International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

Towards Regression Testing Constraints

Bouchaib Falah and Souhail Marghabi

Abstract—Regression testing is one of the most crucial and
expensive testing process used to validate modified software
and detect new faults introduced by into previously modified
and tested code. To reduce the cost of regression testing,
softwar e testers may choose to prioritize their test casesto run
the “important” ones, chosen by some metrics and constraints,
earlier in the testing process. Various approaches have been
introduced by previous researchesin the form of prioritization
technique focusing on specific goals of regression testing. One
goal of prioritization is to increase a test suite's rate of fault
detection. In this context, previous studies have shown that
several prioritization techniques can significantly improve rate
of fault detection, but these studies have also shown that the
effectiveness of these techniques is relative to the assumptions
made by the researchers concerning the testing environment.
The variations observed in these experiments have mostly been
linked to the subject program, test suites characteristics. This
makes it difficult for testersto appropriately choose the correct
prioritization technique for their testing scenarios. In this
paper, regression prioritization techniques are described.
Their performance, in fault detection rate, is assessed and the
metrics used to assess the effect of variation through discussing
experiments done in this context are specified. Then, the
results are analyzed and insight about prioritization
techniques selection under these constraintsisprovided.

Index Terms—Test case, prioritization, regression, Software
testing, empirical studies.

1. INTRODUCTION

Software testing is the process of determining if a
program behaves as expected. It is an intellectually
challenging activity aimed at evaluating the capability of a
program or system to determine whether or not it meets
requirements [1]. It is an activity that should be done
throughout the whole development process [2]. It occurs in
each phase of development life cycle, from requirements
engineering through delivery and maintenance.

Software maintenance is an activity which includes
enhancements, error corrections, optimization and deletion
of outdated components. Such modifications may cause the
software to work incorrectly and affect the overall system
functioning. Regression testing works within this
framework. It is used to evaluate the modifications of the
software. Test suites are generated and executed to ensure
that no new bugs have been introduced into previously
tested software. Many approaches and techniques for
improving the cost-effectiveness of this activity have been
investigated.

Manuscript received May 30, 2014; revised August 20, 2014.
The authors are with School of Science & Engineering, Al Akhawayn

University in Ifrane, Morocco (e-mail: b.falah@aui.ma,
s.marghabi@aui.ma).
DOI: 10.7763/1IM0.2014.V4.425

504

These approaches and techniques are categorized as:

1) Retest all;

2) Regression Test Selection;
3) Test Case Prioritization;
4) Hybrid Approach.

Enable testers to order test cases according to priority.
Yet, test cases with the highest priority are executed earlier
in the regression testing process than those with lower
priority. As stated before, test case prioritization techniques
help engineers execute regression tests in an order that
achieves testing objectives earlier in the testing process.
Most researches have focused on the rate of fault detection
which is defined as the ability of covering maximum
number of faults by a specific test order.

In this context, numerous research studies have discussed
the potential of specific prioritization techniques in finding
faults with a faster rate; their techniques have focused more
on prioritization through data flow information, code
coverage, fault exposure potential. Other research literatures
[3]-[6] have focused on producing comparative studies of
numerous prioritization techniques. However, the main
problem of these research studies is that they assume a
constant pool of test cases with non-changing coverage
during the regression testing process, and therefore they
work with a fixed prioritized test suite; that is why empirical
studies concluded that prioritization techniques’ fault rate
performance varied in each subject test program.
Additionally, test cases and their coverage metrics may
change during regression testing due to modifications of
software artifacts.

Therefore, a constraint-aware approach is pursued in this
paper. Using data obtained from previous applications of
several prioritization techniques to several subject programs,
we would compare the performance of these prioritization
techniques through their fault detection ratio. The results
would be associated together with a technique selection
approach incorporating the sources of variations affecting
the effectiveness of each prioritization techniques;
variations include changes in test programs, test suite size,
and characteristics. A cost-benefit decision approach is
introduced to allow testers to increase their confidence in
selecting the appropriate technique under the selected goal
constraint (Fault detection efficiency).

II. PRIORITIZATION TECHNIQUE BACKGROUND

A. Test Case Prioritization Definition

Test case prioritization problem is defined as follow [7]:

Given: T a test suite, PT , the set of permutation of 7,
and f a function from P7 to the real numbers.

