International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

Optimized Elliptic Curve Cryptography as Fine Balance
for Wireless Sensor Network

Arpit and Ashwini Kumar

Abstract—Wireless Sensor Network communication is
naturally unreliable and can cause communication packets to
be damaged or dropped. This unpredictability in
communication poses additional threats to the nodes if dropped
packets are taken over by adversaries. Optimized Elliptic curve
cryptography (O-ECC) can assist more secure towards WSN
security and improved protocol design. Optimized Elliptic
curve cryptography is not only emerged as an attractive public
key crypto-system for mobile / wireless environments but also
provides bandwidth savings. This paper presents a light
security algorithm i.e. Optimized ECC which is enhancement of
traditional Elliptic Curve Cryptography for wireless sensor
network.

Index Terms—Cryptography, ECC, security, wireless sensor.

[. INTRODUCTION

Speedy technological enhancement in the areas of micro
electro-mechanical systems and miniaturization has
encouraged the development of a new kind of network. This
network is comprised of small-scale, relatively low in price
sensors adequate to intelligent sensing. Sensor network
envision a future in which thousands to millions of tiny
sensor nodes will be engrafted in almost every aspect of life.
The intention is to create an intelligent environment which is
adequate to collecting massive amounts of relevant
information, acknowledging significant events automatically,
and reacting suitably. Without a doubt security schemes
optimized for wireless sensor networks have not been fully
developed. Current techniques face weaknesses in certain
situations, as aggregation or routing aspects prevent top
efficiency. The ad hoc nature of sensor networks poses
unique challenges regarding their security and reliability. The
limited memory, power, processing abilities, and low
coverage of the sensor nodes makes them vulnerable to
intrusion, interception, modification and fabrication so
traditional security techniques cannot ensure confidentiality,
integrity, reliability and availability.

Sensor devices, also addressed motes or nodes, typically
consist of a sensing unit, a transceiver/communicating unit, a
processing unit, and a power supply unit. Depending on the
type of application, the sensing unit may supervise diverse
types of data including acoustic, seismic, visual, and
temperature data. The transceiver unit consists of a
short-range RF circuit that performs data transmission and
reception for a short range (tens of meters). The processing

Manuscript received July 15, 2011; revised August 8, 2011. (Write the
date on which you submitted your paper for review).

The authors are with the IERT, 26 Chatham lines, Prayag Allahabad (U.P.)
INDIA. (e-mail:arpittabelabux@gmail.com),(e-mail:simplyashwini@gmail.
com).

348

unit consists of memory and a processor with a severely
constrained size and speed. Wireless sensor motes are
powered by a battery energy source which is impossible to
replace or recharge in most application scenarios. Designers
desire to bulk produce nodes for a very low cost per device
and deploy them generously as disposable devices.
Communication normally consists of source nodes which
sense the data and send it to sink node over multiple hops.
Sink nodes may be an ordinary sensor nodes or specialized
based stations with larger resources. Wireless
communication is inherently unreliable and can cause
packets to be damaged or dropped. This unreliability in
communication poses additional threats to the nodes if
dropped packets are taken over by adversaries. Optimized
Elliptic curve cryptography (O-ECC) can assist more secure
towards WSN security and better protocol design. In
following sections contain introduction to Elliptic curve
cryptography and the propose method on the mechanism to
Optimized it and simulate it on Tiny OS [4].

II. ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curve cryptography (ECC) [1] is an approach
intended to deal public-key cryptography which is founded
on the mathematics of elliptic curves. It offers fast decryption
and digital signature processing by using Elliptic Curve DSA
(ECDSA) [2] and key establishment by using Elliptic Curve
Diffie-Hellman (ECDH) [3]. The main advantage of ECC is
that under certain situations it applies smaller keys than other
methods such as RSA while offering a same or higher level of
security. ECC employs points on an elliptic curve to derive a
160-bit public key which is same as in strength to a 1024-bit
RSA key. Hence smaller numbers of key contribute to faster
key operation and less memory overhead. It is said to be ideal
for resource-constrained devices because it provides more
"security per bit" than other types of asymmetric
cryptography in lesser cost.

