
  

  
Abstract—Based on the conventional Euler bucking model 

and the effective nonlocal elasticity theory, the dynamic 
behaviors of cantilever and fixed-fixed nano-switches are 
studied in this paper. The governing equations for the dynamic 
response of the nano-switches including small-scale effect are 
derived by using the energy variational method. The small-scale 
effects on the stiffness of nano-switches are presented. It is 
found that the scale effect has softened the fixed-fixed 
nano-switches and hardened the cantilever nano-switches. 
 

Index Terms—Scale effect, cantilever nano-switch, 
fixed-fixed nano-switch, effective nonlocal elasticity. 
 

I. INTRODUCTION 
With the development of nano-electro-mechanical system 

(NEMS), nano-switch as an important building block in 
NEMS is gaining interest among researches. Typically, a 
nano-switch contains fixed and deformable structures, 
separated by a dielectric medium. When a voltage is applied 
between the deformable and fixed structures, electrostatic 
forces induced charges and intermolecular produced the 
surface absorption act on both structures. Since the fixed 
structure cannot move, the movable structure tends to 
approach to the fixed one, and elastic force tends to take the 
movable structure back into the undeformed position. 
Exceeding the applied voltage above a certain value makes 
the movable electrode to collapse onto the fixed structure [1]. 
Nano-switch usually includes two cases such as cantilever 
and fixed-fixed. 

When the dimensions of nano-switch are small and 
comparable to molecular distances, the size effects are signi- 
ficant in their mechanical behavior [2]. Therefore, size 
dependent theories of continuum mechanics have received 
increasing attention in recent years due to the need to model 
and analyze very small sized mechanical structures and 
devices [3]. Ordinarily, the classical continuum mechanics is 
not suitable for interpreting the size-dependent behaviors of 
nanostructures. Since controlled experiments in nano-scale 
are difficult and molecular dynamic simulations are 
computationally expensive [4], the non-classical continuum 
theories such as nonlocal elasticity [5] or couple-stress [6] 
had been set up and used to explain the size-dependent 
behaviors of nanostructures. Y. Tadi Beni, M. R. Abadyan, 
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Aminreza Noghrehabadi [7] applied the modified 
couple-stress theory incorporating with the modified 
Adomian decomposition solving method to investigate the 
size dependency of the pull-in characteristics of NEMS. 
Their results revealed that the size effect increases the pull-in 
voltage of the nano-beams. In order to account the 
small-scale effect, J. Yang, X. L. Jia and S. Kitipornchai [8] 
investigated the pull-in instability of nano-switches subjected 
to the electrostatic force produced by the applied voltage and 
intermolecular force (van der Waals and Casimir forces) 
within the framework of nonlocal elasticity theory. They 
proposed a linear distributed load (LDL) model to obtain 
closed form solutions for cantilever and fixed-fixed 
nano-switches. They found that in cantilever nano-switches, 
an increase in the small scale factor leads to a higher pull-in 
voltage, whereas in fixed-fixed nano-switches, it leads to a 
lower pull-in voltage. J. S. Peng, G. B. Luo, L. Yang and J. 
Yang [9] modified the LDL model using a linear load model 
which suits boundary conditions and restudied the pull-in 
instability of nano-actuators by using Eringen’s nonlocal 
elasticity theory. Also, B. L. Wang, S. J. Zhou, J. F. Zhao and 
X. Chen [10] presented a size-dependent model for 
electrostatically actuated microbeam using strain gradient 
elasticity theory. T. Mousavi, S. Bornassi and H. Haddadpour 
[11] had dealt with the pull-in behaviors of nano-switches 
using Eringen’s nonlocal elasticity theory. Through 
differential quadrature method, K. F. Wang and B. L. Wang 
[12] investigated the pull-in instability of a nano-switch 
under electrostatic and intermolecular Casimir forces. 

In order to investigate the nonlocal small scale effect for 
details, the effective nonlocal elasticity theory was 
introduced which was based on energy variational method 
and the nonlocal elasticity theory. According to the nonlocal 
elasticity theory which was built by Eringen [13], not only 
the strain field at that point but also the strains of all the other 
points of the body determine the stress field at an arbitrary 
point in a continuum body. Concretely speaking, an arbitrary 
point in a continuum body will produce a strain filed which 
will affect other points of the continuum body, that is, the 
stress field at an arbitrary point is determined by all the 
strains in the continuum body. 

