

Abstract—Regression testing is one of the most crucial and

expensive testing process used to validate modified software
and detect new faults introduced by into previously modified
and tested code. To reduce the cost of regression testing,
software testers may choose to prioritize their test cases to run
the “important” ones, chosen by some metrics and constraints,
earlier in the testing process. Various approaches have been
introduced by previous researches in the form of prioritization
technique focusing on specific goals of regression testing. One
goal of prioritization is to increase a test suite’s rate of fault
detection. In this context, previous studies have shown that
several prioritization techniques can significantly improve rate
of fault detection, but these studies have also shown that the
effectiveness of these techniques is relative to the assumptions
made by the researchers concerning the testing environment.
The variations observed in these experiments have mostly been
linked to the subject program, test suites characteristics. This
makes it difficult for testers to appropriately choose the correct
prioritization technique for their testing scenarios. In this
paper, regression prioritization techniques are described.
Their performance, in fault detection rate, is assessed and the
metrics used to assess the effect of variation through discussing
experiments done in this context are specified. Then, the
results are analyzed and insight about prioritization
techniques selection under these constraints is provided.

Index Terms—Test case, prioritization, regression, Software
testing, empirical studies.

I. INTRODUCTION
Software testing is the process of determining if a

program behaves as expected. It is an intellectually
challenging activity aimed at evaluating the capability of a
program or system to determine whether or not it meets
requirements [1]. It is an activity that should be done
throughout the whole development process [2]. It occurs in
each phase of development life cycle, from requirements
engineering through delivery and maintenance.

Software maintenance is an activity which includes
enhancements, error corrections, optimization and deletion
of outdated components. Such modifications may cause the
software to work incorrectly and affect the overall system
functioning. Regression testing works within this
framework. It is used to evaluate the modifications of the
software. Test suites are generated and executed to ensure
that no new bugs have been introduced into previously
tested software. Many approaches and techniques for
improving the cost-effectiveness of this activity have been
investigated.

Manuscript received May 30, 2014; revised August 20, 2014.
The authors are with School of Science & Engineering, Al Akhawayn

University in Ifrane, Morocco (e-mail: b.falah@aui.ma,
s.marghabi@aui.ma).

These approaches and techniques are categorized as:

1) Retest all;
2) Regression Test Selection;
3) Test Case Prioritization;
4) Hybrid Approach.

Enable testers to order test cases according to priority.
Yet, test cases with the highest priority are executed earlier
in the regression testing process than those with lower
priority. As stated before, test case prioritization techniques
help engineers execute regression tests in an order that
achieves testing objectives earlier in the testing process.
Most researches have focused on the rate of fault detection
which is defined as the ability of covering maximum
number of faults by a specific test order.

In this context, numerous research studies have discussed
the potential of specific prioritization techniques in finding
faults with a faster rate; their techniques have focused more
on prioritization through data flow information, code
coverage, fault exposure potential. Other research literatures
[3]-[6] have focused on producing comparative studies of
numerous prioritization techniques. However, the main
problem of these research studies is that they assume a
constant pool of test cases with non-changing coverage
during the regression testing process, and therefore they
work with a fixed prioritized test suite; that is why empirical
studies concluded that prioritization techniques’ fault rate
performance varied in each subject test program.
Additionally, test cases and their coverage metrics may
change during regression testing due to modifications of
software artifacts.

Therefore, a constraint-aware approach is pursued in this
paper. Using data obtained from previous applications of
several prioritization techniques to several subject programs,
we would compare the performance of these prioritization
techniques through their fault detection ratio. The results
would be associated together with a technique selection
approach incorporating the sources of variations affecting
the effectiveness of each prioritization techniques;
variations include changes in test programs, test suite size,
and characteristics. A cost-benefit decision approach is
introduced to allow testers to increase their confidence in
selecting the appropriate technique under the selected goal
constraint (Fault detection efficiency).

