
  
Abstract—There have been made several efforts to link 

Ampère´s law to different parts of electromagnetic field theory 
In this paper Neumann’s effort to make his induction law to 
appear to be consistent with Ampère’s law will be studied 
thoroughly., Since there exists a concept, named 
“Ampere-Neumann electrodynamics”, it has been regarded as 
necessary to analyze how Neumann derives the connection 
between induction and Ampère’s force law. One conspicuous 
thing is that he by the electromotive force of the secondary loop 
is meaning a physical, mechanical force, contrary to what has 
usually has been understood as an induced voltage. This makes 
it possible for him to claim his ideas to be consistent with 
Ampère’s law. On the contrary, recent papers have 
convincingly shown that the Continuity Equation of Electricity 
is able to explain, how a current is being induced in a secondary 
circuit, due to an alternate current in the primary circuit. 
Earlier discoveries that Coulomb’s law is able to account for 
electromagnetic forces, without involving magnetic fields, 
provides the conceptual background, which makes the use of 
magnetic fields unnecessary also in connection with induction. 
 

Index Terms—Neumann’s induction law, ampère’s law, 
faraday’s law of induction, grassmann’s force law, coulomb’s 
law.  
 

I. INTRODUCTION 
Graneau argues that Ampére’s law has been highly 

appreciated by Maxwell, adding that it had been widely used 
for 80 years [1], more precisely the first 80 years, which have 
elapsed since Oerstedt’s discovery of electromagnetism in 
1820. Graneau is citing Maxwell, the citation repeated here 
for the reader’s convenience: “It is perfect in form, and 
unassailable in accuracy, and it is summed up in a formula 
from which all the phenomena may be deduced, and which 
must always remain the cardinal formula of electrodynamics”, 
[2]. It is due to these great words of appreciation by the 
master, Maxwell, natural that there  have been made several 
efforts by successors to link Ampère´s law to different parts 
of today´s widely used concepts; There are many examples, 
among those Grassmann’s effort to make his law 
(predecessor to the Lorentz force) appear to be consistent 
with Ampère’s law [3]. Regrettably, Grassmann performs a 
very serious, but simultaneously very simple mathematical 
error in deriving the equation that is aimed at corroborating 
his claim [4]. Further, we have Neumann’s effort to make his 
version of the induction law to appear to be consistent with 
Ampère’s law [5]. This will be treated more extensively 
below. Again, Maxwell’s effort to make his own laws to 
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appear to be consistent with Ampère’s law by praising 
Ampère’s law [2], however, in no case is giving the relevant 
reference supporting their claim. Instead, they all rely on the 
reputation of a high authority (i.e. Ampère), rather than 
presenting convincing proofs corroborating their own 
standpoints. However, finally, Jonson has made a successful 
effort to derive electromagnetic induction, by applying the 
Continuity Equation of Electricity [6], [7]. The basic reason 
for daring to use Coulomb’s law straightforwardly on moving 
charges is the discovery that the different propagation delay 
of the immobile lattice ions and the mobile electrons in a 
metallic conductor, gives rise to a net Coulomb field that has 
been misunderstood as a separate ‘Lorentz force’ [8].  