Problem: Find T'e PT such that

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

~NT")(T"e PTYT"# T')[f(T') > f(T”)] (1)

PT represents the set of all possible prioritizations
(orderings) of T, and f is a function (heuristic), that applies
to any such ordering.

There are several factors affecting the effectiveness of
the test case prioritization problem that are not addressed
in previous literature [3], [4], [7], [8]. One of them is the
range of prioritization goals, which is described as
follow:

1) Testers’ objective is to increase the rate of fault
detection of a test suite

2) Testers may wish to increase the code coverage of the
system under test at a faster rate.

3) Testers may wish to ensure the reliability of the system
under test at a faster rate.

4) Testers may wish to increase high-risk fault detection
rate early in the testing process.

5) Testers may wish to increase the ability of revealing

fault related to specific code changes in the regression
testing process.

This paper focuses on the evaluation of prioritization
techniques based on their effective rate of fault detection.
To quantify this goal, a set of metrics will be discussed and
explored in the experiment analysis section.

III. PRIORITIZATION USING RATE OF FAULT DETECTION

As stated in the previous section the goal specified for
this study of regression testing is to improve the ratio of
revealed faults at early stages in the testing process.

A high rate of fault detection during regression testing
would optimize the debugging process for software testers.
Similarly, it would also provide faster decision making
concerning the overall system under test, allowing strategic
decisions to be made earlier than might otherwise be
possible.

In this paper, eight different [9] test case prioritization
techniques are considered and are classified in four main
techniques as illustrated in Fig. 1.

Test Case
Prioritization

Comparator
Techniques

Statement Level
Techniques

Function Level

Techniques
1

Fig. 1. Classification of test case prioritization.

The first two techniques serve as experimental controls.
The last six techniques aim to use test coverage information
to prioritize test cases for subsequent execution. These
techniques are listed as follow:

A. Comparator Techniques

T1. Random ordering: Where the test cases in test
suite are randomly prioritized.

T2: Optimal ordering: Where the test cases are
prioritized to optimize rate of fault detection. It represents
the ideal case when all faults are known as well as the test

505

cases that reveal each.

B. Statement Level Techniques
T3: Total statement coverage prioritization: This

technique prioritizes test cases according to the total number

of statements they execute. An example is illustrated in Fig.
2.

STATEMENT COVERAGE
Test Case 2

Test Case Test Case 3

procedure P
. =1
. while {(cl) do
if (e2} then
exit
else
53
endif
=4
endwhile
. 85
. 26
. 87

X
X

X X
X

X

PRt
e
B L R

X
X
X

STATEMENT

X
X
X

X
X
X

8
9

oo -

Fig. 2. Procedure p and statement coverage of p achieved by three test

cases.

T4: Additional statement coverage prioritization:
Focuses on coverage attained to focus on statements not
yet covered. This technique uses greedy search algorithm to
select a test case that has the greatest statement coverage
and then iterates until all statements are covered by at least
one test case.

C. Function Level Techniques

T5: Total function coverage prioritization: Prioritizes
these test cases according to the total number of functions
they cover simply by sorting them in order of total function
coverage achieved

T6: Additional function coverage prioritization: it is
similar to Additional statement coverage prioritization with
only difference that instead of statements, it is considering
function level coverage.

IV. RELATED WORK

Regression test selection techniques attempt to reduce the
cost of software testing by selecting a subset of an existing
test suite for execution in a modified program, ignoring test
cases that cannot or are unlikely to reveal errors caused by
or revealed through the specific software changes. To
improve the effectiveness of regression test selection,
numerous researchers have proposed a variety of test case
selection methods. Rothermel et al. [10], [11], Hutchins et
al. [12], and Kim and Porter [13] examined different
selection test techniques such as minimization, safe,
dataflow, control flow, ad hoc and random testing, focusing
on their abilities to reduce the cost of testing by decreasing
the number of test cases while still detecting the maximum
number of defects.

Numerous prioritization techniques have been described
in the research literature. Elbaum [14] and Rothermel [3]
have shown that at least some of these techniques can
significantly increase the rate of fault detection of test
suites in comparison to the rates achieved by unordered or
randomly ordered test suites. However, no analysis has
been done to provide an effective selection approach.