II. PRIORITIZATION TECHNIQUE BACKGROUND

A. Test Case Prioritization Definition
Test case prioritization problem is defined as follow [7]:
Given: T a test suite, PT , the set of permutation ofT ,

and f a function from PT to the real numbers.
Problem: Find PTT ∈' such that

Towards Regression Testing Constraints

Bouchaib Falah and Souhail Marghabi

504

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

DOI: 10.7763/IJMO.2014.V4.425

(o
to

th
in
ra
fo

1)

2)

3)

4)

5)

te
To
ex

th
re

w
Si
co
de
po

te
te

Th
to
te

A

su

pr
th

 (T∀

PT represen
orderings) of T
o any such ord

There a r e s
he test case pr
n previous lite
ange of prio
ollow:

) Testers’ o
detection o

) Testers ma
system und

) Testers ma
under test a

) Testers ma
rate early i

) Testers ma
fault relate
testing pro

This paper
echniques base
o quantify thi
xplored in the

III. PRIORIT

As stated in
his study of r
evealed faults

A high rate
would optimize

imilarly, it w
oncerning the
ecisions to b
ossible.

In this pape
echniques are
echniques as il

Fig.

The first two
he last six tec

o prioritize te
echniques are l

A. Comparato

T1: Random
uite are random

T2: Optim
rioritized to o
he ideal case w

)('')('' PTTT ∈

nts the set o
T, and f is a f

dering.
several factor
rioritization p
erature [3], [4
oritization go

objective is t
of a test suite
ay wish to inc
der test at a fa
ay wish to ens
at a faster rate
ay wish to in
n the testing p
ay wish to in
ed to specific
cess.

focuses on t
ed on their e
is goal, a set o
experiment a

TIZATION USIN

n the previous
regression test
at early stages
of fault dete

e the debuggi
would also p

overall system
be made ear

r, eight differ
considered a

llustrated in F

1. Classification

o techniques
chniques aim t
est cases for
listed as follow

or Techniques

m ordering:
mly prioritized

mal ordering
optimize rate
when all fault

[()'''(TfTT ≠

of all possib
function (heur

s affecting th
problem that
4], [7], [8]. O
oals, which

to increase

crease the cod
ster rate.
sure the reliab
e.
ncrease high-r
process.
ncrease the ab

code changes

the evaluation
effective rate
of metrics wil
nalysis section

NG RATE OF FA

s section the
ting is to imp
s in the testing

ection during
ing process fo
rovide faster
m under test,

rlier than mi

rent [9] test
and are classi
ig. 1.

of test case priori

serve as expe
to use test cov
r subsequent
w:

s

 Where the
d.
: Where the
of fault detec
ts are known

])''()' TfT ≥

ble prioritiza
ristic), that ap

he effectivene
are not addre

One of them i
is describe

the rate of

de coverage o

bility of the sy

isk fault dete

bility of reve
s in the regre

n of prioritiz
of fault detec

ll be discussed
n.

AULT DETECTI

goal specifie
prove the rat
g process.
regression te

or software te
decision ma

allowing stra
ight otherwis

case prioritiz
ified in four

itization.

erimental con
verage inform

execution. T

test cases in

e test cases
ction. It repre
as well as the

 (1)

ations
pplies

ess of
essed
is the
d as

fault

of the

ystem

ection

ealing
ssion

zation
ction.
d and

ION
d for
tio of

esting
sters.
aking
ategic
e be

zation
main

ntrols.
mation
These

n test

s are
esents
e test

case

B.
T

techn
of st
2.

Fig

T

Focu
yet
selec
and
one

C.
T

these
they
cove

T
simi
only
func

R
cost
test
case
or r
impr
num
selec
al.
selec
data
on th
the n
num

N
in th
have
sign
suite
rand
been

es that reveal e

Statement Lev
3: Total st
nique prioritiz
tatements they

g. 2 . Procedure p

4: Addition
uses on cover
covered. This
ct a test case
then iterates u
test case.