In traditional interpretations the competence of Coulomb’s 
law has been restricted to apply to strictly electrostatic cases, 
and it has been assumed that all kinds of dynamics with 
respect to electric charges require the usage of the Lorentz 
force. Furthermore, in the just mentioned paper [8] it is also 
being verified by reference to experiments that the Lorentz 
force fails to correctly predict the force between rectilinear 
currents, whereas Coulomb’s law is successful in the new 
interpretation. Additionally, in connection to this may also be 
stated that the method that has been used thus far in order to 
derive the propagation delay with respect to continuously 
distributed charges is inherited with a serious mathematical 
error [9]. The fundamental error, being replicated by 
Feynman [10] is that the charges are being counted twice, 
since the infinitesimal analysis of the electric currents, being 
regarded as continuously distributed charges, has been done 
erroneously. Also Wesley criticizes the method being used 
[11]. Wesley is attacking the analysis by Liénard and 
Wiechert for introducing a dependence of the retarded 
distance to a source point of action by the retarded time, but 
that criticism has been rejected due to mathematical 
deficiencies in his interpretation [12]. Leaving all these 
misinterpretations behind, the benefit of the new Coulomb 
law theory as interpreted by Jonson [8] is that it is also able to 
account for the longitudinal forces between collinear currents, 
which the Lorentz theory cannot. This disability to do both 
has impelled Graneau to try a compromise, in that he assumes 
the separate existence of both Lorentz forces and another 
longitudinal force that he calls ‘mechanical force’ [13]. The 
benefit of this approach is that he recognizes the possibility 
that there exists another force that cannot be understood 
within the realm of Lorentz’ force law. However, it doesn’t 
answer any questions. It is more a temporary, practical 
solution, waiting still for the explanation. 

Graneau is speaking of a so-called “Ampere-Neumann 
electrodynamics” [1], though causing disagreement among 
others [14]. Making reference to the case of ruptures of wires, 
Lukyanov and Molokov claim that, contrary to Graneau, the 
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induced flexural vibrations are strong enough to lead to the 
breaking of the wire. Instead of taking part for either of the 
different opinions on that specific issue, it could now be 
appropriate to turn to what Neumann himself is writing. He is 
namely the scientist, who is main responsible for the birth of 
the concept “Ampere-Neumann electrodynamics”. In spite of 
that, Neumann [15] is also raising questions concerning the 
experimental basis behind the construction of Ampère’s law. 
He says that there aren’t any, but he accepts the situation, that 
Ampère’s law has once been defined, and he makes an effort 
to prove that the electromotive force attained due to Lenz’ 
law satisfies Ampère’s law. This, as well as Maxwell’s own 
expression of admiration for Ampère’s law, without giving 
any proofs supporting the statement [2], point to what seems 
to be a very high level of authority of Ampère at the time. 
That makes it increasingly interesting to analyze the 
arguments of Neumann 

Neumann makes an ad-hoc definition of the electromotive 
force (EMF) that he claims arises due to Lenz’s law [16], 
using his own description. To be mentioned is that Neumann 
only analyzes one of the three cases of induction that Faraday 
defines, that in which there is a relative movement between a 
primary circuit carrying a current and a secondary loop [17], 
[18]. Fig. 1 is illustrating the situation, how Neumann thinks 
that a primary circuit affects a secondary circuit, giving rise 
to an electromotive force (emf). 

 
Fig. 1. Induction in a moving secondary circuit due to a primary circuit. 

 

II. A CLOSER LOOK AT THE NEUMANN METHOD WITH 
RESPECT TO AMPÈRE’S LAW 

Neumann begins his analysis by making reference to 
Lenz´s law [16], without making any precise reference. He 
just says that the expression for induction is  

 
DsvCDsE .. ε−=                               (1) 

 
Please note the way Neumann indicates multiplication, 

through a dot at the bottom of the row.  
However, he does not prove, how he attains the formula, 

maybe regarding it as self-evident, which is a fundamental 
problem if intending to verify the steps in the derivation of 
the force that he performs. Anyway, Lenz does not define this 
formula. Instead, he is only speaking of the direction the 
induced current of a secondary circuit will have with respect 
to the inducing current of a primary circuit [19]. Here 
Neumann also commits a fatal error, in that he confuses the 
electromotive force with a mechanical force, which becomes 

evident through the definition of the variable C  as a 
mechanical force [16]. It becomes evident from the steps that 
follow. A citation makes this very clear: “We think of the 
arisen electromotive force as an accompanied result of the 
voltage that induction has given rise to.” [20] Yet, the left 
hand expression of the equality has voltage/length unit as the 
variable, whereas the right hand expression has the 
electromotive force in the sense ‘mechanical force’. However, 
the following expression for Lenz’s law was found in a basic 
course book on electromagnetism [21]: 
 

t
E

∂
Φ∂−=                                 (2) 

