
  
Abstract—Wireless Sensor Network communication is 

naturally unreliable and can cause communication packets to 
be damaged or dropped. This unpredictability in 
communication poses additional threats to the nodes if dropped 
packets are taken over by adversaries. Optimized Elliptic curve 
cryptography (O-ECC) can assist more secure towards WSN 
security and improved protocol design. Optimized Elliptic 
curve cryptography is not only emerged as an attractive public 
key crypto-system for mobile / wireless environments but also 
provides bandwidth savings. This paper presents a light 
security algorithm i.e. Optimized ECC which is enhancement of 
traditional Elliptic Curve Cryptography for wireless sensor 
network. 
 

Index Terms—Cryptography, ECC, security, wireless sensor.  
 

I. INTRODUCTION 
Speedy technological enhancement in the areas of micro 

electro-mechanical systems and miniaturization has 
encouraged the development of a new kind of network. This 
network is comprised of small-scale, relatively low in price 
sensors adequate to intelligent sensing. Sensor network 
envision a future in which thousands to millions of tiny 
sensor nodes will be engrafted in almost every aspect of life. 
The intention is to create an intelligent environment which is 
adequate to collecting massive amounts of relevant 
information, acknowledging significant events automatically, 
and reacting suitably. Without a doubt security schemes 
optimized for wireless sensor networks have not been fully 
developed. Current techniques face weaknesses in certain 
situations, as aggregation or routing aspects prevent top 
efficiency. The ad hoc nature of sensor networks poses 
unique challenges regarding their security and reliability. The 
limited memory, power, processing abilities, and low 
coverage of the sensor nodes makes them vulnerable to 
intrusion, interception, modification and fabrication so 
traditional security techniques cannot ensure confidentiality, 
integrity, reliability and availability. 

Sensor devices, also addressed motes or nodes, typically 
consist of a sensing unit, a transceiver/communicating unit, a 
processing unit, and a power supply unit. Depending on the 
type of application, the sensing unit may supervise diverse 
types of data including acoustic, seismic, visual, and 
temperature data. The transceiver unit consists of a 
short-range RF circuit that performs data transmission and 
reception for a short range (tens of meters). The processing 
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unit consists of memory and a processor with a severely 
constrained size and speed. Wireless sensor motes are 
powered by a battery energy source which is impossible to 
replace or recharge in most application scenarios. Designers 
desire to bulk produce nodes for a very low cost per device 
and deploy them generously as disposable devices. 
Communication normally consists of source nodes which 
sense the data and send it to sink node over multiple hops. 
Sink nodes may be an ordinary sensor nodes or specialized 
based stations with larger resources. Wireless 
communication is inherently unreliable and can cause 
packets to be damaged or dropped. This unreliability in 
communication poses additional threats to the nodes if 
dropped packets are taken over by adversaries. Optimized 
Elliptic curve cryptography (O-ECC) can assist more secure 
towards WSN security and better protocol design. In 
following sections contain introduction to Elliptic curve 
cryptography and the propose method on the mechanism to 
Optimized it and simulate it on Tiny OS [4]. 

 

II. ELLIPTIC CURVE CRYPTOGRAPHY  
Elliptic curve cryptography (ECC) [1] is an approach 

intended to deal public-key cryptography which is founded 
on the mathematics of elliptic curves. It offers fast decryption 
and digital signature processing by using Elliptic Curve DSA 
(ECDSA) [2] and key establishment by using Elliptic Curve 
Diffie-Hellman (ECDH) [3]. The main advantage of ECC is 
that under certain situations it applies smaller keys than other 
methods such as RSA while offering a same or higher level of 
security. ECC employs points on an elliptic curve to derive a 
160-bit public key which is same as in strength to a 1024-bit 
RSA key. Hence smaller numbers of key contribute to faster 
key operation and less memory overhead. It is said to be ideal 
for resource-constrained devices because it provides more 
"security per bit" than other types of asymmetric 
cryptography in lesser cost. 