Function Lev
5: Total fun
e test cases a

y cover simply
erage achieved
6: Additiona
ilar to Additio
y difference th
ction level cov

Regression test
of software t

suite for exec
es that cannot
revealed thro
rove the eff

merous researc
ction methods
[12], and K
ction test te

aflow, control
heir abilities t
number of tes

mber of defects
Numerous prio
he research li
e shown tha
nificantly incr
es in compari
domly ordere
n done to prov

each.

vel Technique
atement cov
zes test cases
y execute. An

p and statement co
case

nal statemen
rage attained

s technique us
e that has the
until all statem

vel Techniques
ction covera

according to t
y by sorting th
d
al function c
onal statement
hat instead of
verage.

IV. RELAT

t selection tech
testing by sele
cution in a mo

or are unlike
ough the spe
fectiveness o
chers have pro
s. Rothermel

Kim and Port
echniques su
flow, ad hoc
to reduce the
st cases while
s.
oritization tech
iterature. Elba

at at least so
rease the rate
ison to the rat
ed test suites
vide an effecti

es
verage prior
according to t
example is il

overage of p achi
es.

nt coverage
to focus on

ses greedy sea
e greatest stat
ments are cov

s
ge prioritiza

the total numb
hem in order o

coverage prio
t coverage pr

f statements, i

TED WORK
hniques attem
ecting a subse
odified progra
ely to reveal e
ecific softwar
of regression
oposed a vari
et al. [10], [1

ter [13] exam
uch as mini
and random t
cost of testin

e still detectin

hniques have
aum [14] and
me of these
e of fault de
tes achieved b
. However, n
ve selection a

ritization: Th
the total numb
llustrated in F

ieved by three tes

prioritizatio
 statements n

arch algorithm
ement covera

vered by at le

ation: Prioritiz
ber of functio
of total functi

oritization: it
ioritization w
it is consideri

mpt to reduce t
et of an existi
am, ignoring t
errors caused
re changes.

test selectio
iety of test ca
11], Hutchins
mined differe
imization, sa
testing, focusi

ng by decreasi
ng the maximu

been describ
d Rothermel [

techniques c
etection of t
by unordered
no analysis h
approach.

his
ber

Fig.

st

on:
not

m to
age
ast

zes
ons
ion

t is
with

ing

the
ing
est
by
To
on,
ase
 et
ent
afe,
ing
ing
um

bed
[3]
can
est
or

has

505

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

fo
pr
te
in
an

al
ex
“I
co
al

pr
su
ex
su
fo
st

[1
as
ra
pr
ha
ch
dy
pr

re
th
pe
us
w
lis
pr
in
ef
di

A

D
us
pr
cu
ex
hi

nu
fo

B

th

Rothermel e
ormal definit
resent metric

est suites. T
ncluding all o
nd provide re

Rummel and
ll-DUs test ad
xecution of
Instrument an
overage mon
lgorithm’s pro

Alspaugh
rioritization se
uites with a sp
xample of test
uch as test exe
or other enviro
ill depended o
Among the p

14] report re
ssessing the ab
ate of fault de
rioritized test
ave been abso
hoice of prio
ynamic prope
rogram under

In this sectio
esearch is desc
he effect of
erformance of
sed to quantif

well as evaluati
st of data r
resented. Afte
nferred from th
ffect and sour
ifferent subjec

A. Dependant
Based on lite

etected (APFD
sed to comp
rioritization
umulative per
xecuting the t
igher APFD m

Let TFi be t
umber of faul
ollow:

APFD

B. Illustration
Consider a p

hrough V, su

et al. [8] and
tion of the
cs for measuri
They def in
of those desc
esults of sever

d Kapfhamme
dequacy criteri

a regression
nd Enumerate
itoring and

ovided variant
[5] investig
earch algorith
pecific time co
t case prioriti
ecution time.
onment metric
on other obser
papers describ

esults of stud
ability of prior
etection, relati

suites. None
lutely superio

oritization tech
erties of test
test characteri

V. EMPIRICA

on, the analy
cribed. The go
f testing env
f prioritization
fy the effecti
ing the variant
retrieved from
erwards an
he computed m
rces in the cas
ct programs is

t Variables
erature [3], th
D) is identified
pare the effe
technique. A
centage of fau
test cases in t

means higher f
the order of th
lts in each te

TFD 1 1 +−=

n Example
program with
uch that the

d Elbaum [4],
prioritizatio

ing the rate of
ne prioritiza
cribed in our
ral empirical

er [15] investi
ion can be use

n testsuite. T
” algorithm th
cost reductio

t efficiency.
gates the
hm (knapsack)
onstraint. This
zation under
However, the

cs, and the alg
rved variances
bed above, on
dies or expe
ritization tech
ive to each o
 of the techn
r to others in a
hniques need
suites as we

istics.