 
This indicates some of the confusion that reigns in 

connection with electromagnetic induction. Lenz’ law is 
namely speaking of the direction of the induced current, not 
giving any expression for that [19]. 
 

ds
dU                            (3) 

 
When defining the induced electromotive force (emf), he 

uses emf per unit length, which is equivalent to speaking of 
the electric field. Accordingly, he writes thereby defining the 
induced voltage with opposite direction as the emf. 

 

EDsDs
ds
dU =−                     (4) 

 
Here it again becomes evident that Neumann believes that 

the electromotive force (emf) is a mechanical force, though 
being a consequence of the voltage [22]. This is however not 
true, which already a rudimentary dimensional analysis 
reveals:  

 
)()()( tIVDimtPDimFDim ••=•=         (5) 

 
The electromotive force E above on the contrary has the 

dimension voltage/length 
He thereafter derives the current, calling it ‘flowing charge 

amount’, by multiplying the left hand expression of (4) with 
the cross section q and the conductivity k , thus attaining 

 

qkE
ds
dUqk =−                         (6) 

 
which in turn is equal to the current that flows through the 
cross section.  

In fact, this nothing short of than Ohm’s law, i.e. a linear 
relationship between current and voltage, based on the 
conductivity, i.e. the inverse resistivity, involving no phase 
shift. This, however, must strongly be opposed, since it is 
usually supposed to be a 90 degrees phase shift between 
current and voltage in the case of induction.  

One may as well use the letter I in order to express current, 
which is commonplace today:  
 

ds
duqkI −=                              (7) 
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jqI =                         (8) 
 

Thereafter, he introduces another voltage, also this one as a 
function of time and space, using instead lowercase. He 
namely claims that there already exists a voltage in the 
secondary circuit. This is the reason for having a voltage 
source applied to the secondary circuit in the figure. Using 
still the same interpretation of Ohm’s law as in connection 
with (5), accordingly the current is in this case being written  
 

ds
duqk− .                        (9)  

  
In this connection it appears that Neumann apparently 

assumes that there already is a voltage u along the secondary 
circuit, independent of induction [22], whereas Faraday is 
only speaking of one voltage along the secondary circuit, one 
that dies out if there is no relative motion between the circuits 
[17]. 

Neumann now claims that he now claims the voltage 
increases with the amount due to the current that flows 
through the secondary circuit thanks to the voltage u
 along the part Ds of the conductor with the induced 
current and voltage. It is a peculiar result, additionally 
dimensionally wrong if it should equal u as he claims. If 
namely differentiating the current (expressed by him as a 
‘flowing amount of charges’) with respect to an incremental 
length element, it is impossible to attain a voltage increase. 

 

Ds
ds

udqk 2

2
                    (10) 

 
He now suddenly claims, though not expressing that very 

clearly that in the case there is no current that has been 
inferred through electromagnetic induction to the secondary 
circuit from the primary one the voltage along the secondary 
circuit will change with time according to the differential 
equation. 
 

2

2

ds
udk

dt
du =                  (11)  

    
Having precisely discussed that this result is due to the lack 

of induced current, he immediately begins speaking of ‘the 
inferred (necessarily meaning induced) current’ 
 

qkEI =               (12) 
 
which he claims is now increasing the increase in electric 
voltage with  

Ds
ds
dEqk−                             (13) 

(Apparently he is only meaning a first order ‘increase’ and 
with respect, which can be inferred from below). What he 
now does is extremely illogical: he uses the expression due to 
the case ‘no inferred current’ to the expression due to the case 
‘inferred current’, attaining  

}{ 2

2

ds
dE

ds
udk

dt
du −=                      (14) 

However, he just continues; by analyzing the movement of 
the conductor carrying the induced current, he arrives at an 
expression for the angular momentum, which has been 
possible to him by understanding the emf as a mechanical 
force, otherwise it wouldn’t have been possible. 

