
  

  
Abstract—If a function is analytic on an interval, then the 

function is expressed as the Taylor expansion about a point in 
the interval. Furthermore, possibility of Taylor expansions of 
functions about two or three points has also been studying as 
useful expressions in several fields of mathematical sciences. In 
this paper, we show the following main result by estimating 
values of divided differences: Let ࢌ be a piecewise polynomial 
continuous function such that ࢌ  is a polynomial   on the 
interval ሾ ⁄ ,∞)  and ࢌ  is a polynomial   on the interval (െ∞,  ⁄ ሿ. Then, we show that ࢌ is expressed as the two point 
Taylor expansion about െ,   with the multiplicity weight (, ) on the interval (ࢻ, ࢻ where ,(ࢼ  is the solution of (࢞ )(࢞ െ ) ൌ െ ૠ⁄  with ࢻ ൏ െ1  and ࢼ  is the solution of (࢞  )(࢞ െ ) ൌ  ૠ⁄  with ࢼ  1. 
 

Index Terms—Polynomial interpolation, Hermite 
interpolation, Taylor expansion, two point taylor expansion. 
 

I. INTRODUCTION 
As is well known, polynomial approximation has a long 

history and has established the foundation of approximation 
theory. In particular, interpolations by polynomials play a 
very important part of polynomial approximation. Before 
stating the purpose of this note, we briefly review Hermite 
interpolation by polynomials. 

Let ܣ be an infinite subset of the real line R and let ݂ be a 
real-valued function on ܣ . For any given (݊  1)  distinct 
points ܺ: ⋯,ݔ ,  and for any sequence ܣ  in the interior ofݔ
of positive integers ݇,⋯ , ݇ , if ݂  is sufficiently 
differentiable at ݔ,⋯ , ݔ , then there exists a unique 
approximating polynomial ,(బ,⋯,)(ݔ) to ݂ which is of 
degree at most ݉(ൌ ݇ 	⋯ ݇ െ 1) such that 

(బ,⋯,)()  (ݔ) ൌ ݂()(ݔ), 0  ݅  ݊, 0  ݆  ݇ െ 1	 (1) 
 
The points ݔ,⋯ ,  ,(బ,⋯,) are  and the polynomialݔ

called nodes and the Hermite interpolating polynomial to ݂ 
at ݔ,⋯ , ݔ  with multiplicities ݇,⋯ , ݇ , respectively. We 
well know that for one node ܺ:  ݊, the	 with multiplicityݔ
Hermite interpolating polynomial ,			() to ݂ is the Taylor 
polynomial of ݂ about ݔ, that is,  

(ݔ),()  ൌ (ݔ)݂  ݂ᇱ(ݔ)1! ݔ) െ ) ⋯ݔ ݂(ିଵ)(ݔ)(݊ െ 1)! ݔ) െ  (2)																)ିଵ.ݔ
 

Furthermore, if ݂  is infinitely differentiable at ݔ  and if 
there exists a positive number ߩ such that 
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(ݔ)݂		 ൌ lim→ஶ,()(ݔ) 				for all ݔ∈ ݔ) െ ,ߩ ݔ   (3) 													,(ߩ
Then ݂ has the Taylor expansion of ݂ about ݔ  on (ݔ െߩ, ݔ   .Hence, we make the following definition .(ߩ
Definition 1. Let ݂ be a real-valued function on a subset ܣ 

of the real line R . If there exist a list ܺ  consisting of ݉ 
distinct nodes ݔ,⋯ ,  and positive ܣ ିଵ in the interior ofݔ
integers ݓ,⋯  ିଵ such that ݂ is infinitely differentiableݓ,
at ݔ,⋯ , ିଵݔ  and then it is said that ݂  has the ݉  point 
Taylor expansion about ݔ,⋯ , ିଵݔ  with the multiplicity 
weight (ݓ,⋯  .ܣ ିଵ) onݓ,

 lim→ஶ,(௪బ,⋯,௪షభ)(ݔ) ൌ  			(ݔ)݂
for all ݔ ∈  (4)																																	,ܣ

