
  
Abstract—Current interactive computing state-of-the-art 

environments, libraries, and frameworks open the door for 
engineers to run their simulation codes in an interactive mode, 
i. e. allowing for estimations of the state and tendency, as well as 
modifications, during a simulation program runtime without 
the necessity for their own expertise in efficient algorithms and 
data structures, high-performance computing, and visualisation. 
Nevertheless, when it comes to the real-time response of the 
simulation to this interaction − namely, keeping the connection 
between the user’s change and its effect intuitive or at least 
observable − these environments are still limited in their 
possible application and, furthermore, often entail heavy code 
changes in order to be coupled to existing codes. Therefore, we 
introduce an integration framework applicable to different 
engineering applications, which with only minor code 
modifications involved supports distributed simulations as well 
as visualisation on-the-fly and enables real time interactive 
computational steering. Furthermore, we present its integration 
into a previously existing pre-operative planning environment 
for joint replacement surgery, which makes possible an 
interactive patient-specific selection of the optimal implant 
design, size, and position. The environment is supposed to 
enable the real-time surgeon’s interplay with virtual models of 
bones and implants in 3D, thus, simultaneous computation and 
visualisation of the load transfer between the bone and the 
implant. Moreover, we tackle the problem of long 
communication delays which occur in the case of rigid coupling 
of simulation back-ends with visualisation front-ends and 
handicap a surgeon in observing which of his modifications 
leads to which outcome. 
 

Index Terms—Bone Mechanics, computational steering 
environment (cse), human femur, interactive computing, 
message passing interface (mpi). 
 

I. INTRODUCTION 
In general, interactive computing is the practice of the 

real-time intervening of a user with a program during the 
program runtime in order to estimate or influence its course 
and final outcome. It is often associated with numerical 
simulation experiments, especially where the pre-processing 
phase is time consuming and, thus, the opportunity to modify 
interactively either the geometry of the simulated scene, or 
boundary conditions, or individual parameters represents an 
indispensible feature. On the front end, a graphical user 
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interface and the visualisation of results on demand are 
desirable, while on the back-end, an interruptible, often time- 
and memory-consuming simulation is running on a 
high-performance cluster (Fig. 1). 

Nowadays, many tools which “provide an environment in 
which researchers themselves can build interfaces and 
visualisations to the simulation” [1] are available, however, 
mostly having limited scope of application and/or requiring 
significant code invasion during the integration phase. 

Magellan assumes the export of monitoring and steering 
objects from an application. Afterwards, for instance, a 
collection of instrumentation points, such as so-called 
actuators, knows how to change an object without disrupting 
application execution. Pending update requests are stored in a 
shared buffer until an application thread polls for them [9]. 

In EPSN API [10], XML description of simulation scripts 
is introduced to handle data and concurrency at 
instrumentation points. Here a steering server, when 
receiving requests, determines their date, thus, the request is 
executed after the first date that fulfils a condition. Reacting 
on a request consists of releasing the predetermined blocking 
points. 

Steereo [11] is a light-weight steering framework, not the 
complete steering environment, where the client sends 
requests and the simulation side will execute them and send 
some response. However, the requests are not processed 
immediately in the simulation, but rather stored in a queue 
and executed at predefined points in the simulation. A user 
has to determine when this queue should be processed in his 
code. 

 
Fig. 1. Framework layout − user interaction with the running simulation: On 
the front-end a user is performing changes via graphical user interface, the 
information is sent to the simulation via the network. 

 
G-HLAM [12], on the other hand, focuses more on fault 

tolerance, i. e. monitoring and migration of the distributed 
federates. The group of main G-HLAM services consists of a 
Broker Service which coordinates management of the 
simulation, a Performance Decision Service which decides 
when performance of a federate is not satisfactory, thus, 
migration is required, and a Registry Service which stores 
information about the location of local services. It has been 
tested on the application supporting surgeons with 

Interactive Computing−Virtual Planning of Hip Joint 
Surgeries with Real-Time Structure Simulations 

Jovana Knežević, Ralf-Peter Mundani, and Ernst Rank 

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

307



simulations of vascular reconstruction, using distributed 
federations on the Grid for the communication among 
simulation and visualisation components. 