Since Neumann is assuming that the electromotive force is 
related to the voltage as appears from (4) above, by 
integrating 

ds
dU  along the whole secondary circuit, and 

dividing by the resistance, he arrives at an expression for the 
induced current 
 

∫−= vCDsI 'εε                 (15) 

 
Again the problem becomes evident that Neumann 

assumes a linear, phase-free relationship between current and 
voltage i1n the case of induction. Behind is the vague 
formulation earlier in the article by Neumann [16] that the 
emf is varying slowly, which allows Ohm’s law to be used. 

Anyhow, Neumann thereafter is deriving the ‘effect’ 
(German: Wirkung) that the current has during the 
incremental time interval dt, denoting this the ‘differential 
current’ [23]: 
 

∫−= vCDsdtD 'εε                                  (16) 

 
During the time interval between 0t and 1t the current will 

be denoted ‘integral current’: 
 

∫∫−= vCDsdtJ
t

t

1

0

'εε                     (17) 

 
A comment: Neumann uses another sign for the integral 

without defined boarders in the above expressions, a kind of 
uppercase bold S, meaning an integral along the whole 
secondary circuit. The effort is here to keep as close as 
possible to the original text, even though one would prefer 
writing in another way. 

Choosing the expression for the ‘integral current’, 
Neumann now is able to return to the mechanical force 
exerted by the primary circuit on the secondary by regarding 
the part of the expression that is equivalent to the emf, that is 
by multiplying with the resistance (or, equivalently by 
removing the inverse resistance 'ε ). He is also transforming 
from velocity to linear displacement by defining  
 

dt
dwv =                                    (18)  

 
so that one may rewrite the integral current as 
 

∫∫−= CdwDsJ
w

w

1

0

'εε                      (19)  

Neumann now is regarding the term CdwDsε as the 
virtual angular momentum, which is possible if recognizing 
the product containing a distance and a force and a direction 
dependent factorC . 
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He thereafter derives a result, though not describing the 
steps that the loss of living force during the movement of the 
secondary circuit from 0w to 1w  under the influence of the 
inducing current of the primary circuit will be: 
 

∫ ∫⋅
1

0

2)('2
t

t

vCDsdtεε                         (20)  

 
A closer analysis of this expression reveals that it 

resembles an expression for the work that the electric effect 
being integrated during the studied time interval, provided 
the current of the secondary circuit could be expressed 
according to (12) and (17), even though the constant factor 

ε2  raises questions. However, Neumann does not follow 
this track. Instead he returns to the analysis of the ‘differential 
current’ and ‘integral current’. The way that Neumann has 
derived the secondary current is already being questioned 
earlier in this paper. Anyhow, Neumann continues, regarding 
now the secondary circuit as being at rest, arrives at a result 
for the ‘integral current’ and ‘differential current’ that the 
primary circuit induces in the secondary one. His intention 
appears to be to show that the magnitude of the induced 
current does not depend on, which one of the primary circuit 
and the secondary circuit is regarded to be at rest with respect 
to the other, and he is successful to this extent [24]. He gives 
the re-defined currents prime signs. He arrives at the result 
[25]:  
 

οζηξεε ddZdYdXJ ss

w

w
s }{''

1

0

++−= ∫∑             (21) 

 
where ζηξ ,, are the orthogonal projections of w  and

σσσ DZDYDX sss ,,  are the orthogonal components of the 
force that the secondary circuit(regarded to be at rest) s is 
exerting on σD . 

In fact this expression is nothing short of the earlier 
expression that he arrived at by using the original description 
of movement [26]. 

