International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014

Application of Simulated Annealing in Transit Schedule
Synchronization

Vahid Poorjafari, Wen Long Yue, and Nicholas Holyoak

Abstract—Providing temporal coordination among public
transport servicesis of vital importancein transit planning, asit
has direct impacts on the waiting time imposed on transferring
passengers. This task, which is widely recognized as schedule
synchronization, is highly complicated by nature since it
typically leads to a complex combinatorial optimization
problem. This study aims to investigate the capability of
simulated annealing algorithm in coping with this problem. A
new mathematical programming model is presented for the
purpose of minimizing the total transfer waiting timein transit
networks. Then, a simulated annealing algorithm is developed
and applied to a small-size transit network in order to test the
algorithm applicability. The numerical results showed the
capability of the algorithm in tackling the transit schedule
synchronization problem.

Index Terms—Transit, public transport, simulated annealing,
schedule.

[. INTRODUCTION

In public transport systems, it is almost implausible to
connect all origins and destinations with direct lines because
of economic reasons. Therefore, transit users often need to
take several services to arrive at their destinations. Lack of
temporal coordination between arrival and departure of
related services at transfer points imposes long waiting times
on transferring passengers. Reducing this waiting time,
widely known as transfer waiting time, is a crucial step in
public transport planning and is the main aim of transit
timetable coordination.

Transit schedule coordination, also known as schedule
synchronization, concerns with setting the timetables for a
transit network by which coordination among services at
connecting stops are guaranteed [1]. It is typically
accomplished through modifying the existing timetables and
shifting the departure/arrival times of transit vehicles for the
purpose of minimizing transfer waiting time between related
services. As a major stage in transit timetabling, this task is
unanimously considered as the most problematic stage for
public transport planners [2].

Although the schedulesynchronization is sometimes
simplified in practice in the favor of coordination at a few
transfer points, network-wide synchronization is a highly
difficult problem by nature, as its formulation results in a
complex combinatorial optimization problem [3], [4]. In fact,
this problem in many cases is a NP-hard problem, which is
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unlikely to be solved with conventional solution methods [5].
The intractability of this problem relies on the need for
searching the optimum solution in a very large search space
created by permutation of all possible departure/arrival times
of operating transit vehicles in each line. That is, an effective
algorithm for finding the exact solution for this problem is
very less likely to exist [4]. Hence, the use of approximate
methods (e.g. metaheuristic algorithms) which yield
near-optimum solutions in a relatively short time could be an
alternative in coping with the transit schedule
synchronization problem.

This paper aims to investigate the applicability of the
simulated annealing, as a powerful metaheuristic, in coping
withthis problem. A novel formulation is presented for the
purpose of minimizing the total transfer waiting time in
transit networks. Restriction of transfer waiting times at all
transfer points to a tolerable range is a novelty in the
proposed model. Afterwards, the application of the simulated
annealingis investigated through a numerical example.

II. LITERATURE REVIEW

Coordination of timetables has always been a concern for
public transport planners and several approaches have arisen
in the literature in order to tackle this complex problem. The
most common objective considered in these approaches is
minimization of total transfer waiting time imposed on all
transferring passengers in transit networks over a scheduling
period (e.g. peak/off-peak periods). Although the schedule
synchronization problem has been modeled as a quadratic
assignment problem in a few cases, the Mixed-Integer Linear
Programming (MILP) and Mixed-Integer Nonlinear
Programming (MINP) have been two classical forms for this
problemin the previous work.

Reference [2] developed a mixed integer programming
model for maximizing the number of simultaneous arrivals of
buses from different lines at some selected transfer points.
Reference [4] improved this model for preventing bus
bunching and optimizing passengers’ transfer in bus systems.
They used Branch and Bound, as well as multi-start iterated
local search algorithms to resolve the optimization problem.

Reference [6] also proposed another method for
maximizing synchronization between railway lines and
facilitating transfers with minimum waiting time. Reference
[7] presented a model for synchronizing train lines and feeder
buses. The focus is on minimizing transfer time between the
services and bus operating costs and developed a penalized
objective function to find the optimum sets of frequencies
using genetic algorithms. Another approach was proposed in
[5] for modifying an existing timetable in order to minimize
the total transfer waiting time for the entire of a bus network.
Reference [8] developed a mixed integer programming
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model for any type of transit system, as well. They assumed
uniform headways and deterministic running times and
proposed a method for minimizing the total transfer waiting
time using genetic algorithms.