A. Elliptic Curve: Its Derivation and Use

Note that elliptic curves are not ellipses. They are so
named because of the fact that ellipses are formed by
quadratic curves. Elliptic curves are always cubic and have a
relationship to elliptic integrals in mathematics [10] where
the elliptic integral can be used to determine the arc length of
an ellipse. An elliptic curve in its “standard form” is
described by

yY=x+ax+b

For the polynomial x* + ax + b, the discriminant can be
givenas D =- (4a’ +27b°)

This discriminant must not become zero for an elliptic
curve polynomial x* + ax + b to possess three distinct roots.

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

If the discriminate is zero, that would imply that two or more
roots have coalesced, giving the curves in singular form. It is
not safe to use singular curves for cryptography as they are
easy to crack. Due to this reason we generally take
non-singular curves for data encryption.

B. Elliptic Curves over F*"

What makes the binary finite fields more convenient for
hardware implementation is that the elements of GF (2") [12]
can be represented by m-bit binary codeword. The addition
operation in GF (2™) is like the XOR operation on bit fields.

Thatisx +x=0 forall xeGF(2").

This implies that a finite field of form GF (2m) is of
characteristic 2. The equation of the elliptic curve on a binary
field F,™ is

Y +xy=x"+ax’ + b, where b € 0.

Here the elements of the finite field are integers of length
maximum m bits. These numbers can be considered as a
binary polynomial of degree m — 1. In binary polynomial the
coefficients can only be 0 or 1.The addition of two points on a
curve over is F,™ defined as

(x1.y1) T (X2y2) = (x3.3)
where (x3,3) = (o + a + xi+x2 +a , o (x+x3)+x5+y;)

a = yrty:)/(x+x;)

C. Polynomial Arithmetic

where

Elliptic curve over field F*” involves arithmetic of integer
of length m bits. These numbers can be considered as binary
polynomial of degree m — 1. The binary string (@,,.; ... a; ap)
can be expressed as polynomial

Am-Ixm-1+ a, X" + ...+ ax’ + a;x + ay
where a= 0 orl. For e.g., a 4 bit number 1101, can be
represented by polynomial as x’ + x* + 1. Similar to the
modulus p on modular arithmetic, there is an irreducible
polynomial of degree m in polynomial arithmetic. If in any
operation the degree of polynomial is greater than or equal to
m, the result is reduced to a degree less than m using
irreducible polynomial also called as reduction polynomial.
In binary polynomial representation the coefficients of the
polynomial can be either O or 1. If in any operation the
coefficient becomes greater than 1, it can be reduced to 0 or 1
by modulo 2 operations on the coefficient. All the operations
below are defined in field F2* are on irreducible polynomial

ftx) = x* + x + 1. Since here m = 4 the operation involves
polynomial of degree 3 or lesser.
1) Addition

Consider two polynomial 4 = x* + x” + I and B=x"+x.

On polynomial addition 4 + B gives x* + 2x* + x+ 1.

Taking mod 2 over coefficients, 4 + B =x"+ x + 1.

On binary representation A =1101,, B=0110,

A + B = 1011, which is an XOR operation between A and
B, this is true in all cases. Hence addition of two polynomials
can be achieved by simple XOR of two numbers.

le.4A+B=A4XORB

2) Multiplication

Consider two polynomial 4 =x’ + x’ + I and B =x’ + x.
On polynomial multiplication A *B gives

¥ +x +x

Coefficients are reduced to mod 2. Since m = 4 the results
are to be reduces to a degree less than 4 by irreducible