Further comparison of different frameworks, 
computational steering environments, libraries, and tools is 
given in [2]. 

In the previous years, within the Chair for Computation in 
Engineering and with our cooperation partners at the Chair 
for Computer Graphics and Visualisation at Technische 
Universität München, an environment for pre-operative 
implant planning for hip joint replacement has been 
developed [6]. The ultimate goal of this medical procedure is 
to keep the stress distribution after insertion of an implant as 
close as possible to the physiological state, since removal of 
stress from certain regions in the bone due to the insertion of 
an implant might cause osteoporosis, degeneration of bone 
tissue, and lead soon unavoidably towards a new surgical 
intervention. 

The developed analysis tool allows for implant selection 
and positioning based on prediction of response of 
patient-specific bone to a load that is applied. For this, two 
indispensable components have been coupled. 

One is a simulation engine based on the models of femur, 
i. e. thigh bone geometry constructed by CT/MRI-data and 
using the Finite Cell Method (FCM), a variant of the high 
order p-FEM code with fictitious domain approach, as 
proposed in [3]. With this method, models with complicated 
geometries or multiple material interfaces can be easily 
handled without an explicit 3D mesh generation. The basic 
idea is an extension of the weak form of the partial 
differential equation beyond the physical domain up to the 
boundary of an embedding domain, which can easier be 
meshed. 

The other is a sophisticated visualisation platform that 
allows the intuitive exploration of the bone geometry and 
particularly the mechanical response to various load 
situations of the physiological state and the post-operative 
state of an implant-bone situation in terms of stresses and 
strains [4, 5]. For this purpose, after sending an update of the 
settings − either after insertion/moving an implant, or testing 
a new position/magnitude of the forces applied to the bone − 
for each element and corresponding tensor a scalar value, i. e. 
the so-called von Mises stress norm, can be calculated and 
visualised as shown in Fig. 2. 

 
Fig. 2. Von Mises stresses (calculated for a polynomial degree p = 6) of a 
healthy bone (left) and after a virtual surgery (right) under load of 1500 N 
and 1125 N exerted at the femur’s head and the great trochanter, resp.; darker 
colours refer to regions with higher stress magnitude, thus, providing an 
overview of how the implant changes the stress distribution in the 
surrounding bone tissue. 

The challenges in developing such a two-component 
analysis tool are described in more detail in [6], [4], [5]. 
Unfortunately, due to the rigid communication pattern 
between the components, the new setting could be considered 
by the simulation only after the result for the previous one has 
been calculated and sent to the user. Therefore, the higher 
polynomial degrees were used, the longer became the total 
time for computing the outdated result plus the new ones until 
one could finally perceive the effect of his last change. 

Hence, the central topic of this paper is the way in which 
these two components are glued in a new approach via our 
framework in order to allow for instant feedback about the 
changes performed by a surgeon. 
 

II. GENERAL IDEA OF THE FRAMEWORK 
In order to achieve an immediate response of any 

simulation back-end to changes made by the user, the regular 
course of the simulation coupled to our framework is being 
interrupted, using software equivalents of hardware 
interrupts, i. e. signals, in small, user-defined cyclic intervals 
followed by a check for updates [2]. 

If there has been any change on the user side, the new data 
is received and simulation state variables are manipulated in 
order to make the computation stop and then restart from an 
adequate point, according to the updated settings (new 
geometry, boundary conditions, etc.). It is the responsibility 
of a user to instruct the simulation program how the received 
data should be matched to the simulation data. 