As mentioned above, minimization of total transfer
waiting time has been the main aim in most of the previous
attempts. This objective may lead to reducing the waiting
time at the major transfer points having higher volume of
transferring passengers at the cost of imposing long waiting
times on the passengers waiting at minor transfer points. In
public transportation, however, the satisfaction of all users
should be taken into consideration. The proposed model in
this study not only aims to minimize the total transfer waiting
time, but also restricts all feasible waiting times to a
pre-determined endurable range.

III. MODEL CONSTRUCTION

Let us consider two transit lines i and j intersecting at
transfer point ¢ (Fig. 1-a). Transferring from line 7 to linej
adds transfer time to the passengers’ travel time. The transfer
time consists of two components, namely, the walking time
(w;) between the related stops/platforms and the transfer
waiting time (tw;) for the next vehicle in j. The walking time
is dependent onthe physical distance between stops/platforms
of i and j, as well as on the ease of access for different groups
of passengers. Nevertheless, the transfer waiting time
depends on the temporal coordination between the arrival of
transit vehicles in i at ¢ and departure times of vehicles in j
from c. Fig. 1-b displays the transfer waiting time imposed on
different groups of transferring passengers from i to j at c.
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(a). Intersection of two transit lines at a transfer point.
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(b). Transfer waiting time for different groups of passengers.

Fig. 1.Transfer waiting time between two intersecting transit lines.

As shown in this illustration, the first vehicle in i arrives at
the transfer point at the time 4;;. The first vehicle in j departs
the transfer point at the time D;,;, after spending the dwell
time dw; at c. Therefore, the waiting time imposed on the first
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group of transferring passengers from i to j (twl-lj) can be
expressed as:

thlj =D, —4,-w; ()

Considering the departure time of the second service as the
summationof its arrival time at c¢(A;;)and the dwell time,
Equation (1) can be rewritten as:

|
tw; =A; +dw, — 4, —w, 2)

The arrival time of each transit vehicle at the transfer point
is a function of the departure time from the first stop (S) and
the average running time from the first stop to the transfer
point (7). Thus, Equation (2) can be expanded as follows:

I
w; =8, +r,+dw,— S +1r)—w, (3)

where, S;and Sjare the departure times of the first vehicles
operating in i and j from the first stops, respectively, and r;
and 7; denote the average running time from the first stops
in i and;j to ¢, in order.

The second vehicles in lines i and j arrive at ¢ after the
headways #; and #;, respectively. Therefore, the transfer
waiting time imposed on the second group of transferring
passengers from i to j (twizj) is:

tw,.j.2 =S, +h +r,+dw, = (S, +h+1r)-w,

= twl‘.j1 +(h; —hy)

(4)

This equation shows that the transfer waiting time incurred
by the second groups of transferring passengers is a function
of the transfer waiting time for the first group and the
difference between the headways of i and j. In case the
intersecting lines have equal headways, the transfer waiting
time is the same for all groups of transferring passengers
from 7 to j over a scheduling period (e.g. peak period). In
contrast, tw;; varies over time when the intersecting lines have
unequal headways, which is more likely in real-world transit
systems.

Investigatingthe variation of transfer waiting time reveals
that this variation is cyclic. In other words, the transfer
waiting times for different groups of passengers are repeated
regularly over a period of time. We callthe period of time
covering all feasible transfer waiting times from i to jas
transfer cycle (TCy) for two intersecting lines 7 and j and
define it as the least common multiple (/cm) of the headways
h; and h;. Consequently, the number of feasible transfers from
i to jover a scheduling period (n;;)can be determined
asTCi j / hl

Based on Equation (4), the transfer waiting time for the
k-th group of transferring passengers from i to j(twl-kj)can be
expressed astw; + (k — 1)(h; — h;). However, the vehicles
operating in j are run every h; minutes and the waiting
passengers at ¢ take the earliest vehicle in j arriving at c.
Hence, the actual transfer waiting time for the &-th group of
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transferring passengers can be expressed as follows:

twj =| ow)+(k=1) [, =, Jmodh, | 5)

The absolute value of (h; — h;) is used in order to cover
the situation in which the second line has a shorter headway
than the first line headway. Having Equation (5), it is possible
to identify the maximum feasible transfer waiting time
imposed on transferring passengers from i to j at c(tw/;**
over a scheduling period. Moreover, the total transfer waiting
time from i to j at ¢ (TW;;) can also be calculated using this
equation.