349

polynomial x” + x + 1.
ie.x’ +x° +x° +x (modf(x))
= +x+Dr+x +x +x +x
=20 +x° + 2+ 2x
= x’, on reducing the coefficient on mod 2
On binary representation
A=1101, B=0110,
A *B=1000,
For multiplication the algorithm have following steps
Stepl:-Let P be a point on elliptic curve and k is the
number for multiplication, then

nib,-z"
i=0

Step2:-Convert P to projective P1
Step3:-Set Q1 =P1
Step4:- For I from m-2 down to 0
Set Q1=Q1+Ql1
If bi=1 then
Set Q1=Q1+P1
Step5:-Convert Q1 to affine Q
Step6:-Return Q
By this algorithm we can get the result kAP=Q.
3) Irreducible polynomial
If in any polynomial arithmetic operation the resultant
polynomial is having degree greater than or equal to m, it is
reduced to a polynomial of degree less than m by the
irreducible polynomial. NIST recommended curves
me {113,131,163,193,233,239,283,409,571} with the
following irreducible functions.
Fol13 fix) =x"" +x" + 1
FoI31 fix) = x"" + x% +x7+x7+1
Fy163 fix) =x"% + x7 +x"+x'+1
F193 fix) =x"" +x" +1
F,233 fix) =x"7 +x™ +1
Fy239 fix) =x™ +x% +1
Fy283 fix) =x™ + x"? +x"+x°+1
F409 fix) =x" + x+1
Fy571 fix) =x""" + X" +x"+x7+1

k =

D. Why Elliptic Curve Cryptography

It has been claimed by some researchers that public key
cryptosystems are not viable to implement in these tiny
devices because they are resource constrained but this is not
true. Let's see some of the features of elliptic curve
cryptography (ECC) and later see the justification so as to
need this in the sensor networks.

1. ECC offers considerably greater security for a given key
size.

2. The smaller key size also makes possible much more
compact implementations for a given level of security,
which means faster cryptographic operations, running on
smaller chips or more compact software. This means less
heat production and less power consumption — all of
which is of particular advantage in constrained devices,
but of some advantage anywhere else.

3. There are extremely efficient, compact hardware
implementations available for ECC exponentiation
operations, offering potential reductions in
implementation footprint even beyond those due to the
smaller key length alone.

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

In short: asymmetric cryptography is demanding but
looking at the cryptosystem for more security per bit, ECC is
a better choice.

E. Optimized-Elliptic Curve Cryptography

Traditional Elliptic Curve cryptography [5] is not
optimized one for resource constraint sensor nodes because it
adds extra overhead in terms of computation and memory
cost. So there is need for optimization, We have considered
that problem and optimized the existed elliptic curve
cryptography Optimization can be achieved by simplifying
the calculations such as modular multiplication, or by
reducing number of steps required for point addition and
point doubling. Next section elaborates optimizations which
are done to reduce complexity while maintaining same
security level as ECC.

F. Optimizations for Large Integer Operations

1) Barrett Reduction [6]

As we know that public-key cryptosystems Elliptic curve
Cryptography is based mainly on modular operations
(modular multiplication and modular exponentiation) of very
large integers, ranging on the order of 38-616 decimal digits,
or 128-2048 binary bits. Performing computation of numbers
of this large size with multiple precisions is not easy or fast to
implement. Most methods rely on modular reduction
algorithm functions to reduce the size and complexity of the
required arithmetic operations to carry out their public-key
cryptosystem implementations more efficiently. Barrett
Reduction is a nothing but method of reducing a number
modulo another number. Barrett reduction, when used to
reduce a single number, is slower than a normal division
algorithm. However, by pre computing some values, one can
easily far exceed the speed of normal modular reductions. A
straightforward style to perform large integer modular
reductions is to use division [6]. A nice side effect is that it
reuses the code of division, thus resulting in more compact
code size. So Barrett reduction converts the reduction modulo
an arbitrary integer to two multiplications and a few
reductions modulo integers of the form 2n.In
Optimized-Elliptic Curve Cryptography, since almost all the
modular operations are modulo the same prime number g,
Barrett reduction can potentially speed up the computation.
However, this requires the implementation of a separate
reduction algorithm, which implies larger code size (i.e.,
greater ROM requirement) on sensor nodes. In addition,
Barrett reduction also increases RAM use. Assume the target
microcontroller has a w-bit word size. Given a finite field Fg,
where ¢ is a k words long prime number, Barrett reduction
requires the pre-computation of p = floor (b?*/q), where
b= 2w or where b is the "base" of the integers used (e.g., b =
2% on a 8-bit processor). This number m has to be stored and
used throughout all the modular reductions. Thus, to
exchange for faster computation, Barrett reduction requires
more ROM and RAM than the traditional division based
modular reduction. A normal division algorithm or Classical
Division Algorithm is as follows:-