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

Rothermel ef al. [8] and Elbaum [4], provide the first
formal definition of the prioritization problem and
present metrics for measuring the rate of fault detection of
test suites. They define prioritization techniques
including all of those described in our previous section
and provide results of several empirical studies.

Rummel and Kapthammer [15] investigated whether the
all-DUs test adequacy criterion can be used to prioritize the
execution of a regression testsuite. They present the
“Instrument and Enumerate” algorithm that introduces test
coverage monitoring and cost reduction. However, the
algorithm’s provided variant efficiency.

Alspaugh [5] investigates the effectiveness of
prioritization search algorithm (knapsack) in reordering test
suites with a specific time constraint. This paper presents an
example of test case prioritization under variant constraints
such as test execution time. However, they did not account
for other environment metrics, and the algorithm efficiency
still depended on other observed variances.

Among the papers described above, only a few [3], [5],
[14] report results of studies or experiments explicitly
assessing the ability of prioritization techniques to improve
rate of fault detection, relative to each other or to random
prioritized test suites. None of the techniques investigated
have been absolutely superior to others in all situations. Thus,
choice of prioritization techniques needs to consider the
dynamic properties of test suites as well as the subject
program under test characteristics.

V. EMPIRICAL STUDY ANALYSIS

In this section, the analysis framework adopted for this
research is described. The goal of the study is to understand
the effect of testing environment variations on the
performance of prioritization techniques. First, the measures
used to quantify the effectiveness of these approaches as
well as evaluating the variant constraints are defined. Next, a
list of data retrieved from the similar experiments is
presented. Afterwards an analysis over the information
inferred from the computed metrics with regards to variation
effect and sources in the case of fault detection rate across
different subject programs is provided.

A. Dependant Variables

Based on literature [3], the Average Percentage of Faults
Detected (APFD) is identified as the main metric that can be
used to compare the effectiveness of each regression
prioritization technique. APFD measures the average
cumulative percentage of faults detected over the course of
executing the test cases in the test suite in a given order;
higher APFD means higher fault detection rate at early.

Let TFi be the order of the first test suites, Fi being the
number of faults in each test suite Ti. The equation is as
follow:

TF, +TF, +..+TF
APFD =1-—! 2 m+i)
nm 2n

B. Illustration Example

Consider a program with a test suite of five test cases, I
through V, such that the program contains ten faults

506

detected by those test cases, as shown in the table of Fig.
3. Consider two orders of these test cases, order T;: I—
[I-III-IV—-V, and order T,: III-V-II-1-IV.

Tast Fault
123456780210

T X X

IT| = XX X

IJIT| xx X XXX X

IV K

v XXX

Fig. 3. Test suites and faults exposed.

Fig. 4. A and 4. B show the percentages of faults detected
versus the fraction of the test suite used, for these two test
suites, respectively.

Test suite 1: I-II-TIT-TV-V Test Suite 2: IM-V—I-IV]

100 100 —
a o0 I I
20 dm b
=7] = 70 — | |
L i R i T
g 50 3 2% b [
el L i gsl [
§ 20 . R i P
&2 -4 Arda=sd = i Area |=84%
10 f f 1] 10 ' 1 1
[| | . A 0 H A A

0 02 04 06 08 10 0 02 04 06 0B 10

Test Suite Fraction Teast Suite Fraction

_APFD forproritized test suite TI B.APFD forpriortized test suite T2
Fig. 4. APFD value results for 7 & 7.

After running test case I, two of the ten faults are detected,;
thus 20% of the faults have been detected after 0.2 of the
overall test suite T; has been used. After running test case B,
two more faults are detected and thus 40% of the faults
have been detected after 0.4 of the test suite has been used.
Case B, is different in the sense that the order of the test
cases covers all fault at an early fraction of the test
suite(APFD = 84%).

C. Independant Variables

The independent variables in our case study are the
parameters of the testing process that affect the efficiency
and choice of the prioritization technique [14]. These
include: the subject programs, the prioritization techniques
property, and the changes in the program in a specific
version, and the test suites characteristics.

As shown in Table I, a sample list for this research is
chosen.

VI. DATA ANALYSIS

A. Test Subject Program

To avoid test case generation dependency, we used 7
programs, written in C, with faulty versions and test cases
assembled by researchers at Siemens Corporate Research
for a study of the fault detection capabilities of
control-flow and data-flow coverage criteria [1].

