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A Note on Two Point Taylor Expansion III

Kazuaki Kitahara and Taka-Aki Okuno

Abstract—If a function is analytic on an interval, then the
function is expressed as the Taylor expansion about a point in
the interval. Furthermore, possibility of Taylor expansions of
functions about two or three points has also been studying as
useful expressionsin several fields of mathematical sciences. In
this paper, we show the following main result by estimating
values of divided differences: Let f be a piecewise polynomial
continuous function such that f is a polynomial p on the
interval [1/3,%) and f is a polynomial g on the interval
(—0,1/3]. Then, we show that f is expressed as the two point
Taylor expansion about —1,1 with the multiplicity weight
(2,1) on the interval (a,B), where a is the solution of (x +
1)2(x — 1) = —32/27 with @ < —1 and g is the solution of
(x+1)%(x — 1) = 32/27 with g > 1.

Index Terms—Polynomial interpolation, Hermite
interpolation, Taylor expansion, two point taylor expansion.

I. INTRODUCTION

As is well known, polynomial approximation has a long
history and has established the foundation of approximation
theory. In particular, interpolations by polynomials play a
very important part of polynomial approximation. Before
stating the purpose of this note, we briefly review Hermite
interpolation by polynomials.

Let A be an infinite subset of the real line R and let f be a
real-valued function on A. For any given (n + 1) distinct
points X: xg, -**, x,, in the interior of A and for any sequence
of positive integers kgy,---,k, , if f is sufficiently
differentiable at x,,---,x, , then there exists a unique
approximating polynomial ps x(k,,...k,) (%) to f which is of
degree at most m(= ko + -+ + k,, — 1) such that

Pty ) = fP ), 0<i<n0<j<k—1 (1)

The points xo, -+, X, and the polynomial ps x(k, ..k, are
called nodes and the Hermite interpolating polynomial to f
at xg, -+, xn with multiplicities kg, -+, k,, respectively. We
well know that for one node X: x, with multiplicity n, the
Hermite interpolating polynomial pf, x(y) to f is the Taylor
polynomial of f about x,, that is,

P @ = £ + 1o (e — )
f(n_l) () n1
+---+m(x—xo) . (2)

Furthermore, if f is infinitely differentiable at x, and if
there exists a positive number p such that
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f(x) = lim pgym)(x) forall x
n—-oo
€ (xo —p, X0 + p),
3)
Then f has the Taylor expansion of f about x, on (x, —
p,xo + p). Hence, we make the following definition.
Definition 1. Let f be a real-valued function on a subset A
of the real line R. If there exist a list X consisting of m
distinct nodes X, **-, X, in the interior of A and positive
integers wy, -*+, Wy, such that f is infinitely differentiable
at xg, '+, xXym_1 and then it is said that f has the m point
Taylor expansion about xy,+,Xy,_q with the multiplicity
weight (W, -+, Wy_1) on A.

}Lg{)lo Pr x(won, - wip—1n) () =fC)
forall x € A, 4)

The notion of two point or m point Taylor expansion is not
new. One can see some representations of ps y(n,...n) (%) in
Davis [1] and the theory of m point Taylor expansion in the
complex plane in Walsh [2]. Loépez and Temme [3], [4] stated
how m point Taylor expansion in the complex plane can be
used in deriving uniform asymptotic expansions of contour

integrals of the form I(4; a) = [ c g(2)e M@V dz, where a

is a vector of parameters and the phase function f(z, @) has

finite saddle points. Our first contact with two point Taylor
1

expansion starts with Runge example: Let f(x) =

1+25x2”°
x € [-1,1]. Let Xp:x=-1,x"™=-1+
1 M) _

- ,---,xr(l") =0,,x,’ =1,n€EN be the system of
equally spaced nodes and let Pry (x), n €N be the
polynomials of degree at most 2n which interpolates the
function f at nodes in X,. Then, it is well known that
mn_m”f—Pf_Xn”w: 4+, where |||, denotes the

supremum norm on C[—1,1]. On the other hand, if we take

the list of two nodes X : then we already know that

_1r 1
V2’2’
limn_,w”f _Pf'x(n'n)”w = 0. Because, for an analytic
function g(x) on [—1,1] and for a list of nodes X :
Xg, X1, **, Xn in [—1,1] it holds that for each x € [—1,1],