The classical algorithm is a formalization of the ordinary
1-k (1 is size of argument, k is size of m) step pencil-and-paper
method, each step of which is the division of a (k+17) digit
number x by the k-digit divisor m. This yields the one-digit
quotient q and the k digit remainder r. Each remainder r is
less than m, so that it can be combined with the next digit of
the dividend into the (k+1) digit number rb + (next digit of

350

dividend) to be used as the new x in the next step.The pseudo
code of the classical algorithm given my_; > b/2 follows:

if (x > mb™) then

x =x-mb"™;

for(i=1-1;i>k-1;i-)do

{

if (x; = = my_;) then

q=b-1;

else

q = (x:b + xi.) div my_;

while (q (my_;b + my_5) > xb’ + xi b+ Xi.z) do

qg=q-1;

x=x-gmb™*;

if (x < 0) then

x=x+mb™*;

/

//Whereas for Barrett Reduction the generalized algorithm
will be as follows

(for u = floor (b**/m))

q = ((cdiv b)) u div B*';

x =xmod b*"' - (¢ m) mod b*"';

if (x < 0) then

x=x+b";
while (x>m) do
X =x-m

2) Montgomery Algorithm

The basic idea of Montgomery’s theorem is to make x a
multiple of R by adding multiples of m. Instead of computing
all of ¢ at once, one can compute one digit #; at a time, add t;mb
to x, and repeat. This change allows the computation of
m ’0=m0'1 mod b instead of m .

The pseudo code of Montgomery’s algorithm follows:

for (i=0; i <k; i++)do {
t= (xi *m’y) mod b;

x =x + tmb’;

/

if (x>m) then x=x—m;

If the time for pre- and post-computation and for m-residue
transformation (for Montgomery only) is ignore, the Barrett
algorithm is the fastest for argument smaller than 1024 bits,
while Montgomery is the fastest for argument greater than
1024 bits. Each algorithm has its own features suitable for a
specific field of application. No single algorithm provides a
perfect solution to meet all demands; depending on the
environment in which computation are to be performed, one
algorithm may be preferable over another. For single modular
reductions, the classical algorithm seems to be the best choice,
as the pre- and post-calculations only involve a very fast and
straightforward computation. For small arguments, classical
and Barrett algorithms are almost equally fast, with slighter
better performance for Barrett. For general modular
exponentiation, the exponentiation based on Montgomery’s
algorithm has the best performance.

III. OPTIMIZATIONS FOR ECC OPERATIONS

Traditional Elliptic Curve cryptography is not optimized
one for resource constraint sensor nodes because it adds extra
overhead in terms of computation and memory cost. So there
is need for optimization, I have considered that problem and
optimized the existed elliptic curve cryptography
Optimization can be achieved by simplifying the calculations

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

such as modular multiplication, or by reducing number of
steps required for point addition and point doubling. Next
section elaborates optimizations which are done to reduce
complexity while marinating same security level as ECC.