As mentioned in the previous section, the main aim of
transit timetable synchronization is to minimize the total
transfer waiting time incurred by all transferring passengers
in a transit network over a scheduling period (SP). Hence, the
all transfer waiting times at all transfer points in the transit
network should be taken into account and an optimization
model should be developed for the purpose of minimizing
this value subject to the operational limitations of transit
systems. Since the transfer waiting time is a function of
departure time from the first stop (Equation (3)), the total
transfer waiting time in a transit network can be presented as
a function of departure times from the first stops. In fact,
transit schedule synchronization aims to find the set of
departure times from the first stops by which the total transfer
waiting time over SP becomes minimized. In the case of
synchronizing existing transit systems, the solution is the set
of shifts (X) in the existing departure times from the first
stops which lead to minimum total transfer waiting time in a
transit network.

In order to develop the mathematical programming model
for the timetable synchronization problem, we adopt the
following underlying assumptions:

1) Physical characteristics of the transit network, including
the lines alignment, stop locationsand average running
times between stops are provided.

2) Dwell times, walking times and number of transferring
passengers at each transfer point in known.

3) Transferring passengers at each transfer point are
uniformly distributed among the feasible transfers
between the related lines over SP.

4) Headways are known and fixed over SP.

From a planning point of view, some transfers are more
important than others corresponding to their location,
direction and time. For instance, some transfer points play a
more important role in transit networks (e.g. intermodal
interchanges) and transfers at such points should be favored.
Therefore, the importance factor (/) should be considered as a
weighting factor in addition to the number of transferring
passengers in order to reflect the planning concerns in
synchronizing transit timetables.

Considering the transfer waiting time as a function of the
shift in the first departure time and the importance factor, the
synchronization model for minimizing the total transfer
waiting time in a transit network can be proposed as follows:

N N m
min/ = ZZZ _. . fUC (6)
Jj=1

i=1 c=1
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Subject to:
Wy =) twl 7

twj =| tw)+(k—=1)|, =, Jmodh, | (8)

le c c ¢ ¢
twy =S, + X, +r{+d;—(S,+ X, 45 )—wi )

W = max{mgc kel,... nj}} (10)
h.Xp:

pi=""" 11
i 60 (11)
wy 20;Vi, je{l,......N} (12)
w <T Vi, je{l,N} (13)

—hi hi
—=<X,<— ; Vie N 14
5 5 { } (14)
X ezZ;Viell,..... N} (15)

where,
N : number of directional lines in the network
m : number of transfer points in the network
Pf; : number of transferring passenger at each transfer

fi : filtering factor for unfeasible transfers (1 if transfer
between I and j is feasible at ¢, and 0 otherwise)

twi’j-” : k-th transfer waiting time from 7 to j at ¢

twiljc : the first transfer waiting time from i toj at ¢

pi; : hourly volume of transferring passengers from i to j at

X; : shift in the departure time from the first stop in line i

In this model, the objective function is the total transfer
waiting time in the network considering the importance of
transfers. Equations (7), (8), (9) and (11) present the
parameters used in the objective function. Constraint (12)
guarantees the first transfer from i to j at cto occur
andConstraint (13) provides the opportunity to restrict the
maximum feasible waiting time to a pre-determined tolerable
value (7). Since the shift in the exiting timetable is in
minutes, the decision variable (X) can take only integer
values (Constraint 15). This parameter is allowed to vary
within the range defined in Constraint (14) in order to
maintain the existing line frequencies (i.e. no need for
adding/removing the existing services).

IV. APPLICATION OF SIMULATED ANNEALING

The schedule synchronization model developed in the
previous section is a combinatorial optimization problem.
The complexity of this model mainly relies on the need to
search for the optimum solution in a huge search space made
up by combination of all feasible shifts in the departure times
from the first stops. It should be noted here that the
complexity of this optimization problem increases
exponentially by the number of directional lines.
Consequently, the problem becomes intractable in the case of
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dealing with huge public transport networks and the
application of exact solution methods would be exhaustive.
Therefore, employing approximate solution algorithms,
which return near-optimum solution in a relatively short
computing time, is the only possibility to cope with this
problem.