L GGy
2mi *C (z—x)(z—xq) - (z—xn)

9(x) = Py x(x) = f@dz, (5)

where C is a simple, closed, rectifiable curve of C whose
interior C! contains [—1,1] and g is regular on C U C* (see
p.165 in Mori [5]). Indeed, if we take the list of nodes X:

11 ! e
V2’2 1+25x2’

[—1,1] and if we take a simple, closed, rectifiable curve C
such that C! contains [—1,1] and fis regular on C U C%, then
from (5), it holds that

and consider Py for f(x)=
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)

“ea())

fx) - Pf,X(n,n) x) = i

n f(Z)dZ!

x € [—-1,1].
Hence, if we consider a simple, closed, rectifiable curve C

such that |z2 — 1| > l,z € C and the poles +2of L 5
2 2 5 1+25z

are
not contained in C!, since we see that

1

2

—2| <1, x€[-11], z€C,
22 1
2

We
[—1,1].

Hence, we are much interested in a problem: what
functions on [—1,1] have m point Taylor expansions.
Kitahara, Chiyonobu and Tsukamoto [6] and Kitahara,
Yamada and Fujiwara [7] studied two point Taylor expansion
of spline functions on R with one knot, which are not always
continuous at the knot. In [6], the following result was
shown:

Theorem 1. Let f be a function on R, which is expressed
as

obtain  f(x) = Prxnn(x) > 0(n > ), x €

p(x) x €[0,)
q(x) x€(=,0)’

where p and q are polynomials of degree at most n. Let
P,,¢ € N be the Hermite interpolating polynomials to f at
—1, 1 with multiplicities £, £. Then, the following assertions
hold:

f has the two point Taylor expansion about —1,1 with

multiplicity weight (1, 1) on (—\/7, 0) U (0, \/7), that is,

fe =| (©)

lim P,(x) = f(x) forallx € (=v2,0) u (0,v2) (7)

Moreover, if p(0) = q(—0), then f has the two point
Taylor expansion about —1, 1 with multiplicity weight (1, 1)
on (—\/7, \/E), that is,

lim Py(x) = f(x) forallx € (—V2,v2). (8

In this note, we will show the following result of two point
Taylor expansions which is related to Theorem 1.

Theorem 2. Let f be a function on R, which is expressed
as

o xefio)
q(x) x€ ( 1)

_w’ —_—
3

where p and q are polynomials of degree at most n. Let
Q. ,? € N be the Hermite interpolating polynomials to f at
—1,1 with multiplicities 2¢, €. Let a be the real number with
a<-1and (a +1)?(a—1) =—32/27 and B the real
number with 8 > 1 and (B + 1)2(8 — 1) = 32/27. Then,
the following assertions hold:

f has the two point Taylor expansion about —1, 1 with the
multiplicity weight (2,1) on (a,1/3) U (1/3, B) that s,

f&) = ©)

}1_)1210 Q,(x) =f(x) forallx e (aé) U (%,B) . (10)
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Moreover, if p(1/3) = q(1/3 — 0), then f has the two
point Taylor expansion about —1,1 with the multiplicity
weight (2, 1) on (a, ), that is,

{!1_}123 Qe(x) = f(x) forallx € (a,pB). (11

II. PRELIMINARIES

We review some well known results and a definition which
are related to Hermite interpolating polynomials.

Proposition 3. (see p. 365 in Kincaid and Cheney [8]) Let
X9 £ x1 < -+ < x, be a list of nodes. In the list of nodes,
only distinct nodes z,,-:+,z, appear and each node z;,i =
0,---,r is just appeared k; times. Let f be sufficiently
differentiable at zy,---,z,. Then, there exists a unique
polynomial p of degree at most n satisfying that

pP(z) = fP(z),

In Proposition 3, each positive integer k;,i = 0,---,7 is
called the multiplicity at x;. Divided differences of functions
can be defined from this proposition.