A. Elliptic Curve: Its Derivation and Use 
Note that elliptic curves are not ellipses. They are so 

named because of the fact that ellipses are formed by 
quadratic curves. Elliptic curves are always cubic and have a 
relationship to elliptic integrals in mathematics [10] where 
the elliptic integral can be used to determine the arc length of 
an ellipse. An elliptic curve in its “standard form” is 
described by 

y2 = x3 + ax + b 

For the polynomial x3 + ax + b, the discriminant can be 
given as   D = - (4a3 + 27b2) 

This discriminant must not become zero for an elliptic 
curve polynomial x3 + ax + b to possess three distinct roots. 
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If the discriminate is zero, that would imply that two or more 
roots have coalesced, giving the curves in singular form.  It is 
not safe to use singular curves for cryptography as they are 
easy to crack. Due to this reason we generally take 
non-singular curves for data encryption. 

B. Elliptic Curves over F2m 
What makes the binary finite fields more convenient for 

hardware implementation is that the elements of GF (2m) [12] 
can be represented by m-bit binary codeword. The addition 
operation in GF (2m) is like the XOR operation on bit fields. 

That is x + x = 0    for all      x ∈GF (2m). 
This implies that a finite field of form GF (2

m) is of 
characteristic 2. The equation of the elliptic curve on a binary 
field F2

m is  
y2 + xy = x3 + ax2 + b, where b ∈ 0. 

Here the elements of the finite field are integers of length 
maximum m bits. These numbers can be considered as a 
binary polynomial of degree m – 1. In binary polynomial the 
coefficients can only be 0 or 1.The addition of two points on a 
curve over is F2

m defined as  
(x1,y1) + (x2,y2) = (x3,y3) 

where  (x3,y3) = ( α2 + α + x1+x2 +a , α (x1+x3)+x3+y1) 
where     α = (y1+y2)/(x1+x2) 

C. Polynomial Arithmetic 
Elliptic curve over field F2m involves arithmetic of integer 

of length m bits. These numbers can be considered as binary 
polynomial of degree m – 1. The binary string    (am-1 ... a1 a0) 
can be expressed as polynomial  

Am-1xm-1 + am-2xm-2 + ... + a2x2 + a1x + a0 
where ai= 0 or1. For e.g., a 4 bit number 11012 can be 
represented by polynomial as x3 + x2 + 1. Similar to the 
modulus p on modular arithmetic, there is an irreducible 
polynomial of degree m in polynomial arithmetic. If in any 
operation the degree of polynomial is greater than or equal to 
m, the result is reduced to a degree less than m using 
irreducible polynomial also called as reduction polynomial. 
In binary polynomial representation the coefficients of the 
polynomial can be either 0 or 1. If in any operation the 
coefficient becomes greater than 1, it can be reduced to 0 or 1 
by modulo 2 operations on the coefficient. All the operations 
below are defined in field F24 are on irreducible polynomial 
f(x) = x4 + x + 1. Since here m = 4 the operation involves 
polynomial of degree 3 or lesser. 

1) Addition  
Consider two polynomial A = x3 + x2 + 1 and B=x2+x. 
On polynomial addition A + B gives x3 + 2x2 + x+ 1.  
Taking mod 2 over coefficients, A + B = x3 + x + 1. 
On binary representation A = 11012,     B = 01102 
A + B = 10112 which is an XOR operation between A and 

B, this is true in all cases. Hence addition of two polynomials 
can be achieved by simple XOR of two numbers.  

I.e. A + B = A XOR B 
2) Multiplication 

Consider two polynomial A =x3 + x2 + 1 and B = x2 + x. 
On polynomial multiplication A *B gives  

x5 + x3 + x2 + x. 
Coefficients are reduced to mod 2. Since m = 4 the results 

are to be reduces to a degree less than 4 by irreducible 

polynomial x4 + x + 1. 
i.e. x5 + x3 + x2 + x (mod f(x)) 

= (x4 + x + 1)x + x5 + x3 + x2 + x 
= 2x5 + x3 + 2x2 + 2x 

= x3, on reducing the coefficient on mod 2 
On binary representation 

A = 11012, B = 01102 
A * B = 10002 

For multiplication the algorithm have following steps 
Step1:-Let P be a point on elliptic curve and k is the 

number for multiplication, then  

k   =      ∑
−

=

1

0
2

n

i
ib i 

Step2:-Convert P to projective P1 
Step3:-Set Q1 = P1 
Step4:- For I from m-2 down to 0 
Set Q1=Q1+Q1 
If   bi =1 then 
Set Q1=Q1+P1 
Step5:-Convert Q1 to affine Q 
Step6:-Return Q 
By this algorithm we can get the result kP=Q. 
3) Irreducible polynomial 

If in any polynomial arithmetic operation the resultant 
polynomial is having degree greater than or equal to m, it is 
reduced to a polynomial of degree less than m by the 
irreducible polynomial. NIST recommended curves 
m∈{113,131,163,193,233,239,283,409,571} with the 
following irreducible functions. 

