounting weight of STORAGE in each
line is obtained by following the function.

∑
4/1

1

)2-4()(

=

=

i

iweightjCOSTcpu (2)

Cost related to accounting weight of NETWORK in each
line is obtained by the following function.

∑
4/1

1

)1-4()(

=

=

i

iweightjCOSTcpu (3)

Cost related to accounting weight I/O in each line is
obtained by the following function:

∑
4/1

1

)4()(

=

=

i

iweightjCOSTcpu (4)

For accounting total cost for every line, the following
function is used:

)4()1-4()2-4(∑
4/1

1
)3-4(

1
)(iweightiweightiweight

i
iweight

J

j
jCOSTcpu +

=
+∑

=
= (5)

After calculation the cost of each line, we arrange available
population according to the obtained cost in order to obtain
more optimum chromosomes for the next generation.

After obtaining the optimum state running the algorithm,
the best possible answers should be examined by different
demand to indicate the algorithm efficiency. In other words,
in real environment, algorithm should be proceed in such a
way that it can select the best virtual container and in the
shortest possible time, because in the case of being joint
several environment, one request may be answered by two or
several derivative contents. Two points should be noted to
solve this problem

1) Each incoming request should be satisfied; otherwise, it
may cause a big damage to an organization.

2) For the request with minimum resources, the cost should
be minimized.

As mentioned before, it is a NP- hard problem and if we
consider the first item as the weight and the second item as
the value, it can be assume as a classical knapsack problem.
A greedy algorithm is necessary to solve this problem and the
innovative algorithms provide the best answer in this kind of
problems. We have proposed the genetic algorithm to solve
the problem.

V. THE ALGORITHM INPUT
The input of the algorithm is the best solution matrix with

size of 4×100 that every line is indicator of virtual container.
Percentage of every source value is obtained by the following

formula:

100
30

1

4

1
),(

),(
, ×

= =

=

∑ ∑i J
JIweight

jiweigh
jiν (6)

Then based the weight value which consider for each unit
matrix 1*4 is regarded as an indicator of demand to data
center. Percentage value of crossover and mutation are equal
to 60% and 30% respectively.

To calculate the cost function, all four resources fields
should be considered at the same time. As some possible
cases, it may possible that three resources have optimum
value, where the fourth one is not acceptable. As an example
of this scenario:

I/O=
25

NETWORK=1
0

STORAGE=1
3

CPU=
15

And two virtual container devoted to this demand is:

I/O=
15

NETWORK=
3

STORAGE
=8

CPU=
10

I/O=
7

NETWORK=
9

STORAGE=
7

CPU=
7

It will be consider that CPU, STORAGE, NETWORK is

specified in optimum state, but the I/O request is not satisfied.
We transmit each resource independently to the target
function and then examine every state, in order to indicate
whether it satisfies all demands or not. So the states that
satisfy all demands are supplied in an array. After end of the
process, we can find the best optimum state in the array. It
should be noted that this procedure is a time consuming
process.

To solve this problem, we propose the following procedure.
At first, we arrange the sequence of incoming requests to the
data center. Then, instead of sending all the requests, we only
examine the request with maximum unite. After finding best
solution from the maximum one, we examine whether all of
demanded resources meet the satisfaction level or not. If the
answer is negative we will go to the second row, and continue
this procedure to find the best answer. We use cost function
similar to cost function in classical knapsack problem. We
use this method for calculating the cost of chromosome. To
calculate the cost for chromosome “i”, we continue the
procedure as follows:

At first, we transmit address of blanks field with one to the
item array:

P = Pop(ii,:);
Item = find(P==1);

Then we obtain TW (sum of the weights for selected
address in the item) and TV (sum of value that their address is
indicated in item) by the following relations:

 (7)

 (8)

TABLE V: cumulative probability distribution for CPU resources cost (i)
that is chromosome cost of “i” is obtained by following relations:
Cost (i)=1/TV if ((TW>Request(1,andis(1,end))+5)) Cost(i) =
Cost(i) * (10+(TW-Request(1,andis(1,end)))); end
 if (TW==Request(1,andis(1,end)))

