
  
Abstract—Regression testing is one of the most crucial and 

expensive testing process used to validate modified software 
and detect new faults introduced by into previously modified 
and tested code. To reduce the cost of regression testing, 
software testers may choose to prioritize their test cases to run 
the “important” ones, chosen by some metrics and constraints, 
earlier in the testing process. Various approaches have been 
introduced by previous researches in the form of prioritization 
technique focusing on specific goals of regression testing. One 
goal of prioritization is to increase a test suite’s rate of fault 
detection. In this context, previous studies have shown that 
several prioritization techniques can significantly improve rate 
of fault detection, but these studies have also shown that the 
effectiveness of these techniques is relative to the assumptions 
made by the researchers concerning the testing environment. 
The variations observed in these experiments have mostly been 
linked to the subject program, test suites characteristics. This 
makes it difficult for testers to appropriately choose the correct 
prioritization technique for their testing scenarios. In this 
paper, regression prioritization techniques are described. 
Their performance, in fault detection rate, is assessed and the 
metrics used to assess the effect of variation through discussing 
experiments done in this context are specified. Then, the 
results are analyzed and insight about prioritization 
techniques selection under these constraints is provided.  
 

Index Terms—Test case, prioritization, regression, Software 
testing, empirical studies. 
 

I. INTRODUCTION  
Software testing is the process of determining if a 

program behaves as expected. It is an intellectually 
challenging activity aimed at evaluating the capability of a 
program or system to determine whether or not it meets 
requirements [1]. It is an activity that should be done 
throughout the whole development process [2]. It occurs in 
each phase of development life cycle, from requirements 
engineering through delivery and maintenance.  

Software maintenance is an activity which includes 
enhancements, error corrections, optimization and deletion 
of outdated components. Such modifications may cause the 
software to work incorrectly and affect the overall system 
functioning. Regression testing works within this 
framework. It is used to evaluate the modifications of the 
software. Test suites are generated and executed to ensure 
that no new bugs have been introduced into previously 
tested software. Many approaches and techniques for 
improving the cost-effectiveness of this activity have been 
investigated. 
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These approaches and techniques are categorized as:  

1) Retest all;  
2) Regression Test Selection;  
3) Test Case Prioritization;  
4) Hybrid Approach.  

Enable testers to order test cases according to priority. 
Yet, test cases with the highest priority are executed earlier 
in the regression testing process than those with lower 
priority. As stated before, test case prioritization techniques 
help engineers execute regression tests in an order that 
achieves testing objectives earlier in the testing process. 
Most researches have focused on the rate of fault detection 
which is defined as the ability of covering maximum 
number of faults by a specific test order.  

In this context, numerous research studies have discussed 
the potential of specific prioritization techniques in finding 
faults with a faster rate; their techniques have focused more 
on prioritization through data flow information, code 
coverage, fault exposure potential. Other research literatures 
[3]-[6] have focused on producing comparative studies of 
numerous prioritization techniques. However, the main 
problem of these research studies is that they assume a 
constant pool of test cases with non-changing coverage 
during the regression testing process, and therefore they 
work with a fixed prioritized test suite; that is why empirical 
studies concluded that prioritization techniques’ fault rate 
performance varied in each subject test program. 
Additionally, test cases and their coverage metrics may 
change during regression testing due to modifications of 
software artifacts.  

Therefore, a constraint-aware approach is pursued in this 
paper. Using data obtained from previous applications of 
several prioritization techniques to several subject programs, 
we would compare the performance of these prioritization 
techniques through their fault detection ratio. The results 
would be associated together with a technique selection 
approach incorporating the sources of variations affecting 
the effectiveness of each prioritization techniques; 
variations include changes in test programs, test suite size, 
and characteristics. A cost-benefit decision approach is 
introduced to allow testers to increase their confidence in 
selecting the appropriate technique under the selected goal 
constraint (Fault detection efficiency). 