The drift of this investigation is first to obtain the 
governing equation of the nano-switches subjected to 
electrostatic and intermolecular Casimir forces, and then 
gradually to solve the ordinary differential equation covered. 
The approach here, however, is analytic. 

 

II. THE EFFECTIVE NONLOCAL ELASTICITY MODEL FOR 

CANTILEVER AND FIXED-FIXED NANO-SWITCHES 

A. The Model of Cantilever Nano-Switches 
Cantilever nano-switches, being a kind of classical nano- 
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switches, consist of a movable plate and a fixed plate. Under 
a critical “pull-in” voltage, the cantilever becomes unstable 
or pulls-in onto the fixed plate. In order to study the dynamic 
behavior of the nanostructure, we should consider the 
Casimir force, the van der Waals force and the electrostatic 
force, together. 

As what shown in the Fig. 1, it’s the model of the 
cantilever nano-switch which we study in this paper. 

 

 
Fig. 1. The model of cantilever nano-switch. 

B. The Model of Fixed-Fixed Nano-Switches 
In the Fig. 2, it’s the model of fixed-fixed nano-switch 

which we study in this paper. 

 
Fig. 2. The model of fixed-fixed nano-switch. 

There is some parameters covered in the cantilever and 
fixed-fixed nano-switches model, L is the length of 
nano-switch, V is the applied voltage, x, z are the axial 
coordinate and the transverse coordinate, respectively. 

C. The Effective Nonlocal Theory Model 
According to the Euler-Bernoulli beam theory, the 

relation- ship between the displacement along x and the strain 
xxε  can be written as 

( )2

2

,
xx

w x t
z

x
ε

∂
= −

∂
                           (1) 

where t is the time, xxε  is the normal strain and the origin of 
coordinate is at the leftmost of the moveable plates. 

In order to simplify the calculation and embody the 
nonlocal nanoscale effects, the nonlocal nanoscale parameter 
τ is expressed as 

0e a
L

τ =                                    (2) 

where 0e a  is the parameter given by matching against 
experiments and molecular dynamic simulations. 

Under two dimensional cases, the stress-strain relationship 
based on the Green’s function for the nano-switches can be 
written as [5] 

( )2 2 21- ij ijLτ σ σ ′∇ =                           (3) 

where ijσ  is the nonlocal stress and ijσ ′  is the classical stress 
and ∇  is the Hamiltonian operator. 

When it comes to the one dimensional stress-strain 
relationship for the nano-switches, the nonlocal stress-strain 

relationship is 
2

2 2
2

d
-

d
xx

xx xxL E
x
σσ τ ε=                           (4) 

where xxσ  is the nonlocal stress for the axial coordinate, E  
is the modulus of elasticity. 

In order to facilitate theoretical formulations, it is 
convenient to nondimensionalize (4) with the following 
substitutions, 

xx
xx E

σσ = , 0e a
L

τ = , xx
L

= , zz
L

= , ww
L

=  

The equation (4) changes to 
2

2 xx
2-xx xxx

σσ τ ε∂
=

∂
                             (5) 

or 
2 2

2 xx
2 2-xx

wz
x x
σσ τ ∂ ∂= −

∂ ∂
                        (6) 

The equation (4) or (5) is a two order ordinary differential 
equations, the general solution can be expressed as 

( ) ( )
2

1 2 2
1

n
x x

xx n n
n

wB z e B z e A
x

τ τσ
∞

−

=

∂= + +
∂∑            (7) 

where 1( )B z , 2 ( )B z  and nA  are the integral constants. 
It can be derived from (6) and (7) that the constant 

coefficient nA  is 

2 2n
nA zτ −= −                                   (8) 

Generally speaking, when nonlocal nanoscale parameter 
goes to zero ( 0τ → ), the nonlocal stress xxσ gradually 
becomes the classical stress xxσ ′ , that means

0
lim xx xxτ

σ ε
→

= . 