A. Projective Coordinate Systems

An elliptic curve comprises of the infinity point O and the
set of points in the affine coordinates (x, y) for x, y a finite
field Fg that satisfies the defining equation. Alternatively, a
point on an elliptic curve can be represented in a projective
coordinate system in the form of (x, y, z). Point addition and
point doubling are decisive operations in ECC, which are
building blocks for scalar multiplications required by all ECC
schemes. These operations in affine coordinate system
necessitate modular inversion operations, which are much
more expensive than other operations such as modular
multiplications, which is not suitable for resource constrained
devices. Using a projective coordinate system [7], modular
inversions can be moved out with the compensation of a few
modular multiplications and squares operation. Due to this,
the execution times of point addition and point doubling
based on projective coordinate system are faster than those
based on affine coordinate system, respectively
[7].0ptimized-ECC uses two additional optimizations along
with projective coordinate representation, which can further
minimize both the execution time and the program size. The
first one is a mixed point addition algorithm [7], which
simply adds a point in projective coordinate and a second
point in affine coordinate. This algorithm can be used in
scalar multiplications to further reduce the number of
modular multiplications and squaring operation, which leads
to smaller and faster code. The other one is repeated
Doubling [8] for scalar multiplication. If consecutive point
doublings are to be performed, the repeated doubling
algorithm may be applied to achieve faster performance
instead of using doubling formula rapidly. In m consecutive
doublings process, this algorithm trades m—1 field additions,
m—1 divisions by two, and a multiplication for two field
squaring (in comparison with repeated applications of the
plain point doubling algorithm) [8]. Although reducing the
execution time, the projective coordinate representation
needs a larger code size (for implementing more complex
formula) and more RAM (for storing additional required
variables) than the affine coordinate system.

B. Curve Specific Optimization

A number of elliptic curves specified by NIST [9] and
SECG [8] employ pseudo-Mersenne primes. A
pseudo-Mersenne prime is of the form p = 2n —c, where ¢ €
2n. Reduction modulo a pseudo-Mersenne prime can be
performed by a few modular multiplications and additions
without any division operation. As a result, the time for
modular reduction can be reduced significantly. Thus, using
elliptic curves over a pseudo-Mersenne prime can achieve
additional performance gain.

IV. QUANTITATIVE OVERHEAD ANALYSIS

A. Test Setup

Projects dealing with WSNs use TinyOS as their operating
system. TinyOS [11] is an event-driven operating flexible,

351

application-specific operating system for sensor networks.
System projected for sensor network nodes that have very
limited resources. TinyOS and programs for TinyOS are
written in NesC [11]. The NesC programming language is
designed specifically for TinyOS and it is based upon the
concept of components that are connected or wired together
to form a program. MICA2, MICAZ and TelosB from
Crossbow platforms for performance evaluation. There are
four nodes of both types available for the experiments.
Because the MICAZ2s are easier to work with, due to their
simpler connection to a PC, they are used instead of the
MICA2DOTs.

The simulator that is used is TOSSIM [8], which stands for
TinyOS Simulator. It is included with TinyOS together with a
program called TinyViz that can be used to visualize the
WSN network running in the simulator and also process
debug data from some or all of the nodes. To use it, a TinyOS
application needs to be compiled specifically for the
simulator. The compiled executable can then be started with
command line arguments telling the simulator how many
nodes to simulate, what radio model and topology to use and
its debugging and visualization settings. The simulations will
either start running immediately or if specified, wait for
TinyViz to connect to it. TinyViz can then show which node
is sending messages to other nodes, who is broadcasting and
which LEDs on the nodes are on and off. One drawback of
the simulator is that all simulated nodes run the same
application. This is a disadvantage when one of the nodes
needs to act as a node that is performing an attack. To
measure energy consumed by various cryptographic protocol
PowerTOSSIM is used. This is extension of TOSSIM and
provides an accurate per node estimate of power
consumption. In PowerTOSSIM, specific hardware
peripherals such as radio, EEPROM, LEDs and CPU are
instrumented to obtain a trace of each peripheral’s activity
during the simulation run time. PowerTOSSIM energy model
is based on the Mica2 sensor node platform [8].

[Signaturs Generatinn —
2200 | g Signature Verification
2000 | (MM Sen der(Client)
BB Receiver(Server)
1800+
1600
=
] 1400
g
2 12004
&
o 10004
2
&
500
600~
400+
200+
o i ¥
REA-1024 ECDEA-160 REA-2045 ECDSA-224

Fig. 1. Energy Consumed (in mille Joules) Digital Signature generation,
Verification and in key exchange for RSA and Elliptic curve cryptography.