AL STUDY AN

sis framework
oal of the stud
vironment v

n techniques. F
iveness of the
t constraints a
m the simila
analysis over
metrics with r
se of fault de
provided.

he Average Pe
d as the main
ectiveness of
APFD measu
ults detected
the test suite
fault detection
he first test su
est suite Ti. T

nm
TTF ...2 +++

a test suite o
e program c

, provide the
on problem
f fault detectio
ation techni
r previous se
studies.

igated whethe
ed to prioritiz
They present
hat introduces
on. However,

effectiveness
) in reordering
s paper presen
variant constr
ey did not acc
gorithm effici
s.
nly a few [3]
eriments expl
hniques to imp
other or to ran
niques investig
all situations.

ds to consider
ell as the su

NALYSIS
k adopted for
dy is to under
variations on
First, the mea
ese approache

are defined. Ne
ar experimen
r the inform
regards to vari
etection rate a

ercentage of F
metric that ca

f each regre
ures the ave
over the cour
in a given o

n rate at early.
uites, Fi bein
The equation

n
TFm

2
1+

of five test cas
ontains ten f

 first
and

on of
iques

ection

er the
ze the
t the
s test
, the

of
g test
nts an
raints
count
iency

, [5],
licitly
prove
ndom
gated
Thus,
r the

ubject

r this
stand

the
asures
es as
ext, a

nts is
mation

iation
across

Faults
an be
ssion
erage
rse of
order;

g the
is as

 (2)

ses, I
faults

dete
3. C
II–I

Fi
versu
suite

A
thus
over
two
have
Case
case
suite

C.
Th

para
and
inclu
prop
vers

A
chos

A.
To

prog
assem
for
cont

Th
an
sche

cted by those
Consider two
III–IV–V, an

Fig. 3

ig. 4. A and 4
us the fractio
es, respectively

Fig.

After running t
 20% of the
rall test suite ܶ

more faults
e been detecte
e B, is differe
es covers all
e(APFD = 84%

Independant
he independe

ameters of the
choice of t

ude: the subje
perty, and the
ion, and the te

As shown in T
sen.

Test Subject P
o avoid test

grams, written
mbled by rese

a study o
trol-flow and
he Siemens p
aircraft colli

edule are p

e test cases, a
orders of th

nd order	 ଶܶ: I

3. Test suites an

4. B show the
n of the test
y.

4. APFD value

est case I, two
faults have bଵܶhas been us
are detected

ed after 0.4 of
ent in the sen

fault at an
%).

Variables
ent variables
e testing proc
the prioritiza
ect programs,
e changes in
est suites char
Table I, a sam

VI. DATA

Program
case generat

n in C, with fa
earchers at S
f the fault

d data-flow co
rograms perfo
ision avoidan
priority sche

as shown in th
hese test case
III–V–II–I–

nd faults expos

percentages o
suite used, fo

results for T1 & T

o of the ten fau
been detected
ed. After runn
and thus 40%

f the test suite
nse that the o

n early fracti

in our case
cess that affec
ation techniqu
 the prioritiza

n the program
racteristics.
mple list for

A ANALYSIS

tion dependen
aulty version
Siemens Cor

detection c
overage crite
orm a variety
nce system,
edulers, tot_

he table of F
es, order	 ଵܶ:
–IV.

sed.

of faults detect
or these two t

T2.

ults are detect
after 0.2 of t

ning test case
% of the fau

e has been use
order of the t
ion of the t

e study are t
ct the efficien
ue [14]. The
ation techniqu
m in a speci

this research

ncy, we used
ns and test ca
rporate Resear
capabilities

eria [1].
of tasks: tcas
schedule2 a

info comput

Fig.
I–

ted
test

ted;
the
B,

ults
ed.
est
est

the
ncy
ese
ues
ific

is

d 7
ases
rch
of

s is
and
tes

506

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

statistics given input data print_tokens and print_ tokens2
are lexical analyzers, and replace performs pattern matching
and substitution.