Definition 2. Let xy < x; < -+ < x,, be a list of nodes and
let f be sufficiently differentiable at x, ---, x,,. Then we call
the coefficient of x™ of the polynomial p with the property
(12) stated above the n-th order divided difference of f at
Xo,**, X, and denote its n-th order divided difference by
f[xo' T xn]'

By Definition 2, it is easily seen that the divided difference
flxo] of a function f at a point x, is equal to f(x,). We have
the recursive formula to calculate divided differences of
functions.

Proposition 4. (see p. 372 in Kincaid and Cheney [8]) Let
X9 < x1 < -+ < x,, be alist of nodes and let f be sufficiently
differentiable at x, ---, x,,. Then the divided differences obey
this recursive formula:

i=0,,1j=0,k—1(12)

f[xOJ 'xn]
f[xp“':xng]c __f)[cxo,"‘,xn—l] (%o # %)
) F™ () C .
%) (xo = xn)
n.

If data points (xi, f (xi)),i =0,:-,n are given, then we
can construct the following divided difference table
T¢[xo,*, x,] from them. By Proposition 4, the (i + 1)-th
order divided differences in the table are calculated from the
i-th order divided differences.

Xo flxo]
flxo, x1]
X1 flx]
flxy, %]
X2 flxz]
: : f[xOI 'xn]
Xn—z  flxn-2l
f[xn—ern—l]
Xno1 flxn—4]
flxn-1, %4l

Divided Difference Table T¢[xg, -, ]
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In the divided difference table stated above, we call the
column vector consisting of the i-th order divided differences
the i-th order column for convenience.

Notation. Let x, < x; < -+ < x,, be a list of nodes and let
f be sufficiently differentiable at xg,-,x,. In the list of
nodes, only distinct points z,-:+, z, appear and each point
z;,i =0,---,7 is just appeared k; times. To make sure of
multiplicities, we express for the divided difference
flxo,++, %,]. And the divided difference table Ty [x,, -+, x,]
is also denoted by T¢[zy, *+, Z; ko, -+, Ky .

f[ZO' 2y kO! '"!kr]

The following proposition is a basic statement, but it is a
key result to prove our theorems.

Proposition 5. Let (a <)xg < x; < - <x,(<b) be a
list of nodes and let f be a real-valued function on an interval
[a, b] which is sufficiently differentiable at xg, -+, x,,. Ifp is
the Hermite interpolating polynomial to f at x,, -+, X,,, then
for each x € [a, b]

f) —px)
= f[xtx0t"'!xn](x - xo)(x - xl) (X - xn) (14)

III. PROOF OF THEOREM 2

Now we are in position to prove Theorem 2.

Proof. Let Q,¢€N be the Hermite interpolating
polynomials to f at —1,1 with multiplicities 2¢, €. For any
given t € (a, ), from Proposition 5 we have

IF () = Q)] = |f-1,¢,1; 26,1, £](¢ + D*(t — 1)
= |f[-1,t,1;2¢,1,€]| - |(t + D?(t — D|*. (15)

Since supee(epl(t + D2t -1 = %, it is sufficient to

show that

lim |f[ 1t1'2€1£’]|<32)€—0 (16)
[Lrl;f IR ] » L 27 -

We prove (16) for the caset € (a, %) Because, the other
cases t = % (if f is continuous at = i) orte G, B), we can

show (16) in an analogous way to the case t € (a, %)
Now we give an estimation |f[—1,t,1;2¢1,¢]| for
te (a, é) and much larger € than n. Let us see the part of

Tr[—1,t,1; 2¢,1,(] from the 0-th column to the (n + 1)-th
column.

-1 q(-1) fl=1;n+2]
: ; fl=t;n+2]
-1 q(-1) fl-1,t;n+ 1,1]
t q(t) :
1 p(1) flt,;1,n+1]
: : fln+2]
1 p(1) flLn+2]
nodes the 0-th column the (n + 1)-th column

Since p(x) and q(x) are polynomials of degree at most n,

289

we easily have

f[—l:n+2]=%=o 17)
f[1;n+2]=p((n%l)1()t!)=o (18)
Furthermore, we have
fl-1,tn+11]
= (H—ll)m{q(t) - ;@(t + 1)1'] (19)
flt, 1;1,n+1]