After the check for updates has been done, independently 
from whether any has been received, the control is given back 
to the simulation which continues from the state saved at the 
previous interrupt-point. However, this unconditionally 
happens only until the values of the simulation state variables 
can be compared earliest. Consequently, if the result of the 
comparison indicates so, the upcoming computation steps are 
skipped, meaning automatically re-starting the computation 
with new settings again. 

As elaborated in [7], a significant remark is that, to 
guarantee the correct execution of a program, one should use 
certain type qualifiers for the variables which are subjects to 
sudden change or objects to interrupts. Namely, ensuring 
atomicity of certain operations on the data is crucial for 
deterministic behaviour of the program. In addition to this, 
insuring memory consistency is necessary, not only in the 
sense of accessing always the correct values of variables in 
the main memory instead of potentially outdated values in the 
cache due to certain compiler optimisations, but also in the 
sense of releasing all allocated memory which is not 
supposed to be accessed anymore, or which is even not 
possible to access as soon as the new computation starts. 

With some intermediate (one iteration in case of an 
iterative solver, e. g.) or the complete computation (in case of 
a direct solver, e. g.) being finished without an interrupt, new 
results are handed on to the user process for visualisation. 
Nevertheless, due to the fact that the framework is intended 
to be integrated in various application scenarios, hence it 
cannot be predicted in which way the results should be 
interpreted in each of them, it is again user’s responsibility to 
prescribe to the front-end process how to interpret the 
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received data so that it can be appropriately visualised. 
As given in more detail in [2], since many applications are 

amenable to concurrent execution, they are programmed 
nowadays using either shared memory, message passing, or 
these combined in hybrid parallel algorithms, thus, the design 
of our framework takes into consideration and supports all of 
them. These results in an extra effort to ensure correct 
program execution and avoid synchronisation problems 
when using threads. 

In case of pure multithreading (with OpenMP / POSIX 
threads, e. g.) used for the computations on the simulation 
side, the idea is that as soon as a random thread is interrupted 
by a signal at the expiration of the user-specified interval, it 
checks via the functionality of the Message Passing Interface 
(MPI) if any information regarding the user activity is 
available. If the aforesaid probing of the user’s message 
indicates that a change has been made, both the receiving and 
the other threads instantly obtain information about it due to 
the manipulated state variables, all of them becoming aware 
that their computations should be started over again and 
proceed in the way in which clean termination of the parallel 
region is guaranteed, as described in more detail in [7]. 

The same is valid for the case of hybrid parallelisation of a 
simulation (i. e. MPI and OpenMP), where not only a random 
thread in each active MPI process is being interrupted by 
signals to check for the updates, but also all the processes 
have to be explicitly notified about the changes performed by 
a user, which involves additional communication overhead. 

Nevertheless, to prevent one master process, the direct 
interface of the user’s process to the computing-nodes, i. e. 
slaves, from becoming a bottleneck, a hierarchical 
non-blocking broadcast algorithm for transferring the signal 
to all computing nodes has been implemented (Fig. 3), where 
all the computing nodes have their own signals invoked for 
their own fixed intervals. 

Although all the simulation processes have to invoke their 
own signals to do checks for updates, this, due to the very 
small intervals in-between the two checks, still does not 
cause intolerable delays, even despite the necessary 
synchronisation among the processes. 
 

III. TEST CASE–THE BONE 

A. The Communication Pattern 
The main functionality provided to aid the pre-operative 

planning consists of the insertion of different implants, 
changing their position, applying forces at different places 
and with different intensity. The result a surgeon receives in 
terms of stresses distribution is accordingly visualised. 

So as to achieve receiving of any feedback in real-time 
with the FCM simulation running on standard 
consumer-class hardware, and this even for higher accuracy, 
i. e. polynomial degrees of basic functions used in FCM 
higher than 4, our framework with several valuable features 
has been utilized.  

To profit from all the features of the framework and 
overcome the problem of long communication delays, the 
initial structure of the components to be coupled has been 
slightly adapted to our needs. 