TABLE I: INDEPENDENT VARIABLE METRIC SUBSET

Metric Description

P_ CH_ L Percentage of changed line of code

AP _FET

Mean Percentage of functions executed by
test

PRG.AN_PATHS

Mean number of paths in the control flow-
graph of a function over all functions

P_ TRCHF Percentage of tests reaching a changed
function

A_ TESTS _ CHF mean number of tests going through changed
functions

P_ CH_ INDEX probability of executing changed functions

P_FCH_ C percentage of functions changed and covered

The researchers provided large test pools for each of the

seven programs; from 100 sample test suites, an average of
7 cases per suite. At the end of the subject program analysis,
we ended up with a 41 versions for each base program,
variant number of test cases with the specified code
coverage criteria [4]. Test Pools were generated using a
combination of white-box/black-box techniques focusing on
coverage criteria. The characteristics of the overall subject
program is described in Table II.

TABLE II: ANALYSED SUBJECT PROGRAM CHARACTERISTICS

Program
Lines of

Executable
Code

Number
of

Version

Number
of

Mutants

Test
Pool
Size

Average
Test Suite

Size

Print-
tokens
Print-

tokens2
replace

schedule
schedule

2
tcas

tot-info

402
483
516
299
297
138
346

7
10
32
9
10
41
23

4030
4346
9622
2153
2822
2876
5898

4130
4115
5542
2650
2710
1608
1052

16
12
19
8
8
6
7

B. Comparative Study Using APFD
To avoid redundant efforts, the extended data of previous

literature has allowed us to assemble sample test cases [8]
and prioritize test suites with APFD computations which
were done manually for each technique and base program.
Noting that we can have multiple APFD values for the same
applied technique; thus, we represent the results in box plot
diagram showing minimum and maximum APFD thresholds
for each technique [1].

Fig. 5 illustrates the APFD values of the nine categories of
prioritized test suites for each basis program and the overall
program total. ଵܶ is the control group (random) and ଶܶ is the
optimal prioritization group. Comparing the boxplots of ଶܶ
to ଵܶ , we observe that optimal prioritization greatly
improved the rate of fault detection (i.e., increased APFD

values) of the test suites in comparison to random
prioritization. Examining the boxplots of the other
prioritization techniques, ଷܶ through 	 ܶ , they all seem to
produce considerable rates of fault detection.

At this point, one could easily be misled when making
decisions over which technique to adopt first. Still, we notice
that we cannot make a general assumption over the “best”
technique to use for fault error rate. For instance, the mean
value for ଷܶ	in print_token was higher 20 points than the
case in schedule 2; ହܶ	 had a high APFD value in
print_token2, better than ܶand ସܶ , but it was lower than
mean in tcas .

The summary of the discussed findings is illustrated in
Fig. 5.

Fig. 5. Box plot representation for a range of APFD values for

prioritization techniques, T1(random), T2(optimal), T3(total_stat),
T4(add_stat), T5(total_functional), T6(Add_functional).

VII. COST-BENEFIT TRADE-OFF AND DECISION
APPROACH

Since the purpose of this analysis is providing test
engineers with methodologies and tools to appropriately
choose prioritization techniques, we discuss an improved
selection approach which attempts to recover from the
weaknesses of the APFD comparison method and we
provide more efficient prioritization selection framework.

Priority cost model approach introduced in previous
literatures is used because the cost factor has been
considered in the decision making process [16]. The higher
the APFD, the more efficient the testing process is.

Cost-Benefit Approach:
Hence, we could quantity by percentages the APFD

507

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

advantage of using one technique over another. The
approach includes:
1) Keep track of the APFD (minimum/maximum/median)

computed for each subject program and prioritization
techniques;

2) Compute the number of occurrences when a specific
technique has a higher APFD than another

3) Set an acceptance threshold for which it is implied that
the superior yielding technique is to be selected.