 
The notion of two point or ݉ point Taylor expansion is not 

new. One can see some representations of ,(,⋯,)(ݔ) in 
Davis [1] and the theory of ݉ point Taylor expansion in the 
complex plane in Walsh [2]. López and Temme [3], [4] stated 
how ݉ point Taylor expansion in the complex plane can be 
used in deriving uniform asymptotic expansions of contour 
integrals of the form ߣ)ܫ; (ߙ ൌ  ݖ݀ఒ(௭,)ି݁(ݖ)݃ , where ߙ 
is a vector of parameters and the phase function ݂(ݖ,  has (ߙ
finite saddle points. Our first contact with two point Taylor 
expansion starts with Runge example: Let ݂(ݔ) ൌ ଵଵାଶହ௫మ ݔ, ∈ ሾെ1,1ሿ.		 Let ܺ ∶ ()ݔ ൌ െ1	, ଵ()ݔ	 ൌ െ1 ଵ	,⋯ , ()ݔ ൌ 0	,⋯ , ଶ()ݔ	 ൌ 1	, ݊ ∈ N  be the system of 
equally spaced nodes and let ܲ,(ݔ), ݊ ∈ N  be the 
polynomials of degree at most 2n  which interpolates the 
function ݂  at nodes in ܺ୬ . Then, it is well known that lımതതതത→∞ฮ݂ െ ܲ,ฮ∞ ൌ ∞,		 where ‖∙‖∞ denotes the 
supremum norm on ܥሾെ1,1ሿ. On the other hand, if we take 
the list of two nodes ܺ ∶ െ ଵ√ଶ , ଵ√ଶ	, then we already know that lim→∞ฮ݂ െ ܲ,(,)ฮ∞ ൌ 0.	 Because, for an analytic 
function ݃(ݔ)  on ሾെ1,1ሿ  and for a list of nodes ܺ ,ݔ	∶ ⋯,ଵݔ , ݔ in ሾെ1,1ሿ it holds that for each	ݔ ∈ ሾെ1, 1ሿ	, 

 

(ݔ)݃	  െ ܲ,(ݔ) ൌ ଵଶగ  (௫ି௫బ)⋯(௫ି௫)(௭ି௫)(௭ି௫బ)⋯(௭ି௫)  (5)					,ݖ݀(ݖ)݂
 

where ܥ  is a simple, closed, rectifiable curve of ۱  whose 
interior ܥ  contains ሾെ1, 1ሿ and ݃ is regular on ܥ ∪ ܥ  (see 
p.165 in Mori	ሾ5ሿ). Indeed, if we take the list of nodes X: െ ଵ√ଶ , ଵ√ଶ  and consider ܲ,(,)	 for ݂(ݔ) ൌ ଵଵାଶହ௫మ , ݔ ∈ሾെ1,1ሿ and if we take a simple, closed, rectifiable curve ܥ 
such that ܥ contains ሾെ1,1ሿ and ݂is regular on ܥ ∪  , thenܥ
from (5), it holds that  
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(ݔ)݂ െ ܲ,(,)(ݔ) ൌ ݅ߨ12 න ቀݔଶ െ 12ቁ(ݖ െ (ݔ ቀݖଶ െ 12ቁ  	,ݖ݀(ݖ)݂
ݔ ∈ ሾെ1,1ሿ. 

Hence, if we consider a simple, closed, rectifiable curve C 
such that ቚݖଶ െ ଵଶቚ  ଵଶ , ݖ ∈ and the poles േ ܥ ହ of ଵଵାଶହ௭మ are 
not contained in ܥ, since we see that 

 ቤ௫మି	భమ௭మି	భమቤ 	൏ ݔ			,1 ∈ ሾെ1,1ሿ, ݖ ∈  ,ܥ
We obtain (ݔ)݂	 െ ܲ,(,)(ݔ) → 0	(݊ → ∞), ݔ ∈ሾെ1,1ሿ	. 
Hence, we are much interested in a problem: what 

functions on ሾെ1, 1ሿ  have ݉  point Taylor expansions. 
Kitahara, Chiyonobu and Tsukamoto [6] and Kitahara, 
Yamada and Fujiwara [7] studied two point Taylor expansion 
of spline functions on R with one knot, which are not always 
continuous at the knot. In [6], the following result was 
shown: 