The Siemens programs perform a variety of tasks: tcas is
an aircraft collision avoidance system, schedule2 and
schedule are priority schedulers, tot_info computes

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

statistics given input data print_tokens and print_ tokens2
are lexical analyzers, and replace performs pattern matching
and substitution.

TABLE I: INDEPENDENT VARIABLE METRIC SUBSET

Metric Description
P_CH_L Percentage of changed line of code
AP _FET Mean Percentage of functions executed by

test

Mean number of paths in the control flow-

PRG.AN_PATHS graph of a function over all functions

Percentage of tests reaching a changed

P_ TRCHF .
— function

mean number of tests going through changed

A_TESTS CHF .
- - functions

P CH INDEX probability of executing changed functions

P FCH_C percentage of functions changed and covered

The researchers provided large test pools for each of the
seven programs; from 100 sample test suites, an average of
7 cases per suite. At the end of the subject program analysis,
we ended up with a 41 versions for each base program,
variant number of test cases with the specified code
coverage criteria [4]. Test Pools were generated using a
combination of white-box/black-box techniques focusing on
coverage criteria. The characteristics of the overall subject
program is described in Table II.

TABLE II: ANALYSED SUBJECT PROGRAM CHARACTERISTICS

Lines of Number Number Test Average
Program | Executable of of Pool | Test Suite
Code Version Mutants Size Size
Print-
tokens 402 7 4030 | 4130 16
tokens? 483 10 4346 4115 12
replace 516 32 9622 5542 19
schedule 299 9 2153 2650 8
schedule 297 10 2822 2710 8
) 138 41 2876 1608 6
346 23 5898 1052 7
tcas
tot-info

B. Comparative Study Using APFD

To avoid redundant efforts, the extended data of previous
literature has allowed us to assemble sample test cases [8]
and prioritize test suites with APFD computations which
were done manually for each technique and base program.
Noting that we can have multiple APFD values for the same
applied technique; thus, we represent the results in box plot
diagram showing minimum and maximum APFD thresholds
for each technique [1].

Fig. 5 illustrates the APFD values of the nine categories of
prioritized test suites for each basis program and the overall
program total. T; is the control group (random) and T, is the
optimal prioritization group. Comparing the boxplots of T,
to T; , we observe that optimal prioritization greatly
improved the rate of fault detection (i.e., increased APFD

values) of the test suites in comparison to random
prioritization. Examining the boxplots of the other
prioritization techniques, T3 through Ty, they all seem to
produce considerable rates of fault detection.

At this point, one could easily be misled when making
decisions over which technique to adopt first. Still, we notice
that we cannot make a general assumption over the “best”
technique to use for fault error rate. For instance, the mean
value for T5in print_token was higher 20 points than the
case in schedule 2; Ts had a high APFD value in
print_token2, better than Tgand T,, but it was lower than
mean in tcas.

The summary of the discussed findings is illustrated in
Fig. 5.

print_tokens schedule2
100 100
an @0
B g0
To To
60 &0
50 50
40 40
30 30
20 20
10 10
Tt Ta Tz Ta T5 Ts T Ta T2 Ta Te Ta
el print lokens? von tcas
a0 a0
ao a0
70 70
B0 B
50 50
40 40
a0 ao
20 20
1o 10
Ty Ta T2 Ta Ts Ta Ti T3 T2 Tqa T Tg
| o Lreace . tot_info
-1+ a0
aa &0
T 70
60 &0
S0 &0
40 40
3o an
20 20
10 10
Ty Ta Tz Tq Ts Tg Ty Ta Ta Ta Ts Te
schedule all programs
100 oo
80 80
BO B8O
70 7O
BO &0
50 50
40 40
30 a0
20 20
10 10
T4 T3 T2 T4 T5 Ta Ti Ta T2 T4 Ta Ta

Fig. 5. Box plot representation for a range of APFD values for
prioritization techniques, 7)(random), 7>(optimal), T5(total_stat),
Ty(add_stat), T5(total functional), 75(Add_functional).

VII. COST-BENEFIT TRADE-OFF AND DECISION
APPROACH

Since the purpose of this analysis is providing test
engineers with methodologies and tools to appropriately
choose prioritization techniques, we discuss an improved
selection approach which attempts to recover from the
weaknesses of the APFD comparison method and we
provide more efficient prioritization selection framework.