F2113     f(x) = x113 + x9 + 1 
         F2131     f(x) = x131 + x8 +x3+x2+1 
         F2163     f(x) = x163 + x7 +x6+x3+1 

 F2193     f(x) = x193 + x15 +1 
F2233   f(x) = x233 + x74 +1 
F2239    f(x) = x239 + x36 +1 

            F2283     f(x) = x283 + x12 +x7+x5+1 
F2409    f(x) = x409 + x87+1 

            F2571    f(x) = x571 + x10 +x5+x2+1 

D. Why Elliptic Curve Cryptography 
It has been claimed by some researchers that public key 

cryptosystems are not viable to implement in these tiny 
devices because they are resource constrained but this is not 
true. Let‘s see some of the features of elliptic curve 
cryptography (ECC) and later see the justification so as to 
need this in the sensor networks. 
1. ECC offers considerably greater security for a given key 

size. 
2. The smaller key size also makes possible much more 

compact implementations for a given level of security, 
which means faster cryptographic operations, running on 
smaller chips or more compact software. This means less 
heat production and less power consumption — all of 
which is of particular advantage in constrained devices, 
but of some advantage anywhere else. 

3. There are extremely efficient, compact hardware 
implementations available for ECC exponentiation 
operations, offering potential reductions in 
implementation footprint even beyond those due to the 
smaller key length alone. 
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In short: asymmetric cryptography is demanding but 
looking at the cryptosystem for more security per bit, ECC is 
a better choice. 

E. Optimized-Elliptic Curve Cryptography 
Traditional Elliptic Curve cryptography [5] is not 

optimized one for resource constraint sensor nodes because it 
adds extra overhead in terms of computation and memory 
cost. So there is need for optimization, We have considered 
that problem and optimized the existed elliptic curve 
cryptography Optimization can be achieved by simplifying 
the calculations such as modular multiplication, or by 
reducing number of steps required for point addition and 
point doubling.  Next section elaborates optimizations which 
are done to reduce complexity while maintaining same 
security level as ECC.  

F. Optimizations for Large Integer Operations 
1) Barrett Reduction [6]  

As we know that public-key cryptosystems Elliptic curve 
Cryptography is based mainly on modular operations 
(modular multiplication and modular exponentiation) of very 
large integers, ranging on the order of 38-616 decimal digits, 
or 128-2048 binary bits. Performing computation of numbers 
of this large size with multiple precisions is not easy or fast to 
implement. Most methods rely on modular reduction 
algorithm functions to reduce the size and complexity of the 
required arithmetic operations to carry out their public-key 
cryptosystem implementations more efficiently. Barrett 
Reduction is a nothing but method of reducing a number 
modulo another number. Barrett reduction, when used to 
reduce a single number, is slower than a normal division 
algorithm. However, by pre computing some values, one can 
easily far exceed the speed of normal modular reductions. A 
straightforward style to perform large integer modular 
reductions is to use division [6]. A nice side effect is that it 
reuses the code of division, thus resulting in more compact 
code size. So Barrett reduction converts the reduction modulo 
an arbitrary integer to two multiplications and a few 
reductions modulo integers of the form 2n.In 
Optimized-Elliptic Curve Cryptography, since almost all the 
modular operations are modulo the same prime number q, 
Barrett reduction can potentially speed up the computation. 
However, this requires the implementation of a separate 
reduction algorithm, which implies larger code size (i.e., 
greater ROM requirement) on sensor nodes. In addition, 
Barrett reduction also increases RAM use. Assume the target 
microcontroller has a w-bit word size. Given a finite field Fq, 
where q is a k words long prime number, Barrett reduction 
requires the pre-computation of µ = floor(b2k/q), where 
b = 2w or where b is the "base" of the integers used (e.g., b = 
28 on a 8-bit processor). This number m has to be stored and 
used throughout all the modular reductions. Thus, to 
exchange for faster computation, Barrett reduction requires 
more ROM and RAM than the traditional division based 
modular reduction. A normal division algorithm or Classical 
Division Algorithm is as follows:- 