Neumann continues, making reference to Ampère’s law, 
the force between the currents of respective primary and 
secondary according to Ampère.  
Neumann writes [25]:  
 

}
2
1{

2

2 σσ D
Dr

Ds
Dr

DsD
rDr

r
jR ⋅−=                           (22) 

 
where R denotes the action exerted from one current element 
to the other, assuming a unit current at the secondary circuit  

Ampère himself writes it in the following way [27]: 
describing thus the force between two current elements,  
Later on he arrives at n=2 and k= - ½ (The equality added by 
this author for readability reasons). 

 
2' ' ( )

' 'A n

ii dsds d r dr drR r k
r dsds ds ds

= − + ⋅             (23) 

 
Hence, Neumann just writes the law, using other symbols. 

Thereafter he is differentiating Ampère’s law and succeeds in 

showing that the ‘integral current’ and the differential current’ 
may be written in terms of Ampère’s law [28]: 
 

∫∑∫−=
1

0

''
r

r

RdrDsDJ σεε                 (24) 

 
Hereby he has succeeded in creating a nominal link 

between his analysis of electromagnetic induction and 
Ampère’s law. Ampère’s law doesn’t involve any velocity 
term, whereas induction does. Neumann succeeds in 
eliminating this problem by instead regarding the 
displacement that takes place during a time interval. 

The fundamental argument against Neumann’s derivation 
is, however, the illogical introduction of a mechanical force, 
where such a one does not exist. 

Therefore, there is an urgent need for alternative 
explanation to electromagnetic induction. 

 

III. AN ALTERNATIVE MODEL EXPLAINING 
ELECTROMAGNETIC INDUCTION 

Jonson has attained a more simplistic model capable of 
explaining electromagnetic induction. It is based on the usage 
of the Continuity Equation for Electric Charge Density and 
Current Density [29] and the expression for the electric 
displacement, assuming no polarization [30]. Further, Jonson 
has developed a new theory for electromagnetism, without 
introducing specific magnetic fields [8]. This altogether leads 

to the following equation (without the H×∇ term that is 
usually being used in the law that Jackson is calling 
Ampère’s law [31], not to be confused with Ampère’s (force) 
law treated in section II earlier in this paper) [27]  
 

t
Di

∂
∂−=                                  (25) 

 
Or, if one prefers to use currents and voltages: 

 

t
VCI

∂
∂⋅−=                                      (26) 

 
This usually applies to capacitors, but inevitably this term 

has the dimension ‘capacitance’ even if one is dealing with 
induced currents. It may best be treated as a coupling constant 
in that case. It has been shown elsewhere [6], [7], [12] that 
this analysis applies to the induction of a current in a 
secondary circuit. 

The basic assumption is that the AC voltage which is built 
up along a primary coil winding exists also in its vicinity and 
if a secondary coil winding is being situated there, it will give 
rise to an induced secondary current according to (26). This 
discovery was made in connection with related discoveries 
that revealed that there are no magnetic fields, only electric 
Coulomb fields [8] and, hence induction must be given a new 
explanation, omitting magnetic fields. Simultaneously, it was 
also found that the traditional interpretation of induction 
implies a phase error in measuring the voltage of the 
secondary circuit, whereas the new model succeeds in this 
respect [6], [12]. 
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IV. CONCLUSIONS  
After having given a review over an ensemble of often 

disparate assumptions, fallaciously performed mathematical 
proofs, arguments not supported by mathematical statements 
etc., the focus of the paper has been entered, to analyze 
Neumann’s work on electromagnetic induction and his effort 
to make it to appear to be consistent with Ampère’s law. He 
begins the derivation by defining Lenz’ law, but he doesn’t 
explain how he has attained it. One use to call this an ‘ad-hoc 
definition’. Thereafter, he states that the electromotive force 
(emf) is a mechanical force, caused by the induced voltage, 
without telling how this occurs. Then he states there exist is 
two voltages in the secondary circuit, one being there 
independently of induction, the other caused by induction. He 
arrives at a differential equation for the first voltage of the 
two mentioned. A voltage increase and a differential equation 
that he arrives at are not being satisfactorily explained.  