Theorem 1. Let ݂ be a function on R, which is expressed 
as ݂(ݔ) ൌ ൜(ݔ) ݔ ∈ ሾ0,∞)(ݔ)ݍ ݔ ∈ (െ∞, 0)		,																		(6) 
where   and q  are polynomials of degree at most ݊ . Let 
ℓܲ	, ℓ ∈ N be the Hermite interpolating polynomials to f at െ1, 1 with multiplicities ℓ, ℓ. Then, the following assertions 

hold: ݂  has the two point Taylor expansion about െ1, 1 with 
multiplicity weight (1, 1) on ൫െ√2, 0൯ ∪ ൫0, √2൯, that is, 

 limℓ→ஶ ℓܲ(ݔ) ൌ ݔ	all	for				(ݔ)݂ ∈ ൫െ√2, 0൯ ∪ ൫0, √2൯		(7) 
 
Moreover, if (0) ൌ (െ0)ݍ , then f  has the two point 

Taylor expansion about െ1, 1 with multiplicity weight (1, 1) 
on ൫െ√2, √2൯, that is, 

 	 limℓ→ஶ ℓܲ(ݔ) ൌ ݔ	all	for				(ݔ)݂ ∈ ൫െ√2, √2൯	.								(8) 
 
In this note, we will show the following result of two point 

Taylor expansions which is related to Theorem 1. 
Theorem 2. Let ݂ be a function on R, which is expressed 

as 

(ݔ)݂ ൌ ൞(ݔ) ݔ ∈ 13 ,∞൰(ݔ)ݍ ݔ ∈ ൬െ∞, 13൰																	(9) 
where   and ݍ  are polynomials of degree at most ݊ . Let ܳℓ	, ℓ ∈ N be the Hermite interpolating polynomials to ݂ at െ1, 1 with multiplicities 2ℓ, ℓ. Let ߙ be the real number with ߙ ൏ െ1  and (ߙ  1)ଶ(ߙ െ 1) ൌ െ32 27⁄  and ߚ  the real 
number with ߚ  1  and (ߚ  1)ଶ(ߚ െ 1) ൌ 32 27⁄ . Then, 
the following assertions hold: ݂ has the two point Taylor expansion about െ1, 1 with the 
multiplicity weight (2, 1) on (ߙ, 1 3⁄ ) ∪ (1 3⁄ , (ݔ)that is, limℓ→ஶܳℓ (ߚ ൌ ݔ	all	for				(ݔ)݂ ∈ ൬ߙ, 13൰ ∪ ൬13 ,  (10)				.	൰ߚ

Moreover, if 1) 3⁄ ) ൌ 1)ݍ 3⁄ െ 0), then ݂  has the two 
point Taylor expansion about െ1, 1  with the multiplicity 
weight (2, 1) on (ߙ, (ݔ)that is, limℓ→ஶܳℓ ,(ߚ ൌ ݔ	all	for				(ݔ)݂ ∈ ,ߙ)  (11)														.	(ߚ
 

II. PRELIMINARIES 
We review some well known results and a definition which 

are related to Hermite interpolating polynomials. 
Proposition 3. (see p. 365 in Kincaid and Cheney [8]) Let ݔ  ଵݔ  ⋯   , be a list of nodes. In the list of nodesݔ

only distinct nodes ݖ,⋯ , ݖ   appear and each node ݖ, ݅ ൌ0,⋯ , ݎ  is just appeared ݇  times. Let ݂  be sufficiently 
differentiable at ݖ,⋯ , ݖ . Then, there exists a unique 
polynomial  of degree at most n satisfying that 	()(ݖ) ൌ ݂()(ݖ), ݅ ൌ 0,⋯ , ,ݎ ݆ ൌ 0,⋯ , ݇ െ 1		(12) 

In Proposition 3, each positive integer ݇, ݅ ൌ 0,⋯ , ݎ  is 
called the multiplicity at ݔ. Divided differences of functions 
can be defined from this proposition.  