The classical algorithm is a formalization of the ordinary 
l-k (l is size of argument, k is size of m) step pencil-and-paper 
method, each step of which is the division of a (k+1) digit 
number x by the k-digit divisor m. This yields the one-digit 
quotient q and the k digit remainder r. Each remainder r is 
less than m, so that it can be combined with the next digit of 
the dividend into the (k+1) digit number rb + (next digit of 

dividend) to be used as the new x in the next step.The pseudo 
code of the classical algorithm given mk-1 

≥ b/2 follows:  
if (x > mbl-k) then 
x = x - mbl-k; 
for (i = l- 1; i > k - 1; i--) do  
{ 
if (xi = = mk-1) then 
q =b - 1; 
else 
q = (xib + xi-1) div mk-1; 
while (q (mk-1b + mk-2) > xib2 + xi-1b + xi-2) do 
q = q- 1; 
x = x- q m bi-k; 
if (x < 0) then 
x = x + m bi-k; 
} 
//Whereas for Barrett Reduction the generalized algorithm 

will be as follows  
(for µ = floor (b 2 k / m)) 
q = ((x div bk-1)¹ µ div bk+1; 
x = x mod bk+1 - (q m) mod bk+1; 
if (x < 0) then 
x = x + bk+1; 
while (x≥ m) do 
x = x- m; 
2) Montgomery Algorithm  

The basic idea of Montgomery’s theorem is to make x a 
multiple of R by adding multiples of m. Instead of computing 
all of t at once, one can compute one digit ti at a time, add timb 
to x, and repeat. This change allows the computation of 
m’0=m0

-1 
mod b instead of m’.  

The pseudo code of Montgomery’s algorithm follows:  
for (i=0; i < k; i++) do {  
t
i 
= (x

i 
• m’0) mod b;  

x = x + timbi;  
}  
if (x ≥ m) then   x = x – m; 

If the time for pre- and post-computation and for m-residue 
transformation (for Montgomery only) is ignore, the Barrett 
algorithm is the fastest for argument smaller than 1024 bits, 
while Montgomery is the fastest for argument greater than 
1024 bits. Each algorithm has its own features suitable for a 
specific field of application. No single algorithm provides a 
perfect solution to meet all demands; depending on the 
environment in which computation are to be performed, one 
algorithm may be preferable over another. For single modular 
reductions, the classical algorithm seems to be the best choice, 
as the pre- and post-calculations only involve a very fast and 
straightforward computation. For small arguments, classical 
and Barrett algorithms are almost equally fast, with slighter 
better performance for Barrett. For general modular 
exponentiation, the exponentiation based on Montgomery’s 
algorithm has the best performance.  

 

III. OPTIMIZATIONS FOR ECC OPERATIONS 
Traditional Elliptic Curve cryptography is not optimized 

one for resource constraint sensor nodes because it adds extra 
overhead in terms of computation and memory cost. So there 
is need for optimization, I have considered that problem and 
optimized the existed elliptic curve cryptography 
Optimization can be achieved by simplifying the calculations 
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such as modular multiplication, or by reducing number of 
steps required for point addition and point doubling.  Next 
section elaborates optimizations which are done to reduce 
complexity while marinating same security level as ECC.  