 
Fig. 3. Hierarchical communication pattern and transfer of the signal to all 
the processes. User process sends new settings to master of the simulation; 
master process checks for those updates in small, cyclic simulation specific 
intervals until an update is received, when it is transferred to all of the slaves 
in the communication hierarchy. Meanwhile, the slaves are doing their own 
checks in their own fixed intervals. 

 
On the front-end, the main thread is in charge of fetching 

user interaction data and rendering. It is important to make 
sure that sending of the update information is done only, and 
also immediately, when the user is actually intervening via 
graphical user interface. 

Consequently, in a second thread a loop for sending 
fetched updates is implemented. For sending of updates we 
use non-blocking MPI routines, giving the user an 
opportunity to provide for the computation the information 
about all of his modification requirements either immediately 
or in timely fashion, i. e. in specified intervals. 

To our advantage, this thread is completely independent 
and, thus, not synchronised with the remaining third thread, 
which is dedicated for waiting to receive results as soon as 
these are available. In the first thread the rendering loop is 
continuously being executed, thus, this data becomes 
immediately visible to the user. A simplified communication 
pattern between the modules on the front-end and simulation 
on the back-end is illustrated in Fig. 4. 

In order to benefit from this pattern, what becomes a 
challenge, is exploring the way in which the simulation 
running on the back-end can simultaneously become aware 
of the changes made on the front-end, i. e. when and how to 
interrupt the simulation kernel so that it can instantly receive 
an update and re-compute the solution for a new system of 
equations. To describe the challenge in more detail, we 
provide a basic overview of the simulation kernel structure. 

 
Fig. 4. Communication pattern between the two components. From the user 
front-end the changes of the data are recognised on a per-frame basis and sent 
immediately to the simulation via non-blocking routines. The simulation 
results, in terms of stresses, are then calculated and sent back to the user. 

B. The Simulation Kernel 
At the beginning, the femur voxel information generated 

on the visualisation side based on the quantitative computed 
tomography (QCT) scans and indicating the bone strength is 

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

309



transmitted over the network, thus, the rectangular domain 
which embeds the entire femur is generated. The domain is 
then divided into sub cells of the same size. For the 
aforementioned FCM simulation, the polynomial degree of 
the shape functions p and the number of voxels in each 
direction are read from the user input file and are not 
dependent on the visualisation. The computational domain is 
kept fixed during the whole runtime of the simulation as the 
time-consuming discretisation is done only at the beginning, 
making the kernel convenient for interactive computing.  

Driven by external forces f, a deformed solid is governed 
by the well-known equations from static elasticity theory, 
resulting in a linear equation system K⋅u = f, where K is 
known as the stiffness matrix, u the displacement vector of all 
vertices, and f the force vector applied to the system. The 
stiffness matrix K is assembled from the element stiffness 
matrices, referring to individual elements lying inside the 
femur’s physical domain. 

Described initialisation and meshing steps are followed by 
an interactive computing loop, which consists of receiving 
user updates, pre-processing steps, solving the 
aforementioned system of equations, post-processing, and 
finally sending results to the user (Fig. 5). 

Concerning the system of equations, due to its poor 
condition number sophisticated iterative solvers fail to be 
efficiently deployed and special treatment which allows for 
both the design of sophisticated solvers as well as for 
advanced parallelisation strategies is required. Therefore, a 
direct solver with hierarchical concepts, i. e. exploiting an 
octree data structure based on a nested dissection of the 3D 
domain (see Fig. 7) is used [13]. The main advantage here is 
that when inserting the implant, the stiffness matrices of the 
cells that experience change are updated locally and 
reassembly step is done only for a modified part of the 
system. 

 
Fig. 5. Simulation process − execution flow. After receiving the data 
necessary for defining the problem and setting up the p-FEM kernel, a system 
of equations needs to be solved. The interactive computing loop consists of 
the pre-processing phase, an efficient direct solver based on nested dissection 
scheme where displacements of all the elements’ vertices are calculated, the 
post processing phase, and finally returning computed stresses to the user’s 
front-end for visualisation. 