 

II. PRIORITIZATION TECHNIQUE BACKGROUND 

A. Test Case Prioritization Definition 
Test case prioritization problem is defined as follow [7]: 
Given: T  a test suite, PT , the set of permutation ofT , 

and f a function from PT to the real numbers. 
Problem: Find PTT ∈' such that   
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statistics given input data print_tokens and print_ tokens2 
are lexical analyzers, and replace performs pattern matching 
and substitution. 

 

TABLE I: INDEPENDENT VARIABLE METRIC SUBSET 

Metric Description 
 

P_ CH_ L Percentage of changed line of code 

AP _FET 
 

Mean Percentage of functions executed by 
test 

 
PRG.AN_PATHS 

Mean number of paths in the control flow-
graph of a function over all functions 

P_ TRCHF Percentage of tests reaching a changed 
function 

A_ TESTS _ CHF mean number of tests going through changed 
functions 

 
P_ CH_ INDEX probability of executing changed functions 

P_FCH_ C percentage of functions changed and covered

 
The researchers provided large test pools for each of the 

seven programs; from 100 sample test suites, an average of 
7 cases per suite. At the end of the subject program analysis, 
we ended up with a 41 versions for each base program, 
variant number of test cases with the specified code 
coverage criteria [4]. Test Pools were generated using a 
combination of white-box/black-box techniques focusing on 
coverage criteria. The characteristics of the overall subject 
program is described in Table II. 

 

TABLE II: ANALYSED SUBJECT PROGRAM CHARACTERISTICS 

Program 
Lines of 

Executable 
Code 

Number 
of 

Version 

Number 
of 

Mutants 

Test 
Pool 
Size 

Average 
Test Suite 

Size 

 
Print-
tokens 
Print-

tokens2 
replace 

schedule 
schedule

2 
tcas 

tot-info 

 
402 
483 
516 
299 
297 
138 
346 

 
7 
10 
32 
9 
10 
41 
23 

 
4030 
4346 
9622 
2153 
2822 
2876 
5898 

 
4130 
4115 
5542 
2650 
2710 
1608 
1052 

 
16 
12 
19 
8 
8 
6 
7 

 

B. Comparative Study Using APFD 
To avoid redundant efforts, the extended data of previous 

literature has allowed us to assemble sample test cases [8] 
and prioritize test suites with APFD computations which 
were done manually for each technique and base program. 
Noting that we can have multiple APFD values for the same 
applied technique; thus, we represent the results in box plot 
diagram showing minimum and maximum APFD thresholds 
for each technique [1].  

Fig. 5 illustrates the APFD values of the nine categories of 
prioritized test suites for each basis program and the overall 
program total. ଵܶ is the control group (random) and ଶܶ is the 
optimal prioritization group. Comparing the boxplots of ଶܶ 
to ଵܶ , we observe that optimal prioritization greatly 
improved the rate of fault detection (i.e., increased APFD 

values) of the test suites in comparison to random 
prioritization. Examining the boxplots of the other 
prioritization techniques, ଷܶ  through 	 ܶ , they all seem to 
produce considerable rates of fault detection. 

At this point, one could easily be misled when making 
decisions over which technique to adopt first. Still, we notice 
that we cannot make a general assumption over the “best” 
technique to use for fault error rate. For instance, the mean 
value for ଷܶ	in print_token was higher 20 points than the 
case in schedule 2; ହܶ	 had a high APFD value in 
print_token2, better than ܶand ସܶ , but it was lower than 
mean in tcas .  

The summary of the discussed findings is illustrated in 
Fig. 5. 

 

 
Fig. 5. Box plot representation for a range of APFD values for 

prioritization techniques, T1(random), T2(optimal), T3(total_stat), 
T4(add_stat), T5(total_functional), T6(Add_functional). 

 

VII. COST-BENEFIT TRADE-OFF AND DECISION 
APPROACH    

Since the purpose of this analysis is providing test 
engineers with methodologies and tools to appropriately 
choose prioritization techniques, we discuss an improved 
selection approach which attempts to recover from the 
weaknesses of the APFD comparison method and we 
provide more efficient prioritization selection framework. 