Priority cost model approach introduced in previous
literatures is used because the cost factor has been
considered in the decision making process [16]. The higher
the APFD, the more efficient the testing process is.

Cost-Benefit Approach:
Hence, we could quantity by percentages the APFD

507

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

advantage of using one technique over another. The
approach includes:

1) Keep track of the APFD (minimum/maximum/median)
computed for each subject program and prioritization
techniques;

2) Compute the number of occurrences when a specific
technique has a higher APFD than another

3) Set an acceptance threshold for which it is implied that

the superior yielding technique is to be selected.

Focusing on prioritization technique constraints, we
chose to use the cost model approach by evaluating the
chosen goal for regression testing; in this case, the ratio of
fault detection efficiency of test suites. Hence, we
investigate the empirical study APFD results and compare
the techniques based on the metric. We define a decision
threshold range from 0% to 25%. In general, the approach
starts by comparing two techniques, (e.g. T; and T,) and
calculate the percentage of occurrences where T;’s APFD
exceeds T,by the defined threshold range in all the APFD
computations. For instance, in case 4, we notice that with
threshold 5%, T5 (total functional coverage) performs 75%
better than T; (Random Ordering).

Applying the suggested approach we can generate outputs
as shown in Table III.

TABLE III: REGRESSION PRIORITIZATION TECHNIQUE SELECTION

Case Techniques RPTS
Compared 0% 5% | 25%

1 Tyvs. T, 11 5 2
2 T\ vs. T3 35 2 2
3 Tvs. Ty 16 10 0
4 Ts vs.Ty 25 75 79
5 Tivs. Ts 42 11 5
6 T2 vs T3 50 79 30
7 T2 vs T4 68 30 5
8 T2 vs T6 63 46 14
9 T2 vs TS 37 65 20

10... TSvsT4 50 | 55 | 12

One interesting observation is that some techniques’
performance advantage decreases as the threshold, expected
gained benefit, increases; example of 75 vs Ty, where T
loses considerable performance benefit if we expect a 25%
advantage threshold.

Finally, although we cannot claim that the cost-benefit
trade-off approach presented can be generalized to other
programs with different versions, programs, and test suites;
we expect further experimentation, where we will integrate
the independent variable metrics into our priority technique
selection approach, to provide testers with more confidence
in their regressing technique approach.

VIII. CONCLUSION

In this paper, a study of eight test case prioritization
techniques applied across eight systems was presented.
Although previous studies of test case prioritization [3], [8]
have been conducted in similar settings, the set of subjects
we have considered (7 programs) resulted in a considerable

508

testing pool. These techniques were compared based on
their ability to improve the rate of fault detection of test
suites; this as being only one of the numerous goals, testers
might chose as listed in section I.

The results of this analysis have shown that prioritization
techniques performance is subject to variations related to
the test suite characteristics, changes of subject programs,
and functions. It has also confirmed the previous findings
derived from different empirical studies [3], [4], [14]. Thus,
the need for a prioritization technique selection approach is
of considerable importance to the testers’ community.

The basic RPTS (Regression prioritization technique
selection) approach introduced in section VI, represents a
practical framework providing testers with the ability to
select the optimal technique, with higher confidence, while
accounting for cost-benefit trade-offs.

IX. FUTURE WORK

We would like to extend our cost-benefit approach to
account for the characteristics of test case scenarios
specifications, such as the different variances described in
previous sections. Hence, we will consider quantifying the
independent experimental variables defined in Table I, and
through a decision-tree representation integrate these metric
values with our decision-making threshold mechanism to
increase the ability of the approach the appropriate
prioritization technique with higher efficiency. Additionally,
we are considering extending the scalability of the discussed
approach to larger industrial application while accounting
for the bias factor that might affect the validity of our results.

REFERENCES

[1] B. Falah, K. Magel, and O. E. Ariss, “A complexity based regression
test selection strategy,” Computer Science & Engineering: An
International Journal (CSELJ), vol. 2, no. 5, October 2012.

A. Bertolino, "Software testing," IEEE SWEBOK Trial Version 1.00,
May 2001, ch. 5.

S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioritization,
in Proc. the International Conference on Software Engineering, pp.
329-338,2001.