1 (1 .
=m{q(t)—zp l.!( )(t—l)‘} (20)
i=0

Nothing that p(x) and q(x) are polynomials of degree at
most n, we get

t)—q(t
firbme Ly zq(il—&&L o @
And
f[t,1;1,n+1]=%_ o

By (17), (18) and (21), the part of T¢[—1,t,1;2(,1,(]
from the 0-th column to the (n + 1)-th column is as follows:

-1 q(-1) 0
: : 0

-1 q(=1) fl-1t,5n,1,1]
t q(t) :
1 (D) flt, L, 1,n+1]
: : 0
1 r(1) 0

nodes the 0-th column the (n + 1)-th column

In order to give an estimation of |f[—1,¢,1;2¢,1,£]|, we
put two positive numbers

L 1

M = ii%??fnlf[_l’t’l'n —L,Li+1]|r:= i—¢

We write @ < b for any column vector @ = (a;)1<i<s, b =

(b)1<i<s € R® such that a; < b;,i = 1,-++,s. For any column

vector a € R®, let a(k) be the column vector in R® such that

the k-th element is equal to aj, and the other elements are
equal to 0, and put @ = (|a;])1<i<s-

— (,
Let a, = (ai )151,53[_“1,71 + 1<k <3¢ be the k-th
column of T¢[—1,t,1;2¢(,1,¢] and we define the column

vectors by = (bi(k))lsis3€—k+1’n + 1 < k < 3¢ as follows:

First, we set the column vector b,,,; = (bi(n+1))
R3™™ such that

b(n+1)={0 1<i<2l—n20+2<i<3f—n
i M otherwise.

1<i<3{-n

(23)

For each k,n+2 <k <+¥, we put the column vector
b, = (bi(k))1<i<3€—k+1 € R+ gatisfying that
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rk=(+) . m i=2¢+1
k - -
b0 = p*D 4 p*-D , (24)
- otherwise.
Furthermore, we set the column vectors b, =

() (—k
(b; )1Si53[_k+1 € R ¢+ 1 < k < 3¢ such that

p =)

(k=1)
po _ biss ~ +b;
l

> 1<i<3f—k+1.(25)

)

Then, we easily see that @,,,; < b,,1. And we observe
that @, < by, n+ 2 < k < 3¢. Because, for each k,n + 2 <

k<ta=(al) __, .. €R¥ ¥ 7 isobtained by

(1) -} Df[E 1,1,n+1] i=20+1
(k) — ) (k-1) (k—1) 26
a; al -4 (26)
' i+l 5 L otherwise

And for eachk,?+ 1<k <3,a;, = (al.(k))1<i<3{)_k+1 €

R3t7F+1 s got from
(=) _ (e=1)
a. —a:
al) = 1 ——,  1<i<3f-k+1 27)

In particular, we have @3, = |f[—1,t,1; 24, 1,£]| < bg,.
To evaluate bs, let wy, be a linear map from R™(m = 2)
to R™ ™! such that for all ¢ = (¢;)1<j<m € R™

Ci t Citq
2

(Wm(c))i = =1,--,m—-1. (28)

)

And let us consider the real-valued function ¢ on R™
which is defined by

o) =wyowgo-ow,(c) forallce R*.  (29)

If egf) = (a;) € R¥ denotes the column vector such that

a,, = 1 and a; = 0 otherwise, from the definition of b;, and
the linearity of ¢, we have

bs; = @(bnyq) + §0(bn+2(21€ + 1)) + ot Qﬂ(bf(Z{) + 1))
= @(bps120 —n+1) + -+ by (20 + 1))
+ @(bny2(2¢+ 1)) + -+ (b2 + 1))

=M {‘P (efef}rﬂ) +o (eéi"_;’fz) ot (e%]n)

)}

+ Mo (e5y ) + 1Mo (57 ) + -
+ r{’—n—lM(p (852{?11))
=A+B, (30)
where
a=m{p(e5m) + o (e5,) + -+ o (7)) B
=rMe (eg,ﬂ_ln_l)) +7r2Me (egﬁ_l”_z))
+ cee
+ 70 Mo (). (31)