Priority cost model approach introduced in previous 
literatures is used because the cost factor has been 
considered in the decision making process [16]. The higher 
the APFD, the more efficient the testing process is. 

Cost-Benefit Approach:  
Hence, we could quantity by percentages the APFD 
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advantage of using one technique over another. The 
approach includes:  
1) Keep track of the APFD (minimum/maximum/median) 

computed for each subject program and prioritization 
techniques;   

2) Compute the number of occurrences when a specific 
technique has a higher APFD than another  

3) Set an acceptance threshold for which it is implied that 
the superior yielding technique is to be selected. 

Focusing on prioritization technique constraints, we 
chose to use the cost model approach by evaluating the 
chosen goal for regression testing; in this case, the ratio of 
fault detection efficiency of test suites. Hence, we 
investigate the empirical study APFD results and compare 
the techniques based on the metric. We define a decision 
threshold range from 0% to 25%. In general, the approach 
starts by comparing two techniques, (e.g. 	 ଵܶ	ܽ݊݀	 ଶܶ ) and 
calculate the percentage of occurrences where ଵܶ’s APFD 
exceeds ଶܶby the defined threshold range in all the APFD 
computations. For instance, in case 4, we notice that with 
threshold 5%, ହܶ (total functional coverage) performs 75% 
better than ଵܶ (Random Ordering). 

Applying the suggested approach we can generate outputs 
as shown in Table III. 

 
TABLE III: REGRESSION PRIORITIZATION TECHNIQUE SELECTION 

Case Techniques 
Compared 

RPTS 

0% 5% 25%
1 T1 vs. T 2  11 5 2 
2 T1 vs. T3 35 2 2 
3 T1 vs. T4 16 10 0 

4 T5 vs.T1 25 75 79 
5 T1 vs. T6 42 11 5 
6 T2 vs T3 50 79 30 

7 T2 vs T4 68 30 5 

8 T2 vs T6 63 46 14 
9 T2 vs T5 37 65 20 

10… 
T5 vs T4 

 
50 55 12 

 
One interesting observation is that some techniques’ 

performance advantage decreases as the threshold, expected 
gained benefit, increases; example of T5 vs T4, where T5 
loses considerable performance benefit if we expect a 25% 
advantage threshold. 

Finally, although we cannot claim that the cost-benefit 
trade-off approach presented can be generalized to other 
programs with different versions, programs, and test suites; 
we expect further experimentation, where we will integrate 
the independent variable metrics into our priority technique 
selection approach, to provide testers with more confidence 
in their regressing technique approach.  

 

VIII. CONCLUSION  
In this paper, a study of eight test case prioritization 

techniques applied across eight systems was presented. 
Although previous studies of test case prioritization [3], [8] 
have been conducted in similar settings, the set of subjects 
we have considered (7 programs) resulted in a considerable 

testing pool. These techniques were compared based on 
their ability to improve the rate of fault detection of test 
suites; this as being only one of the numerous goals, testers 
might chose as listed in section I.  

The results of this analysis have shown that prioritization 
techniques performance is subject to variations related to 
the test suite characteristics, changes of subject programs, 
and functions. It has also confirmed the previous findings 
derived from different empirical studies [3], [4], [14]. Thus, 
the need for a prioritization technique selection approach is 
of considerable importance to the testers’ community. 

The basic RPTS (Regression prioritization technique 
selection) approach introduced in section VI, represents a 
practical framework providing testers with the ability to 
select the optimal technique, with higher confidence, while 
accounting for cost-benefit trade-offs. 

 

IX.  FUTURE WORK  
We would like to extend our cost-benefit approach to 

account for the characteristics of test case scenarios 
specifications, such as the different variances described in 
previous sections. Hence, we will consider quantifying the 
independent experimental variables defined in Table I, and 
through a decision-tree representation integrate these metric 
values with our decision-making threshold mechanism to 
increase the ability of the approach the appropriate 
prioritization technique with higher efficiency. Additionally, 
we are considering extending the scalability of the discussed 
approach to larger industrial application while accounting 
for the bias factor that might affect the validity of our results. 
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