A. Projective Coordinate Systems 
An elliptic curve comprises of the infinity point Ô and the 

set of points in the affine coordinates (x, y) for x, y a finite 
field Fq that satisfies the defining equation. Alternatively, a 
point on an elliptic curve can be represented in a projective 
coordinate system in the form of (x, y, z). Point addition and 
point doubling are decisive operations in ECC, which are 
building blocks for scalar multiplications required by all ECC 
schemes. These operations in affine coordinate system 
necessitate modular inversion operations, which are much 
more expensive than other operations such as modular 
multiplications, which is not suitable for resource constrained 
devices. Using a projective coordinate system [7], modular 
inversions can be moved out with the compensation of a few 
modular multiplications and squares operation. Due to this, 
the execution times of point addition and point doubling 
based on projective coordinate system are faster than those 
based on affine coordinate system, respectively 
[7].Optimized-ECC uses two additional optimizations along 
with projective coordinate representation, which can further 
minimize both the execution time and the program size. The 
first one is a mixed point addition algorithm [7], which 
simply adds a point in projective coordinate and a second 
point in affine coordinate. This algorithm can be used in 
scalar multiplications to further reduce the number of 
modular multiplications and squaring operation, which leads 
to smaller and faster code. The other one is repeated 
Doubling [8] for scalar multiplication. If consecutive point 
doublings are to be performed, the repeated doubling 
algorithm may be applied to achieve faster performance 
instead of using doubling formula rapidly. In m consecutive 
doublings process, this algorithm trades m−1 field additions, 
m−1 divisions by two, and a multiplication for two field 
squaring (in comparison with repeated applications of the 
plain point doubling algorithm) [8]. Although reducing the 
execution time, the projective coordinate representation 
needs a larger code size (for implementing more complex 
formula) and more RAM (for storing additional required 
variables) than the affine coordinate system. 

B. Curve Specific Optimization  
A number of elliptic curves specified by NIST [9] and 

SECG [8] employ pseudo-Mersenne primes. A 
pseudo-Mersenne prime is of the form p = 2n −c, where c
2n. Reduction modulo a pseudo-Mersenne prime can be 
performed by a few modular multiplications and additions 
without any division operation. As a result, the time for 
modular reduction can be reduced significantly. Thus, using 
elliptic curves over a pseudo-Mersenne prime can achieve 
additional performance gain. 

 

IV. QUANTITATIVE OVERHEAD ANALYSIS 

A. Test Setup 
Projects dealing with WSNs use TinyOS as their operating 

system. TinyOS [11] is an event-driven operating flexible, 

application-specific operating system for sensor networks. 
System projected for sensor network nodes that have very 
limited resources. TinyOS and programs for TinyOS are 
written in NesC [11]. The NesC programming language is 
designed specifically for TinyOS and it is based upon the 
concept of components that are connected or wired together 
to form a program. MICA2, MICAZ and TelosB from 
Crossbow platforms for performance evaluation. There are 
four nodes of both types available for the experiments. 
Because the MICA2s are easier to work with, due to their 
simpler connection to a PC, they are used instead of the 
MICA2DOTs. 

The simulator that is used is TOSSIM [8], which stands for 
TinyOS Simulator. It is included with TinyOS together with a 
program called TinyViz that can be used to visualize the 
WSN network running in the simulator and also process 
debug data from some or all of the nodes. To use it, a TinyOS 
application needs to be compiled specifically for the 
simulator. The compiled executable can then be started with 
command line arguments telling the simulator how many 
nodes to simulate, what radio model and topology to use and 
its debugging and visualization settings. The simulations will 
either start running immediately or if specified, wait for 
TinyViz to connect to it. TinyViz can then show which node 
is sending messages to other nodes, who is broadcasting and 
which LEDs on the nodes are on and off. One drawback of 
the simulator is that all simulated nodes run the same 
application. This is a disadvantage when one of the nodes 
needs to act as a node that is performing an attack. To 
measure energy consumed by various cryptographic protocol 
PowerTOSSIM is used. This is extension of TOSSIM and 
provides an accurate per node estimate of power 
consumption. In PowerTOSSIM, specific hardware 
peripherals such as radio, EEPROM, LEDs and CPU are 
instrumented to obtain a trace of each peripheral’s activity 
during the simulation run time. PowerTOSSIM energy model 
is based on the Mica2 sensor node platform [8]. 

 
Fig. 1. Energy Consumed (in mille Joules) Digital Signature generation, 

Verification and in key exchange for RSA and Elliptic curve cryptography. 

B. RSA Vs ECC: Performance Comparison 
Verification of RSA is cheap but what makes it expensive 

is the signature generation for authentication. This is because 
RSA-based key exchange protocol relies on party A to 
encrypt a randomly generated secret key with party B's public 
key, and party B decrypting the key using its private key. 
Now for ECC the signature algorithm is based on Digital 
Signature Algorithm known as Elliptic Curve Digital 
Signature Algorithm [ECDSA]. For ECDSA the signature 
generation and verification both are cheap. The transition 

∈
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