B. RSA Vs ECC: Performance Comparison

Verification of RSA is cheap but what makes it expensive
is the signature generation for authentication. This is because
RSA-based key exchange protocol relies on party A to
encrypt a randomly generated secret key with party B's public
key, and party B decrypting the key using its private key.
Now for ECC the signature algorithm is based on Digital
Signature Algorithm known as Elliptic Curve Digital
Signature Algorithm [ECDSA]. For ECDSA the signature
generation and verification both are cheap. The transition

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

from RSA-1024 to RSA-2048 the energy cost of signing
increases by a factor of more than seven, whereas for
ECDSA-224 signing is less than three times as expensive as
ECDSA-160 signing. With ECC, both parties perform a
single ECDH operation to derive the secret key.

Performance measurement for both algorithms can be
compared as follows. Hence with the facts, figures and
numbers we can clearly say that ECC is the better choice than
the most popularly used encryption algorithm for WSN.

C. Optimized-ECC Performance Evaluation

We have implemented optimized-ECC for TelosB and
Mica2 platform, it can also be extended for other sensor
platforms as well, and for evaluating required time to
generate signature and for signature verification we have
written a java code using jdk 1.5 and javacomm package.
Firstly, I’ve used two TelosB motes for testing my algorithm,
one mote is Alice, and another is Bob. Let us suppose Alice's
(mote 1) public key is pre deployed in Bob (mote 2). Alice
broadcasts packets with her signature. Bob receive packets
and verifies all packets from Alice. Red LED for Alice
indicates the signature generation whereas red LED for Bob
means, Bob is verifying the signature. If computed signature
is correct, Bob will start toggling the green LED, else Bob
will turn on all three LEDs. Execute a serial forwarder on
your computer, as with the command below, adjusting as
needed for your particular configuration.

java net.tinyos.sf.SerialForwarder -comm.
serial@COM3:telos &

With the Serial Forwarder backgrounder (or running
in its own terminal), also the following has to be

executed: java output (see Figure 2)
$ java output
Frivate key:
d: c1co706 28ba8cd8dee??ffca??5433531150805
[time of ECC.init() is 0.09244466 sec]
PubTic key:
w: dihfa0df395Thd 054 7a844d977h17h7 507573450
T e2BhT5544 2ceh? S00hc02e2 f13ccB0ala%a3hia
5E'c"lme of public key generat"lon is 0.1465343 sec]

[time of ECOsSA.init() 5 0.17921549 sec]
Ce82163379edc5953 082 da6h3700a0k001f

content and signature
msy: e2deh37oe
584f811437?1fdecc?913d65d5b5?5fce2d6be6ece83192457b87aebc98

signature

ri aizechh0d 30a23d877e1122660199230219636C6

51 G28362eh06C568dE1ad00ef50h102d72eadld 2l

[time of signature generation s 0.15532987 sec]
[time of signature verification is 0.18770833 sec] (pass)
average timing result

ECC.init(): 0.08247005

ECDSA. init(): 0.21443835

pubTic key gen: 0.14625478

sign: 0.1851174

verify: 0.22907898

Fig. 2. In text form result obtained is as follows for first round.

This will simply report to standard output any messages
delivered to the mote attached to PC. One mote which
generates the signature and one Telob is directly connected to
PC which verifies the signature; basically following
simulation demonstrate the running of ECDSA .The same
experiment is performed for MICAz platform too.

V. RESULT DISCUSSION

Using POWER-TOSSIM simulator, Figure 3. Shows the
execution time required ECDSA initialization, Signature
generation and signature verification, ECIES initialization,
Encryption, decryption ECDH initialization, key

352

establishment and Figure 4. Shows Energy consumption (in
mJ) for digital signature scheme (ECDSA- Elliptic Curve
Digital Signature Algorithm), public key encryption scheme
(ECIES- Elliptic Curve Integrated Encryption Scheme) and a
key exchange protocol scheme (ECDH - Elliptic Curve
Diffie-Hellman). The analysis shows that the TelosB
performance is higher than Mica2.