Simulated annealing (SA) is a widely used algorithm to
address discrete, as well as continuous optimization problems.
The key feature of SA is its capability in escaping local
optima in hopes of finding a global optimum [9]. This
algorithm is a single-solution metaheuristic algorithm which
is inspired by an analogy between combinatorial optimization
problems and the physical annealing of solids [10]. Its
convergence properties, its capability in finding global
optimum and its ease of implementation has made SA a
popular solution technique over the past years and it is now
being used very widely for tackling complex optimization
problems arisen in different areas of engineering.

SA starts from a randomly generated initial solution and at
each iteration, a trial solution is generated using a
neighborhood generating function. If the trial solution is
better than the current solution, it is selected as the current
solution is replaced by the trial solution. Otherwise, the trial
solution is accepted with a probability which typically
depends on the difference in objective function value and a
control parameter, called femperature. For minimization
problems, this probability is defined based on the Metropolis
distribution, as follows [10]:

L, if f(s)<S(s)

Beep (85851 = exp(f(s)_f(s')] otherwise (e
T 9

where, Py, 1S the probability of acceptance, s is the current
solution, s is the trial solution, 7 is temperature, and f{s) and
f(s’) are the objective function values under the current and
the trial solutions, respectively. After sufficient iterations at
each temperature, the temperature is lowered and the
probability of accepting worse trial solutions decreases so
that only better solutions are accepted at low temperatures. If
the basic parameters are set properly and the annealing
process is relatively slow, SA is promising to yield the global
optimum.

In this study, a simulated annealing algorithm was
developed using Matlab programming language in order to
solve the schedule synchronization model proposed in the
previous section. Each solution is structured as a string of
integers representing the shifts in the departure times from
the first stops. The best solution, therefore, is the string by
which the total transfer waiting time in the network becomes
minimized. In this algorithm, Constraints (14) and (15) are
satisfied directly through the neighborhood generation
function. Constraints (12) and (13) are also dealt through the
penalty method. A huge penalty is applied to unfeasible
solutions generated by the annealing function in order to
reduce their chance to be selected as the final solution. The
amount of penalty is selected relative to the amount of
violation, as shown in the following penalty function:
where, Z, is the penalized value of the objective function, and
P; and P, are the penalty factors. It should be noted that the
values of penalty factors are case-dependent and should be

selected properly in order to avoid unfeasible solutions.

N N m

Z,=2+22 > Row))’

i=l j=1 c=1

N N m ) P
+2 DA (v T, )

i=l j=1 c=1

(17

V. A NUMERICAL EXAMPLE

This section aims to examine the capability of the
proposed synchronization model and the simulated annealing
algorithm in reducing transfer waiting time in transit
networks through an example. The example is a small-size
transit network comprising a bidirectional trunk line
intersecting two bidirectional feeder lines at two transfer
points A and B (Fig. 2). The headways and the average
running time on each network segment are given. Table I also
presents the transfer matrix, which indicates the number of
transferring passengers among the lines at the transfer points.
It is assumed that under the existing timetable, all the transit
vehicles depart the first stops at 8:00 am (Table II). In this
example, the focus is on the waiting time imposed on the
passengers transferring from the trunk line to the feeders and
vice versa and it is intended to modify the existing timetable
(i.e. departure times from the first stops) for the purpose of
minimizing the total transfer waiting time in the network over
one peak hour (8:00-9:00 am).

h6=15min (5)

h=15min (2),

in
in

15 m
14 mi

9 min 15 min 10min =10 min

O 0 =S

®:

h2 =10 min

17 min
18 min

\ ®h5=15min @hs:ﬁmin

Fig. 2. Intended transit network.
TABLE I: HOURLY VOLUME OF TRANSFERRING PASSENGERS

1 2 3 4 5 6
1 - - 45 50 30 35
2 - - 30 40 60 55
3 60 20 - - - -
4 50 35 - - - -
5 35 60 - - - -
6 30 40 - - - -

TABLE II: DEPARTURE TIMES FROM THE FIRST STOPS UNDER THE CURRENT

SCHEDULE
1 2 3 4 5 6
8:00 8:00 8:00 8:00 8:00 8:00
8:10 8:10 8:15 8:15 8:15 8:15
8:20 8:20 8:30 8:30 8:30 8:30
8:30 8:30 8:45 8:45 8:45 8:45
8:40 8:40
8:50 8:50

Additional assumptions in this example are as follows:
1) Dwell time at the transfer points = 1 minute
2) Walking time at each transfer = 1 minute
3) Maximum allowable transfer waiting time (7,,,,) = 12
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minutes
4) All the transfers are considered at the same level of
importance (i.e. Ij;=1).