Focusing on prioritization technique constraints, we
chose to use the cost model approach by evaluating the
chosen goal for regression testing; in this case, the ratio of
fault detection efficiency of test suites. Hence, we
investigate the empirical study APFD results and compare
the techniques based on the metric. We define a decision
threshold range from 0% to 25%. In general, the approach
starts by comparing two techniques, (e.g. 	 ଵܶ	ܽ݊݀	 ଶܶ) and
calculate the percentage of occurrences where ଵܶ’s APFD
exceeds ଶܶby the defined threshold range in all the APFD
computations. For instance, in case 4, we notice that with
threshold 5%, ହܶ (total functional coverage) performs 75%
better than ଵܶ (Random Ordering).

Applying the suggested approach we can generate outputs
as shown in Table III.

TABLE III: REGRESSION PRIORITIZATION TECHNIQUE SELECTION

Case Techniques
Compared

RPTS

0% 5% 25%
1 T1 vs. T 2 11 5 2
2 T1 vs. T3 35 2 2
3 T1 vs. T4 16 10 0

4 T5 vs.T1 25 75 79
5 T1 vs. T6 42 11 5
6 T2 vs T3 50 79 30

7 T2 vs T4 68 30 5

8 T2 vs T6 63 46 14
9 T2 vs T5 37 65 20

10…
T5 vs T4

50 55 12

One interesting observation is that some techniques’

performance advantage decreases as the threshold, expected
gained benefit, increases; example of T5 vs T4, where T5
loses considerable performance benefit if we expect a 25%
advantage threshold.

Finally, although we cannot claim that the cost-benefit
trade-off approach presented can be generalized to other
programs with different versions, programs, and test suites;
we expect further experimentation, where we will integrate
the independent variable metrics into our priority technique
selection approach, to provide testers with more confidence
in their regressing technique approach.

VIII. CONCLUSION
In this paper, a study of eight test case prioritization

techniques applied across eight systems was presented.
Although previous studies of test case prioritization [3], [8]
have been conducted in similar settings, the set of subjects
we have considered (7 programs) resulted in a considerable

testing pool. These techniques were compared based on
their ability to improve the rate of fault detection of test
suites; this as being only one of the numerous goals, testers
might chose as listed in section I.

The results of this analysis have shown that prioritization
techniques performance is subject to variations related to
the test suite characteristics, changes of subject programs,
and functions. It has also confirmed the previous findings
derived from different empirical studies [3], [4], [14]. Thus,
the need for a prioritization technique selection approach is
of considerable importance to the testers’ community.

The basic RPTS (Regression prioritization technique
selection) approach introduced in section VI, represents a
practical framework providing testers with the ability to
select the optimal technique, with higher confidence, while
accounting for cost-benefit trade-offs.

IX. FUTURE WORK
We would like to extend our cost-benefit approach to

account for the characteristics of test case scenarios
specifications, such as the different variances described in
previous sections. Hence, we will consider quantifying the
independent experimental variables defined in Table I, and
through a decision-tree representation integrate these metric
values with our decision-making threshold mechanism to
increase the ability of the approach the appropriate
prioritization technique with higher efficiency. Additionally,
we are considering extending the scalability of the discussed
approach to larger industrial application while accounting
for the bias factor that might affect the validity of our results.

REFERENCES
[1] B. Falah, K. Magel, and O. E. Ariss, “A complexity based regression

test selection strategy,” Computer Science & Engineering: An
International Journal (CSEIJ), vol. 2, no. 5, October 2012.

[2] A. Bertolino, "Software testing," IEEE SWEBOK Trial Version 1.00,
May 2001, ch. 5.

[3] S. Elbaum, A. Malishevsky, and G. Rothermel, “ Incorporating
varying test costs and fault severities into test case prioritization,”
in Proc. the International Conference on Software Engineering, pp.
329–338, 2001.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” IEEE Transactions
of Software Engineering, vol. 28, no. 2, pp. 159–182, February 2002.