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

358

 Cost(i)=Cost(i)/20;
 elseif
(((TW>Request(1,andis(1,end)))&&(TW<Request(1,andis(1,end))
+1)))
 Cost(i)=Cost(i)/10;
 elseif
(((TW>Request(1,andis(1,end)))&&(TW<Request(1,andis(1,end))
+2)))
 Cost(i)=Cost(i)/8;
 elseif
(((TW>Request(1,andis(1,end)))&&(TW<Request(1,andis(1,end))
+3)))
 Cost(i)=Cost(i)/6;
 end
 if ((TW<Request(1,andis(1,end))))
 Cost(i) = Cost(i) * (10+(Request(1,andis(1,end)))-TW);

VI. EVALUATION RESULT
So many requests are entered to a data center in each

second and because of jobs vitality, all requests should be
responded and all the requested resources should be satisfied.
On the other hand so many virtual containers may be rented
in each second and after fulfilling their action, they are sent
back to the relevant data center.

For investigation of Algorithms, efficiency, we should put
them in conditions like the present conditions in data center.
For this reason we have considered conditions that is close to
the conditions of data center, in simulation of data center, we
have simulated environment for 60 seconds and we have
assumed that between 0 to 20 requests would enter to data
center. In addition in each second (except first and second
seconds) between 2 to 30 virtual containers accomplished
their action and sent back to data center, that were taken in to
service by hosts in past seconds. If the assembly of virtual
containers for hosts is less that 30, the produced accidental
numbers for returning virtual containers will be 2 of this
assembly. Entered requests to data center were considered in
simulation environment, and they were according to
aforementioned probabilities in last sections. Entered
requests with adopting request probability of each resource
that mentioned in last section, were selected accidentally.

Fore representation of algorithms, efficiency, one output
sample taken from Genetic algorithm indicated in TABLE VI
and simulating algorithm of entered environment and
algorithm.

 In time period of 10 second, total consumption of
resources is equal to 8002 unit. Also, numbers of demands
imported to data center in this period is equal to 94.Average
of resource devoted to each demand is equal to:

 (9)
In which “i” is count of time ranged from 1 to 10. If we

assume efficiency of the algorithm rather than time in which
size of every source per derivative contents is 30 unites,
advantage rate is equal to:

 (10)
In 60 second, the average resources assigned to the incoming
requests:

 (11)

 (12)
The results indicated that the proposed algorithms prevent

the additional resource consumption for 20% to 30% rather
than usual method. And it can create the best answer compare
to the other innovative algorithms.

VII. RELATED WORKS
To the best of our knowledge there is no prior work using a

genetic algorithm modeling approach to data center resource
management. The following briefly summarizes other work
with some common elements with this paper’s approach.

Rule-based systems: This approach uses a set of
event-condition-action rules (defined by system experts) that
are triggered when some precondition is satisfied (e.g., when
some metrics exceed a predefined threshold). For example,
the HP-UX Workload Manager [17] allows the relative CPU
utilization of a

resource partition to be controlled within a user specified
range, and the approach of Rolia [14] observes resource
utilization (consumption) by an application workload and
uses some “fixed” threshold to decide whether current
allocation is sufficient or not for the workload. With the
growing complexity of systems, even experts are finding it
difficult to define thresholds and corrective actions for all
possible system states.

In [15] the CPU shares are dynamically allocated with the
goal to optimize a global utility function, under varying
workload levels, and in [16] the proposed architecture
involves different Application Environments (AEs), each one
comprising several physical machines bounded together.

Each AE serves different classes of transactions, and
server could be moved from one AE to another, to optimize a
global utility function which is based on the performance
metrics of the AEs, like response time and throughput. The
proposed solver searches for the optimal number of physical
servers for each AE, with a beam search algorithm.

VIII. CONCLUSION
In this paper, we have studied virtualization technique in

data centers and investigated a successful method for
managing the resources in virtual environment. We have
proposed a dynamic management technique for resource
assignment in data center application. At first, we observed
that due to complexity of the problem, resource assignment
procedure is NP- Hard and we cannot solve the problem by
an absolute mathematic formula. We considered an
optimization technique as an effective solution for
controlling the consuming resources. We have proposed an
intelligent algorithm based on genetic functions to solve
resource allocation. Some mathematical analyses to calculate
the resource values and cost functions have been done. Then
the average and efficiency rate of the results have been
calculated to demonstrate the advantage of the proposed
method. The results certify that proposed method reduce
20-30 percent saving in consuming resources.