 
Despite the overall better performance of the solver in 

comparison to other direct solvers, i. e. Gauss and relatives, 
the current reassembling step which is computationally most 
expensive is undoubtedly worth being interrupted or skipped 
as soon as a surgeon on his interface changes actual settings. 

C. Towards Interactive Computing – Interrupting the 
Simulation 
As already implied, in order to further improve the 

proposed system towards an interactive simulation and 
visualisation environment, we have integrated functionality 
of our framework for instant interrupting the current 
computation in case of an update. On this occasion, due to the 
update, obtained stiffness matrices are supposed to be 
assembled, step by step traversing an octree bottom-up, into 
the global stiffness matrix. Afterwards, the solution for the 
system of equations at root, i. e. zero, level of the octree is 
done and all the solutions are recursively passed for each 
node to the nodes one level lower in the hierarchy for their 
own local solutions, as shown in Fig. 6. All the partial 
solutions are finally assembled into the final solution vector. 
The described algorithm, as presented in [13] has shown 
excellent scalability values in case of hybrid parallelisation 
[8]. 

 
Fig. 6. Nested dissection solver. Dashed arrows indicate the solution 
sequence and the solid ones the assembly. For instance, in case of an 
interrupt being caught while processing the filled node at the bottom of the 
hierarchy, supposing the tree-like structure is being traversed in depth-first 
manner, the processing of the nodes marked with the cross is skipped. 

 
Therefore, our intention is that the most time consuming 

phase, i. e. assembly, parallelised using shared or distributed 
memory concepts or both is being interrupted. Here, 
cyclically-repeating signals are used for frequent checks for 
updates. If there is an indicator of the upcoming message 
from the user side, this is recognised while processing one of 
the nodes in the previously mentioned hierarchical data 
structure and the simulation variables are set in a way which 
ensures skipping the rest of the nodes, as shown in Fig. 6. 
Thus, all the layers of the recursive assembly function call 
return immediately, the solution steps are skipped as well, 
and the new data is received at the beginning of the next step 
of the interactive computing loop. 

 
Fig. 7. Building a hierarchy of tasks based on nested dissection of the 
rectangular domain (for the sake of simplicity 2D case is shown). Dissection 
is done recursively and all the element stiffness matrices and load vectors are 
placed in the leaves of the tree structure. 

 
In addition to the guaranteed data values consistency 

necessary for the correct program execution, mentioned at 
the beginning of the Section 2, sufficient steps to prevent 
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potentially introduced severe memory leaks before the new 
computation is started have to be taken. This is due to the 
interrupts and their possible occurrence before the memory 
allocated in the solver has been released. If assembly of 
different parts of the ochre is being processed by separate 
threads, i. e. the solver code is parallelized via Open MP, 
unexceptionally in this test case, it is ensured that when a new                   
update is recognized by the thread catching a signal, all the 
other threads become immediately and automatically aware 
that they are supposed to skip the rest of their computations. 
As soon as the assembly has been completed without an 
interrupt, the stresses are sent back to the user process for 
visual update. Although precious time has been saved by 
skipping all the previous ones and calculating results only for 
an actual setting, unavoidable delay of any visual feedback 
especially for the higher p, i. e. higher than 4, is experienced 
as already expected, since the time needed for a new 
computation is dramatically increasing in case of increasing p. 
Here, we profit from a hierarchical approach. 
 

IV. HIERARCHICAL APPROACH FOR THE BONE 
The hierarchical approach used in this test case is based on 

the usage of several, chosen by the user, different polynomial 
degrees for corresponding parallel processes (Fig. 8). The 
voxels’ data as well as the data referring to user interaction is 
being sent to all of them via MPI, and they can all start their 
own computation, naturally, for lower p finishing faster than 
for higher p. As soon as any of them is finished, the results 
are sent to the front end and visualised. 