Execution time (im ms)of ECDSA, ECTES, and ECDH
-4AS00
4000 —
3500 —
- 3000
e : e
= 1soo H | H
1000 | [
soo H | H
o T T T T T T
:o’* S S aF T &
é & 4&
oy (o
oé O@"“ §’$o{c}é‘) $9*é
S
<
Fig. 3. Eecution Time (ms) for ECDSA, ECIES and ECDH operation on

Mica2 and telosB motes.

Energy Cost for ECDSA ECITES, and ECDH
operation{(in mF)

Energy(mJ)

Fig. 4. Energy Cost (mJ) for ECDSA, ECIES and ECDH operation on Mica2
and telosB motes.

VI. CONCLUSION AND FUTURE SCOPE

We work brought out a light security algorithm i.e.
Optimized ECC which is enhancement of traditional Elliptic
Curve Cryptography. The idea for Optimized ECC has been
taken from Mathematics where the unique property of
Elliptic curves have been used and optimization is provided
using easy computation , mathematically it is proved that
Asymmetric Cryptography can be implemented in these
minuscule sensor devices. As observed it drains the battery
power but there has to be a tradeoff between the energy
utilization and security level. Paper also described and
compares the energy consumption as well as running time for
TinySec and Optimized ECC. Most of the modern sensors
today operate on renewable energy source hence public key
cryptography can be implemented in these resource
constraint embedded sensor devices. There is scope of
resolve DoS attack and more optimization O-ECC toward
light & ad hoc network. Further work remains in
minimization encryption and decryption operation
implementation. Optimized-ECC performance evaluation
can also be extended for other sensor platforms.

REFERENCES

[11 Anoop MS Elliptic Curve Cryptography—An Implementation
Tutorial:www tataelxsi.com/whitepapers/ECC_Tut_v1_0.pdf?pdf id=

public_-key TEL.pdf

9]

[10]

[11]
[12]

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

Don B. John Elliptic curve DSA (ECSDA): an enhanced DSA : Tth
conference on USENIX Security Symposium - Volume 7 USENIX
Association Berkeley, CA, USA ©1998

S Wang : Efficient implementation of elliptic curve Diffie-Hellman
(ECDH) key: IEEE COMMUNICATIONS LETTERS, VOL. 12, NO.
2, FEBRUARY 149.2008.

An Liu; Peng Ning :TinyECC: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks : Information
Processing in Sensor Networks, IPSN '08. 2008.

Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, 1993.

Faster Interleaved Modular Multiplication Based on Barrett:
www.cosic.esat.kuleuven.be/publications/article-1191.pdf
Performance analysis of Point multiplication methods for Elliptic:
www.rimtengg.com/iscet/proceedings/pdfs/misc/172.pdf

Levis, N. Lee, M. Welsh and D. Culler, “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications,” Proceedings of
the 1st International Conference on Embedded Networked Sensor
Systems, pp 126-137. 2003.

Certicom Research. Standards for efficient cryptography SEC 2:
Recommended elliptic curve domain
parameters.:www.secg.org/collateral/sec2_final.pdf, September 2000.
A.J.Menezes, P. C. van Oorschot, and S.A.Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.
http://www.tinyos.net/tinyos-1.x/doc/tutorial
Certicom. Information on the Certicom ECC
http://www.certicom.com/research/ecc hallenge.html

challenge,

353

Arpit works a s Lecturer in IERT, Priyag, Allahabad.
He has four and half years experience in Academic
area and half year experience in industry as a research
associate. Major area of interest is modeling and
analyzing systems formally. Automata with Infinite
words and Probalistic automata are also areas in with
he is working. He is also publisher of three major
papers which are published in ACM, IEEE and
Spinger.

He has guided my projects of B.Tech students during his career.

His passion is research. He has earned his B.Tech degree in Computer

Science Engg from N.I.T Hamirpur(H.P).

u

MLl

Rl
research and projects in IERT.

Ashwini Kumar work as Lecturer in IERT, Prajyag,
Allahabad, India. He has Four year experience in
Academic Profession. Major areas of interest are
Network, Security and software Formal Method.
Currently working on Formal verification of
communication network and related its security. He
earns the B. Tech CSE Degree from HBTI Kanpur
(India) in 2006 and currently engages with various

	59-A2016