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

359

TABLE VI: QUANTITIES OF VIRTUAL CONTAINERS

I/O NETWORK STORAGE CPU I/O NETWORK STORAG
E CPU

20 13 30 23 VC51 28 20 5 17 VC1

6 20 10 27 VC52 26 4 8 3 VC2

14 27 15 15 VC53 3 3 6 14 VC3

24 14 7 28 VC54 8 14 15 11 VC4

5 3 27 5 VC55 6 19 4 9 VC5

14 1 11 16 VC56 26 25 11 20 VC6

20 15 16 6 VC57 26 29 20 14 VC7

7 20 21 13 VC58 5 11 6 15 VC8

9 22 1 24 VC59 19 7 14 8 VC9

13 5 6 19 VC60 8 18 28 17 VC10

9 6 20 8 VC61 8 22 8 4 VC11

2 13 14 21 VC62 18 25 19 15 VC12

23 9 5 17 VC63 20 18 22 18 VC13

12 14 5 12 VC64 16 14 3 19 VC14

1 4 13 20 VC65 4 3 19 0 VC15

14 17 2 12 VC66 17 7 6 25 VC16

7 29 16 15 VC67 8 19 18 20 VC17

19 20 25 12 VC68 6 11 22 13 VC18

19 23 24 18 VC69 11 21 5 19 VC19

12 3 8 19 VC70 27 16 19 19 VC20

23 28 14 12 VC71 15 10 26 8 VC21

12 6 19 10 VC72 8 10 16 11 VC22

20 10 29 18 VC73 6 23 19 16 VC23

0 24 13 0 VC74 28 26 12 10 VC24

7 18 24 16 VC75 13 21 2 24 VC25

15 4 7 17 VC76 13 24 12 27 VC26

14 23 22 29 VC77 12 12 26 10 VC27

14 24 26 3 VC78 2 8 2 4 VC28

19 26 18 6 VC79 27 20 17 19 VC29

20 29 23 14 VC80 7 14 6 26 VC30

11 8 5 19 VC81 25 8 4 23 VC31

26 6 15 25 VC82 21 13 25 8 VC32

18 9 24 28 VC83 2 8 10 7 VC33

17 23 3 24 VC84 13 12 25 29 VC34

22 17 26 2 VC85 11 20 11 28 VC35

26 13 25 19 VC86 28 5 8 20 VC36

25 20 16 12 VC87 29 21 20 18 VC37

13 19 21 26 VC88 8 11 14 28 VC38

24 18 25 30 VC89 3 18 12 5 VC39

15 11 12 9 VC90 21 17 8 25 VC40

23 6 30 25 VC91 25 3 14 12 VC41

5 27 10 23 VC92 19 19 7 24 VC42

25 4 13 27 VC93 14 24 4 25 VC43

29 7 20 11 VC94 17 13 8 24 VC44

17 16 9 9 VC95 11 12 25 5 VC45

18 2 3 11 VC96 9 25 6 8 VC46

2 26 24 22 VC97 17 25 20 16 VC47

12 1 25 10 VC98 27 20 11 14 VC48

14 10 3 25 VC99 2 19 27 20 VC49

13 11 17 15 VC100 24 4 24 20 VC50

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

360

REFERENCES
[1] P. X, Z. W, G. J, C. P, “Study on performance management and

application behavior in virtualized environment,” “IEEE Network
Operations and Management NOMS 2010”, ISSN1542-1201, pp.
841-844, April 2010.

[2] E. Kalyvianaki, T. Charalambous and S. Hand: "Resource Provisioning
for Multi-Tier Virtualized Server Applications," Computer
Measurement Group Journal” spring 2010.

[3] R. Perez, L. van Doorn, R. Sailer: “Virtualization and Hardware-Based
Security. “IEEE Security & Privacy Journal”, Vol. 6, No. 5, Sep. 2008.