Thus, the integral constants of the general solution must be 
zero ( ( ) ( )1 2 0B z B z= = ). Then the solution of the nonlocal 
stress can be written as 

2 22
2 2 2 2

2 2 2
1 1

dd
d d

nn
n n xx

xx n n
n n

wz
x x

εσ τ τ
−∞ ∞

− −
−

= =

= − =∑ ∑          (9) 

The strain energy density μ of the per unit volume after 
deformation is 

xx

0 xx xxd
ε

μ σ ε= ∫                                (10) 

Using (9) and (10), the strain energy density μ of the per 
unit volume can be expressed as 

2 2
2 2

2 20 0
1

xx xx
n

n xx
xx xx xxn

n
E d E d

x
ε ε εμ σ ε τ ε

−∞
−

−
=

∂
= =

∂∑∫ ∫    (11) 

In order to facilitate the integration, the strain energy 
density μ is divided into three parts and they can be 
expressed as 

1 2 3μ μ μ μ= + +                             (12) 

where , 1, 2,3i iμ =  could be expressed as 
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( )
2 2
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1 1
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mn xx xx
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ε εμ τ

− +∞
++

− +
= =
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Thus, the total strain energy for the total volume is 

( )1 2 3d ,
V V

U V dVμ μ μ μ= = + +∫ ∫                 (14) 

where U  is the total strain energy, V  is the total volume. 
The Casimir force for each unit length is [14] 

( )
2

240c
cbF

g w
π=

−
                            (15) 

where 341.055 10 Js−= ×  is the Planck’s constant divided by 
2π  and 8 12.998 10 msc −= ×  is the speed of light. The van 
der Waals force for each unit length [15] is 

36 ( )van
AbF
gπ ω

=
−

                             (16) 

where A is the Hamaker constant. 
The electrostatic force for each unit length is 

2
0

2

0.65( )1
2( )e

bv gF
bg

ε ω
ω

−⎡ ⎤= +⎢ ⎥− ⎣ ⎦
                     (17) 

where ( ) 1-12 2 2
0 8.854 10 C Nmε

−
= ×  is the permittivity of 

vacuum, v is the applied voltage. 
Thus the distributed force p can be considered as 

( ) van c ep x F F F= + +                      (18) 

Thus the work done by the distributed force p is 

( ) ( )12

0 0

L
W p x dx L p x dxω ω= =∫ ∫                    (19) 

The effective nonlocal elasticity theory is based on the 
Energy variational method. The nonlocal strain energy and 
infinite number of the higher-order boundary conditions are 
derived from the method. 

In order to apply the Hamilton’s principle, an energy 
function is introduced 

0I U Wδ δ δ= − =                                  (20) 

By substituting (14) and (19) into (20), we can get 
I U Wδ δ δ= −  
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According to the Energy variational method, the 
variational of the energy function should be zero, and the 
variational on the boundary is zero, therefore, the governing 
equations can be written as 

( )
2 2 3
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The general solution of (22) is 
3

3 2 4
1 2 3 4 5 6

1
24

x x pLC e C e C x C x C x C x
EI

τ τω −= + + + + + − (23) 

The higher-order boundary conditions consist of natural 
boundary conditions and geometric boundary conditions can 
be derived from (21), and each condition for the one situation 
can be used but not together. 

( )0 0ω = , ( )0 0ω′ = , ( )0 0ω′′ = , 

( ) ( ) ( )421 1 0ω τ ω′′− + = , 

( ) ( ) ( ) ( )4 64 62 0 4 0 0τ ω τ ω+ = ,                       (24) 

( ) ( ) ( ) ( )4 64 62 1 4 1 0τ ω τ ω+ = . 

The boundary conditions for fixed-fixed nano-switches are 

( ) ( )0 0 1 0ω ω= =， , 

( ) ( )0 0 1 0ω ω′ ′= =， ,                       (25) 

( ) ( ) ( ) ( )4 40 0 1 0ω ω= =， . 
 

III. NUMERICAL RESULTS AND DISCUSSION 

A. The Cantilever Nano-Switches 
In the Fig. 3, we have considered the variation of the free 

standing deflection in different theories under the same 
conditions. As the value of coordinates x increasing, the 
deflection decreased as a curve with a single peak. When the 
nonlocal nanoscale parameterτ approaches to zero, the curve 
of the different theories comes closest to coinciding in shape. 
What’s more, at the same point, the deflection of the 
cantilever under the effective nonlocal elasticity theory is 
lesser than that under the classical theory. Thus, the 
cantilever under the effective nonlocal elasticity theory 
becomes harder than that in classical theory. 
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Fig. 3. Variation of the free standing deflection of the cantilever against the 

length of cantilever nano-switch. 
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Fig. 4. Variation of the maximum deflection of cantilever against the 

nonlocal parameter. 