S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” /EEE Transactions
of Software Engineering, vol. 28, no. 2, pp. 159-182, February 2002.
S. Alspaugh and G. M. Kapfhammer, “Efficient time-aware
prioritization with knapsack solvers,” in Proc. the ASE 2007
Workshop on Empirical Assessment of Software Engineering
Languages and Technologies, pp. 13-18, Atlanta, Georgia, November
2007.

G. M. Kapfhammer and M. L. Soffa, “Using coverage
effectiveness to evaluate test suite prioritizations,” Wease
Itech, 2007.

H. Leung and L. White, “Insights into Regression Testing,” in Proc.
the Conference on Software Maintenance, pp 60-69, Oct. 1989.

G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case
prioritization: an empirical study,” in Proc. the International
Conference on Software Maintenance, pp. 179-188, 1999.

R. Gregg, H. U. Roland, C. Y. Chu, and H. M. Jean, “Prioritizing test
cases for regression testing,” CSE Journal Articles. pp. 9, 2001.

T. L. Graves, M. J. Harrold, J. Kim, A. Poiler, and G. Rotliennel, “An
empirical study of regression test selection techniques,” ACM
Transactions on Software Engineering and Methodology, vol. 10, no.
2, pp. 184-208, 2001.

G. Rothermel and M. J. Hanold, “A safe, efficient regression test
selection tecirniqite,” ACM Transactions on Software Engineering
and Methodology, vol. 6, pp. 173-210, 1997.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on
the effectiveness of dataflow- and controlfiow-based test adequacy

[2]
[3]

”»

(4]

(3]

(6]

[7]
(8]

9]

[10]

[11]

[12]

[15]

[16]

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

criteria,” in Proc. the 22ndinternational Conference on Software
Engineering, 1994, pp. 191-200.

J. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environnents,” in Proc.
the tile 24th International Conference, pp. 19-25, 2002.

S. Elbaum, D. Gable, and G. Rothermel, “Understanding and
measuring the sources of variation in the priori-tization of
regression test suites,” in Proc. the Seventh International Software
Metrics Symposium, Institute of Electrical and Electronics
Engineers, Inc., vol. 2, no. 9, 2001..

M. J. Rummel and G. M. Kapfhammer, “Towards the prioritization of
regression test suites with data flow information,” in Proc. the ACM
Symposium on Applied Computing, 2005, pp. 1499-1504.

A. Malishevsky, G. Rothermel, and S. Elbaum, “Modeling the
cost-benefits tradeoffs for regression testing techniques,” in Proc.
the International Conference on Software Maintenance, pp. Oct.
2002.

Bouchaib Falah was born in Casablanca, Morocco in
1966. He received his Ph.D in software engineering
from North Dakota State University, U.S.A, in 2011
and a master degree in computer science from
Shippensburg University, Pennsylvania, U.S.A, in
2001, and a bachelor degree/teaching certificate from
Ecole Normale Superieure, Casablanca, Morocco in
1990. He has more than 20 years of combined

509

experience in developing and implementing computer science and
technical math curriculum for different colleges and universities as well as
web designer for multimillion-dollar organizations in USA and researcher
in different projects, he is currently an assistant professor at Al Akhawayn
University, teaching graduate and undergraduate software engineering
courses, School of Science and Engineering. Besides teaching high school
level math in Morocco and college mathematics and computer science at
Harrisburg Area Community College in Pennsylvania, Suny Orange
Community College in New York, Pennsylvania State University in
Pennsylvania, Central Pennsylvania College in Pennsylvania, Concordia
College in Minnesota, and North Dakota State University in North Dakota,
he has an extensive industrial experience with Agri-ImaGIS, Synertich, and
Commonwealth of Pennsylvania Department of Environmental Protection.
His current research interests include Complexity Metrics, Security testing,
agile methodology and extreme programming, mutation testing, regression
testing, software engineering processes, web application testing, and design
and architecture. He published a book titled: An Approach to Regression
Test Selection Based on Complexity Metrics, Scholar’s Press as well as
many journal papers on software testing.

In 2014, Dr. Falah became a member of APCBEES and in 2013, he was
awarded certificates from International Association of CS and IT as well as
ARPN journal of systems and software.