[4] R. Perez, L. van Doorn, R. Sailer: Virtualization and Hardware-Based
Security, “IEEE Security and Privacy Journal”, Vol. 6, No. 5, Sep.
2008.

[5] A Kochut, K Beaty, “On Strategies for Dynamic Resource
Management in Virtualized Server Environments,” “15th International
Symposium on Modeling Analysis and Simulation of Computer and
Telecommunication System”s, 2007.

[6] N. Guelfi, E. Astesiano, and G. Reggio, “JGrid: Exploiting Jini for the
Development of Grid Applications,” University of Nottingham, Jubilee
Campus, Wollaton Road, Nottingham, NG8 1BB, 2003, pp. 132 - 142.

[7] M. Glickman, J. Balthrop and S. Forrest, “A Machine Learning
Evaluation of an Artificial Immune System,” “Evolutionary
Computation Journal”, Vol 13, No 2, 2005, pp. 179-212.

[8] M. A. Potter and K. A. De Jong, “Cooperative Coevolution: An
Architecture for Evolving Co-adapted Subcomponents,” “Journal
Evolutionary Computation”, Vol. 8, No. 1, MIT Press, 2000, pp. 1-29.

[9] J .A. Hartigan, M. A. Wong, “A K- Means Clustering Algorithm,” In
“Applied Statistic”s, vol. 28, pp 100- 108, 1979.

[10] J. Hoopes, “Virtualization for security: including sandboxing, disaster
recovery, high availability,” Publisher: L. Colantoni, Published By
Syngress Publishing, Inc, 2009.

[11] T. WOOD, “Improving Data Center Resource Management,
Deployment, And Availability with Virtualization,” Graduate School of
the University of Massachusetts Amherst in partial fulfillment, 2009.

[12] P. Campegiani, “A Genetic Algorithm to Solve the Virtual Machines
Resources Allocation Problem in Multi-tier Distributed Systems,”
Elsevier B.V, 2010.

[13] M. A. Potter and K. A. De Jong, “Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents,” “Journal
Evolutionary Computation”, Vol. 8, Issue 1, pages 1-29, MIT Press,
2000.

[14] J. Rolia “Configuring Workload Manager Control Parameters for
Resource Pools,” 10th “IEEE/IFIP Network Operations and
Management Symposium”, 2006.

[15] D. A. Menasce and M. N. Bennani, “Autonomic virtualized
environments” In ICAS ’06: “Proceedings of the International
Conference on Autonomic and Autonomous Systems, IEEE Computer
Societ”, 2006.

[16] M. N. Bennani and D. A. Menasce, “Resource allocation for autonomic
data centers uses analytic performance models,” In ICAC ’05:
Proceedings of the Second International Conference on Automatic
Computing, “IEEE Computer Society”, 2005.

[17] HP-UX Workload Manager,
http://docs.hp.com/en/5990-8153/ch05s12.html

Mohammad Reza Ahmadi received the B.Sc. and
M.Sc. degrees in Electrical Engineering and
Communication Systems from K.N.T. University of
Technology in 1986 and 1990 respectively. He
received his Doctor degree in Communication
Networks from Tokyo Institute of Technology, Tokyo,
in 1997.

Currently he is the project manager and researcher in IT department of
Research Institute of ITC, Iran Telecommunication Research Center.

His research interests are data center design and resource optimization,
virtualization and cloud computing techniques, network security focus on
intrusion detection systems.

Mr. Saeed. Ebrahimi was born in 7/3/1984 at Tehran,
Iran. He received the M.Sc. degrees in Tehran
Research and Science Branch in 2011. His
thesis in M.Sc. was about virtualization of data
centers and optimization of resource allocation in it, by
extra innovative algorithms. He is working as
Associate professor. His research interests include
Genetic algorithm, Fuzzy logic and Control, Artificial

Intelligence and Neural networks etc.

Mrs. Farzaneh. Ebrahimi was born in 25/2/1982 at
Tehran, Iran. She is M.Sc. Software Engineering Student
at Shahre Rey payame noor university. Her thesis in M.Sc
are about cloud computing.

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

361

	60-C00079-001