Since the performance of simulated annealing algorithm is
highly affected by its basic parameters and operators, a range
of sensitivity analysis was conducted on the algorithm in this
study. Based on this analysis, the penalty factors are selected
as P;=P,=1. The initial temperature was selected 1000 andthe
temperature schedule function was also chosen as follow:

(18)

where, T is the current temperature, T, is the initial
temperature and & is the annealing factor. The annealing
function, which generates the trial solutions, was also
developed so that only integers were assigned to the decision

variables.
3950

T=T,0.95"

3900* 4

3850

3800¢

Penalized Function valua
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Fig. 3. Improvement in objective function value.

Using a 1.83 GHz CPU and 4 GB of RAM, the
synchronization model was solved for the intended network
after 5303 iterations in 104 sec. Fig. 3 displays the value of
the penalized objective function versus iterations. As can be
seen in this graph, the improvement in the objective function
occurred faster at the higher temperatures and it became
slower at the lower temperatures. The best solution found by
the algorithm is as follows:

X'=[-5,1,-3,-2,6,-5]
According to this solution, the departure times from the
first stops were altered and the modified timetable was
created (Table III). Fig. 4 demonstrates the reduction in

transfer waiting time under the synchronized schedule over
one peak hour.

TABLE III: DEPARTURE TIMES FROM THE FIRST STOPS UNDER THE

MODIFIED SCHEDULE
1 2 3 4 5 6

7:55 8:01 7:57 7:58 8:06 7:55
8:05 8:11 8:12 8:13 8:21 8:10
8:15 8:21 8:27 8:28 8:36 8:25
8:25 8:31 8:42 8:43 8:51 8:40
8:35 8:41

8:45 8:51

As shown in Fig. 4-a, transfer waiting time at the transfer
points A and B decreased by 14 and 18.7 percent,
respectively, and the total transfer waiting time in the
network declinedby 16.4%, from 3933 minutes to 3288
minutes under the modified timetable. In other words, the
modification of the existing timetable resulted in saving 645
minutes just over one peak hour. Fig. 4-b also shows that the
waiting time incurred by each transferring passengers in the
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network decreased by 5.83 minutes to 4.87 minutes, on
average. In fact, the modification of the existing timetable led
to reducing the average waiting time by almost 1 minute for
each passenger.

4500

= 4000
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E 2500
2 1914 2019
= 2000
o 1500 | 1646 1642
E 1000 -
500
0 - T T !
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2 s 580 583
= 499 476
£ 500 487
@
£
=400 4
£
g 3.00
£ ]
% 200
g
= 100 +
0.00 T T

Transfer Point A Transfer Point B Network
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(b). Average transfer waiting time for each transferring passenger.

Fig. 4. Impacts of timetable synchronization on transfer waiting time.

In addition to the reduction in the total transfer waiting
time, synchronization of the existing timetable reduced long
waiting times at the transfer points. Under the existing
timetable, 10.2% of the waiting times exceed Ti.(12
minutes). However, this percentage declined to 6.1% under
the modified timetable due to restricting transfer waiting
times to a pre-determined endurable waiting time (Constraint
13). In fact, timetable synchronization not only reduced the
total transfer waiting time in the network, but also prevents
imposing long and unendurable waiting times on the waiting
passengers. Overall, the proposed schedule synchronization
method resulted in substantial improvements in the system
performance and the quality of transfers in the intended
network.

VI. CONCLUSION

This paper presented the application of a simulated
annealing algorithm in coping with the transit schedule
synchronization problem. A new optimization model was
proposed for the purpose of minimizing the waiting time
imposed on the transferring passengers in public transport
systems. Restricting the transfer waiting time to a tolerable
range is a novelty in this formulation. A simulated annealing
algorithm was also developed in order to solve the proposed
optimization problem. Application of the method to a transit
network revealed that simulated annealing is a capable
solution algorithm for tackling the transit schedule
synchronization problem, which is a complex optimization
problem by nature.

Since the performance of simulated annealing is highly
dependent on its basic parameters and operators, further
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sensitivity analysis on these features could improve the
efficiency of this solution technique in terms of dealing with
the timetable synchronization problem. Applying other
metaheuristics and comparing the results to the developed
simulated annealing algorithm could also be an extension for
this work.
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