Definition 2. Let ݔ  ଵݔ  ⋯    be a list of nodes andݔ
let ݂ be sufficiently differentiable at ݔ,⋯ ,  . Then we callݔ
the coefficient of ݔ of the polynomial  with the property (12) stated above the ݊-th order divided difference of ݂ at ݔ,⋯ , ݔ  and denote its ݊ -th order divided difference by ݂ሾݔ,⋯ ,  .ሿݔ

By Definition 2, it is easily seen that the divided difference ݂ሾݔሿ of a function ݂ at a point ݔ is equal to ݂(ݔ). We have 
the recursive formula to calculate divided differences of 
functions.  

Proposition 4. (see p. 372 in Kincaid and Cheney [8]) Let ݔ  ଵݔ  ⋯    be a list of nodes and let ݂ be sufficientlyݔ
differentiable at ݔ,⋯ ,  . Then the divided differences obeyݔ
this recursive formula: ݂ሾݔ,⋯ ,  ሿݔ

ൌ ۔ۖەۖ
⋯,ଵݔሾ݂ۓ , ሿݔ െ ݂ሾݔ,⋯ , ݔିଵሿݔ െ ݔ ݔ)		 ് !݊(ݔ))݂()ݔ ݔ)																																									 ൌ (ݔ 								(13) 

If data points ൫ݔ, ,൯(ݔ)݂ ݅ ൌ 0,⋯ , ݊ are given, then we 
can construct the following divided difference table ܶሾݔ,⋯ , ݅) ሿ from them. By Proposition 4, theݔ  1)-th 
order divided differences in the table are calculated from the ݅-th order divided differences. ݔ ݂ሾݔሿ ݂ሾݔ, ଵݔଵሿݔ ݂ሾݔଵሿ ݂ሾݔଵ, ଶݔଶሿݔ ݂ሾݔଶሿ⋮ ⋮ ⋮ ⋯ ݂ሾݔ,⋯ , ିଶݔሿݔ ݂ሾݔିଶሿ ݂ሾݔିଶ, ିଵݔିଵሿݔ ݂ሾݔିଵሿ ݂ሾݔିଵ, ݔሿݔ ݂ሾݔሿ

		 

 
Divided Difference Table ܶሾݔ,⋯ ,  ሿݔ

288

International Journal of Modeling and Optimization, Vol. 4, No. 4, August 2014



  

In the divided difference table stated above, we call the 
column vector consisting of the ݅-th order divided differences 
the ݅-th order column for convenience. 

Notation. Let ݔ  ଵݔ  ⋯  ݂  be a list of nodes and letݔ  be sufficiently differentiable at ݔ,⋯ , ݔ . In the list of 
nodes, only distinct points ݖ,⋯ , ݖ  appear and each point ݖ, ݅ ൌ 0,⋯ , ݎ  is just appeared ݇  times. To make sure of 
multiplicities, we express for the divided difference ݂ሾݔ,⋯ , ⋯,ݔሿ. And the divided difference table ܶሾݔ ,  ሿݔ
is also denoted by ܶሾݖ,⋯ , ;ݖ ݇,⋯ , ݇ሿ. ݂ሾݖ,⋯ , ;ݖ ݇,⋯ , ݇ሿ 

The following proposition is a basic statement, but it is a 
key result to prove our theorems. 

Proposition 5. Let (ܽ )ݔ  ଵݔ  ⋯  (ݔ ܾ)  be a 
list of nodes and let ݂ be a real-valued function on an interval ሾܽ, ܾሿ which is sufficiently differentiable at ݔ,⋯ ,  is  . Ifݔ
the Hermite interpolating polynomial to ݂ at ݔ,⋯ ,  , thenݔ
for each ݔ ∈ ሾܽ, ܾሿ ݂(ݔ) െ ൌ														 (ݔ) ݂ሾݔ, ⋯,ݔ , ݔ)ሿݔ െ ݔ)(ݔ െ ⋯(ଵݔ ݔ) െ  (14)		)ݔ
 