Most interesting is to follow his efforts to use his 
derivation of the induced current of the secondary circuit to 
connect to Ampère’s law, since here the roots behind the term 
Neumann-Ampère electrodynamics are to be found. At first 
must be stated that already his assumption that he may use 
Ohm’s law in the case of slowly varying currents is contrary 
to experience, since the very phenomenon of electromagnetic 
induction is based on the change with time pf the inducing 
current. Secondly, he thinks of a mechanical force coupling 
in the expression for the secondary currents, which is also 
false. Nonetheless, this is the basis for his effort to align the 
law of electromagnetic induction with Ampère’s law. To 
conclude, what Neumann is stating concerning 
electromagnetic induction is to most parts wrong.  

Instead, the method being introduced by Jonson is to be 
preferred. It is based on Coulomb’s law, deepening only the 
analysis of propagation delay, applying thus the self-evident 
continuity Equation of Electric Charges. Due to the 
simplicity of Coulomb’s law in its easiest interpretations and 
its well-verified facts concerning the forces between static 
electric charges it must basically be more reliable if 
succeeding in deducing consequences for more complicated 
cases than electrostatics. A much easier and simultaneously 
more comprehensive way to explain electromagnetic 
induction, using carefully explained steps in the derivation, 
has already been given by Jonson.   

APPENDIX 
Variables used by Neumann: 
E  induced electromotive force (emf) per unit length 
Ds  infinitesimal element of the secondary circuit 
ds  infinitesimal element of the secondary circuit, used in 

the case of differentiation 
σD  infinitesimal element of the primary circuit 

ε  a constant factor 
'ε  inverse resistance of the secondary circuit 

v  velocity of the conductor carrying the induced current 
w  linear displacement of the secondary circuit 
q  cross section 

C  the force that the inducing circuit exerts on the 
conductor carrying the induced current, dependent of 
the direction, though not expressed how by Neumann 

U  induced voltage in the secondary circuit 
k  conductivity of the secondary circuit 
I  induced current through the secondary circuit (this 

variable introduced by the author) 
j  current density circuit (this variable introduced by the 

author) 
D  induced differential current of the secondary circuit 

'D  induced differential current of the secondary circuit, 
new view of the relative movement between the 
circuits 

J  induced integral current of the secondary circuit 
'J  induced integral current of the secondary circuit, new 

view of the relative movement between the circuits
ζηξ ,, the orthogonal projections of w

σσσ DZDYDX sss ,,  the orthogonal components of the 
force that the secondary circuit(regarded to be at rest) 
s is exerting on σD . 

indI  inducing current of the primary circuit (this variable 
introduced by the author) 

R  the action exerted from one current of magnitude 1 A 
to the other  

Variables used by Ampère: 
i  primary current 
'i  secondary current 

ds  infinitesimal element of the secondary circuit, 
definition by Ampère [27]  

'ds  infinitesimal element of the primary circuit, definition 
by Ampère [27]  

r  distance between two current elements 
n  the power of r 
k  a constant factor 
 the action exerted from one current element of 

magnitude 1 A to the other (the variable applied also 
on Ampère’s expressions) 

AR  the action exerted from one current element ds to 

another 'ds (the variable AR invented by this author 
in order to attain an equality) 

A. Variables from other sources 
E in (2): electromotive force as interpreted by iHallén 

[21]  
Φ  magnetic flux as interpreted by Hallén [21] 
t  time 
F  force (this variable introduced by the author) 
P  electric effect (this variable introduced by the author) 
V  voltage (this variable introduced by the author) 
i  current density of the secondary circuit 
D  electric displacement field 
C  capacitance 
H  magnetic field 
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