In the Fig. 4, we take the effective nonlocal nanoscale 
parameter τ into consideration. The effective nonlocal 
nanoscale parameterτ is used to show the effective nonlocal 
effect. In macroscopic states ( 0τ → ), the maximum 
deflection of cantilever will not respond to changes in the 
nonlocal parameter. Therefore, the classical theory’s curve 
remains a straight line. What’s more, in the nanoscales, the 
larger the nonlocal parameter is, the smaller the maximum 
deflection is. In a word, the effective nonlocal elasticity 
theory makes the cantilever harder. 
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Fig. 5. Variation of pull-in voltage against the length of cantilever 

nano-switch. 

In the Fig. 5, it can be seen that the pull-in voltage 
increases with the increases of the effective nonlocal 
parameterτ . It seems that the cantilever has been harder with 

considering the nanoscale effect. For a given small-scale 
parameterτ , it may be observed that with increasing the 
maximum length of the cantilever beam, the pull-in voltage 
decrease. In addition, in the model, the pull-in voltage 
behavior depends significantly on the length of cantilever 
nano-switch. 

B. The Fixed-Fixed Nano-Switches 
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Fig. 6. Variation of the midpoint deflection of the fixed-fixed nano-switch 

against the length of fixed-fixed nano-switch. 

In the Fig. 6, we could figure out that, with considering the 
effective nonlocal effect, the free standing deflection of the 
fixed-fixed nano-switch has been changes to even lesser than 
it without considering the effective nonlocal effect. We 
conclude that the fixed-fixed nano-switch has become soft in 
the effective nonlocal theory than it in the classical theory. 
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Fig. 7. Variation of the maximum deflection of fixed-fixed nano-switch 

against the effective nonlocal parameter. 
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Fig. 8. Variation of pull-in voltage against the length of fixed-fixed 

nano-switch. 
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In the Fig. 7, as the effective nonlocal 
parameterτ increases, the maximum deflection of fixed-fixed 
nano-switch showed different changing tendency varying the 
theories. In macroscopic states ( 0τ → ), the maximum 
deflection of cantilever will not respond to changes in the 
nonlocal parameter. Therefore, the classical theory’s curve 
remains a straight line. Furthermore, in the nanoscales, the 
maximum deflection increases while the nonlocal parameter 
increases. In other words, the fixed-fixed nano-switch has 
become softer than before. 

In the Fig. 8, for a given small-scale parameterτ , we can 
know that the pull-in voltage decreases as the length of the 
fixed-fixed nano-switch increases. The length of fixed-fixed 
nano-switch has a considerable influence on the pull-in 
voltage. What’s more, the effective nonlocal parameter 
τ increases during the pull-in voltage decreases. We could 
infer that the fixed-fixed nano-switch has become softer than 
before considering the effective nonlocal effect. 

 

IV. CONCLUSIONS 
In this paper, we have studied the effect of small scale on 

the dynamic behavior of cantilever and fixed-fixed 
nano-switches using the effective nonlocal elasticity theory. 
We have introduced the effective nonlocal nanoscale 
parameter τ to embody the small scale effect. The governing 
equations for the dynamic response of the nano-switches 
including small-scale effect are derived by using the energy 
variational method. 

It is observed that the cantilever and the fixed-fixed 
nano-switch treated differently under the small scale effect. 
An increase in the small scale factor leads to higher pull-in 
voltage for a cantilever nano-switch, results in lower pull-in 
voltage for a fixed–fixed nano-switch, but does not change 
the pull-in deflection for both nano-switches. The fixed-fixed 
nano-switch is more sensitive to the nonlocal effect than the 
cantilever. 

The nonlocal cantilever nano-switch shows stiffening 
effects due to the small scale effect and tends to become 
stiffer compared to classical one. Furthermore, the 
fixed-fixed nano-switch displays softening effects and tends 
to be softer compared to local one. 
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