[5] S. Alspaugh and G. M. Kapfhammer, “Efficient time-aware
prioritization with knapsack solvers,” in Proc. the ASE 2007
Workshop on Empirical Assessment of Software Engineering
Languages and Technologies, pp. 13-18, Atlanta, Georgia, November
2007.

[6] G. M. Kapfhammer and M. L. Soffa, “Using coverage
effectiveness to evaluate test suite prioritizations,” Wease
ltech, 2007.

[7] H. Leung and L. White, “Insights into Regression Testing,” in Proc.
the Conference on Software Maintenance, pp 60-69, Oct. 1989.

[8] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case
prioritization: an empirical study,” in Proc. the International
Conference on Software Maintenance, pp. 179–188, 1999.

[9] R. Gregg, H. U. Roland, C. Y. Chu, and H. M. Jean, “Prioritizing test
cases for regression testing,” CSE Journal Articles. pp. 9, 2001.

[10] T. L. Graves, M. J. Harrold, J. Kim, A. Poiler, and G. Rotliennel, “An
empirical study of regression test selection techniques,” ACM
Transactions on Software Engineering and Methodology, vol. 10, no.
2, pp. 184-208, 2001.

[11] G. Rothermel and M. J. Hanold, “A safe, efficient regression test
selection tecirniqite,” ACM Transactions on Software Engineering
and Methodology, vol. 6, pp. 173-210, 1997.

[12] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on
the effectiveness of dataflow- and controlfiow-based test adequacy

508

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

criteria,” in Proc. the 22ndlnternational Conference on Software
Engineering, 1994, pp. 191-200.

[13] J. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environnents,” in Proc.
the tile 24th International Conference, pp. 19-25, 2002.

[14] S. Elbaum, D. Gable, and G. Rothermel, “Understanding and
measuring the sources of variation in the priori-tization of
regression test suites,” in Proc. the Seventh International Software
Metrics Symposium, Institute of Electrical and Electronics
Engineers, Inc., vol. 2, no. 9, 2001..

[15] M. J. Rummel and G. M. Kapfhammer, “Towards the prioritization of
regression test suites with data flow information,” in Proc. the ACM
Symposium on Applied Computing, 2005, pp. 1499-1504.

[16] A. Malishevsky, G. Rothermel, and S. Elbaum, “Modeling the
cost-benefits tradeoffs for regression testing techniques,” in Proc.
the International Conference on Software Maintenance, pp. Oct.
2002.

Bouchaib Falah was born in Casablanca, Morocco in
1966. He received his Ph.D in software engineering
from North Dakota State University, U.S.A, in 2011
and a master degree in computer science from
Shippensburg University, Pennsylvania, U.S.A, in
2001, and a bachelor degree/teaching certificate from
Ecole Normale Superieure, Casablanca, Morocco in
1990. He has more than 20 years of combined

experience in developing and implementing computer science and
technical math curriculum for different colleges and universities as well as
web designer for multimillion-dollar organizations in USA and researcher
in different projects, he is currently an assistant professor at Al Akhawayn
University, teaching graduate and undergraduate software engineering
courses, School of Science and Engineering. Besides teaching high school
level math in Morocco and college mathematics and computer science at
Harrisburg Area Community College in Pennsylvania, Suny Orange
Community College in New York, Pennsylvania State University in
Pennsylvania, Central Pennsylvania College in Pennsylvania, Concordia
College in Minnesota, and North Dakota State University in North Dakota,
he has an extensive industrial experience with Agri-ImaGIS, Synertich, and
Commonwealth of Pennsylvania Department of Environmental Protection.
His current research interests include Complexity Metrics, Security testing,
agile methodology and extreme programming, mutation testing, regression
testing, software engineering processes, web application testing, and design
and architecture. He published a book titled: An Approach to Regression
Test Selection Based on Complexity Metrics, Scholar’s Press as well as
many journal papers on software testing.

In 2014, Dr. Falah became a member of APCBEES and in 2013, he was
awarded certificates from International Association of CS and IT as well as
ARPN journal of systems and software.

509

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