For any nonnegative integer m,k with m >k , (T,?)
denotes the binomial coefficient, that is,
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m!
Tk m-k)r

m
k

(i)

By using Pascal’s triangle, since it hold that for all positive
integers s, t with s > t, we have

(
34—(n+1)

Z(;(f—(i+1)

(n+1) (Sf)

1
25—1

1
s—t

S —_—
-

27’l+1 . M
= 23¢

o(e (32)

A

)

2n+1 . M

And

3¥—(s+n+1)
'(f—(s+n+1))
(3{’—(n+3))+

)+2r t—(n+3)
_2"™M (30— (n+2) f—(n+2)
= T(f—(n+2)>{1+2r3{’—(n+2)
L -+ -+
"3 —(m+2) 30—mn+3)

£—(n+2) 1
—(n+2)
+ @20 30—mn+2) 20+ 1}'

s=

234’
_omy {(34—(£+2)
T "N\e-@m+2)

()

+4

(34)
Since

(35)
And

1 £-mn+2) £—(n+3)
3730-(m+t2) 3-m+3)

> (36)

2¢+1

£—(n+2)
3¢—(n+2)’

Putting R = 2r -

1.
Hence we have the following estimation of B:

we obtain (0 <)R < 2 %%

22 M (38 —(n+2) 5 P
- -(n+2)
B<—x r<f_(n+2)>{1+R+R +-+R }
_2™2-M (32— (n+2)\1—- R
725 "\e-m+2))” 1-R
<2"“-rM 1 (3#) 37)
1—R 23\7¢
By (33) and (37), we see that
b3€=A+B
2M2 .M 1 /3¢
n+1, I G
<{(n+1)2 M+ } ()
A (3¢
zﬁ(f’>’ (38)
2W2eM .
where A = (n + 1)2™1 - M + —— Since [(t + 1)2(t —



International Journal of Modeling and Optimization, Vol. 4, No. 4, August 2014

| < %, from (38), we obtain

If(®) = Q)| = If[-1,t,1;2¢,1,€]] - | (¢t + D*(t — DI’
A (3{’) (32)[ B /1( 4 )" (3{’) -

=23\ ¢) \27)  T\27) \¢ /) 39

By use of Starling formula, for any positive number p4, p,

with p; < 1 < p,, there exists a positive integer N satisfying
that

oz (5) <oz (V) ao

For all k = N. Hence, for any positive integer £ = N, it

holds that
(4){’ (3{’) B (4)*’ (30!
27) \¢) \27) ¢£1(20)!
3¢
( 4N\? poN2m -3¢ (3?{))
< JR—
pV2m - (E) spV2m - 24 (?)
_ (1)*.& i(ﬂ)’;p_z 3
27)  p?JAnt\ 4 p12 || 4t

(41)
This means that Q,(t) converges to f(t) as £ tends to
infinity.

Inthe case t € G, ,8), we have an estimation

1 22 M) 1 /3¢
b;, <{(n+1)2 'M+ﬁ ﬁ(f)’ (42)
where
M = ,nax Ifl-1,t1(n+1) —i1,i]]
"Tra
P _2{’—(n+2)
Tty

In the case t =§, Since p G) =q G) , we have an

(e)

estimation,

1

iy —
2n+ M 23{7

3¢

b3g<n ?

(43)

This completes the proof.

IV. CONCLUSIONS AND FUTURE WORK

Theorem 1 states that spline functions on (—\/E, \/E) with
one knot 0 have the two point Taylor expansions about —1, 1
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with the multiplicity weight (1, 1). Moreover, in this note, we
prove that spline functions on (&, 8) with one knot % possess

the two point Taylor expansions about —1,1 with the
multiplicity weight (2,1) . From these conclusions, we
observe that the position of one knot stated in Theorem 1 and
2 is closely related to the multiplicity weight. Hence, we give
problems which lead to a next step.

A. Problems

1) Find spline functions with one knot which have two
point Taylor expansions about —1,1 with the
multiplicity weight (m,n), where m,n are positive
integers.

2) Let us consider spline functions with one knot which

have two point Taylor expansions about —1, 1 with the
multiplicity weight (m,n). Then find relations between
the multiplicity weight and positions of one knot.
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