What is accomplished in this way is that while the user’s 
interplay with the settings is very intensive, he is getting not 
the most accurate, nevertheless immediate feedback about the 
effects of his changes, i. e. results for lower p, more 
specifically p = 1 or p = 2, being able to see the more 
accurate results in addition to this only as soon as he stops 
interacting and lets the simulation finish one iteration in the 
interactive computing loop for higher p values. As soon as 
user interaction starts over again, the results for the lowest p 
are immediately being visualised and the general impression 
about the tendency can be instantly gained one more time, 
switching afterwards gradually to higher levels of hierarchy 
until either the user starts interacting again or the highest 
accuracy is achieved, i. e. results for the highest hierarchy are 
received (Fig. 9). The number of MPI program instances, 
being executed for different p, i. e. hierarchy, can be chosen 
by the user. 

 
Fig. 8. Hierarchical approach – the communication pattern for the two chosen 
hierarchies – for instance p = 2 and p = 6. The updates are being sent to both 
of them, only the computation for p = 2 being able to finish and send back the 

result until the next update has been received. The computation for p = 6 is 
being interrupted and skipped all the time until the user stops interacting, 
when it has a chance to finish and send back the stresses for visualisation. 

 
Fig. 9. Transition from p = 6 to p = 1 as soon as the user starts performing 
changes, i. e. changing the forces magnitude and direction, inserting an 
implant and moving it, etc. and getting the result again for p = 6 as soon as the 
interaction stops. In this way the user receives instantly feedback about the 
stress distribution, getting the finer result only when he stops interacting. 
 

V. RESULTS AND CONCLUSIONS 
The starting point of our work was a computationally 

efficient simulation and a sophisticated user interface with 
visualisation module, both opening the door for real-time 
interactive computing. The integration of our framework then 
comes into play not only to make more suitable for this 
purpose the way the data is communicated, but also to enable 
interrupting the simulation immediately and getting instant 
feedback ensued by any user interaction. 

Evaluation of the performance on this particular test 
scenario, where the simulation is executed on multi-core 
architectures and connected to the visualisation front-end via 
a network still proved that this is yet another test case where 
the overhead caused by the framework itself is not 
significant. 

The tests have been done in the past also on other 
multithreaded and distributed simulation test cases, where, as  
Fig. 10 and Fig. 11 show, we also got promising results. 

 
Fig. 10. Scenario with OpenMP parallelised Gauss-Seidel solver on a grid of 
size 500 × 500 without signals invoked, with signals invoked, but without 
any user interaction and with extremely intensive user interaction, i. e. each 5 
milliseconds, shows excellent speedup results tested on 1, 2, and 4 cores. 
 

In none of the test cases, even the one where the user 
interaction was invoked in 5-millisecond intervals, which is 
far more frequent than typically occurs in practice (the results 
of the measurements are shown in Fig. 10), did the 
integration of the framework significantly affect the overall 
execution time. 

In the future, we will concentrate on testing the framework 
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in case of distributed and massively parallel version of this 
particular simulation. Load balancing techniques will be 
applied in order to involve all the available processes during 
the overall program runtime. This becomes especially 
challenging for the tasks organised in the hierarchy, where 
the number of processes involved is typically decreasing by 
the factor of 2n on each level, where n is the dimension of the 
space. Thus, a sophisticated optimisation technique for the 
tasks with dependencies will be applied, which involves 
various heuristics in order to balance the work among 
processes in the optimal way. 

 
Fig. 11. Excellent speedup of a distributed Jacobi solver tested for up to 64 
processes on AMD Opteron 850 processors at 2.4 GHz, without the 
integration of our framework and with it for different intervals in which 
signals occur (1 and 0.5 milliseconds); overhead introduced by the 
framework itself is negligible. 

 
Also, the problem of data transmission for very high p will 

be tackled for minimising the amount of data which is being 
transferred in both directions. 
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