III. PROOF OF THEOREM 2 
Now we are in position to prove Theorem 2. 
Proof. Let ܳℓ, ℓ ∈ N  be the Hermite interpolating 

polynomials to ݂ at െ1, 1 with multiplicities 2ℓ, ℓ. For any 
given ݐ ∈ ,ߙ)  from Proposition 5 we have ,(ߚ

(ݐ)݂|  െ ܳℓ(ݐ)| ൌ ห݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ(ݐ  1)ଶℓ(ݐ െ 1)ℓห 												ൌ |݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ| ∙ ݐ)|  1)ଶ(ݐ െ 1)|ℓ	.				(15) 
 
Since sup௧∈(ఈ,ఉ)|(ݐ  1)ଶ(ݐ െ 1)| ൌ ଷଶଶ , it is sufficient to 

show that 
 limℓ→ஶ|݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ| ൬3227൰ℓ ൌ 0			　(16) 
 

We prove (16) for the case ݐ ∈ ቀߙ, ଵଷቁ. Because, the other 

cases ݐ ൌ ଵଷ (if f is continuous at ൌ ଵଷ ) or t ∈ ቀଵଷ , βቁ, we can 

show (16) in an analogous way to the case t ∈ ቀα, ଵଷቁ. 
Now we give an estimation |݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ|  for ݐ ∈ ቀߙ, ଵଷቁ and much larger ℓ than ݊. Let us see the part of ܶሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ from the 0-th column to the (݊  1)-th 

column. െ1 (െ1)ݍ ݂ሾെ1; ݊  2ሿ⋮ ⋮ ⋮⋮ ⋮ ݂ሾെ1; ݊  2ሿെ1 (െ1)ݍ ݂ሾെ1, ;ݐ ݊  1,1ሿݐ (ݐ)ݍ ⋯ ⋮1 (1) ݂ሾݐ, 1; 1, ݊  1ሿ⋮ ⋮ ݂ሾ1; ݊  2ሿ⋮ ⋮ ⋮1 (1) ݂ሾ1, ݊  2ሿnodes the	0-th	column the	(݊  1)-th	column
 

Since (ݔ) and (ݔ)ݍ are polynomials of degree at most ݊, 

we easily have ݂ሾെ1; ݊  2ሿ ൌ ݊)(ݐ)(ାଵ)ݍ  1)! ൌ 0																	　(17) ݂ሾ1; ݊  2ሿ ൌ ݊)(ݐ)(ାଵ)  1)! ൌ 0　				　　(18) 
 

Furthermore, we have 
 ݂ሾെ1, ;ݐ ݊  1,1ሿ 
															ൌ ݐ)1  1)ାଵ ൝(ݐ)ݍ െݍ()(െ1)݅! ݐ)  1)

ୀ ൡ			(19) ݂ሾݐ, 1; 1, ݊  1ሿ 												ൌ ݐ)1 െ 1)ାଵ ൝(ݐ)ݍ െ()(1)݅! ݐ) െ 1)
ୀ ൡ			(20) 

 
Nothing that (ݔ) and (ݔ)ݍ are polynomials of degree at 

most ݊, we get ݂ሾെ1, ;ݐ ݊  1,1ሿ ൌ (ݐ)ݍ െ ݐ)(ݐ)ݍ  1)ାଵ ൌ 0　　					(21) 
And 

 	݂ሾݐ, 1; 1, ݊  1ሿ ൌ (ݐ)ݍ െ ݐ)(ݐ) െ 1)ାଵ 	.																			(22) 
 
By (17), (18) and (21), the part of ܶሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ 

from the 0-th column to the (݊  1)-th column is as follows: െ1 (െ1)ݍ 0⋮ ⋮ ⋮⋮ ⋮ 0െ1 (െ1)ݍ ݂ሾെ1, ,ݐ 1; ݊, 1,1ሿݐ (ݐ)ݍ ⋯ ⋮1 (1) ݂ሾݐ, 1; 1, ݊  1ሿ⋮ ⋮ 0⋮ ⋮ ⋮1 (1) 0nodes the	0-th	column the	(݊  1)-th	column
 

In order to give an estimation of |݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ|, we 
put two positive numbers ܯ ≔ maxୀ,⋯,|݂ሾെ1, ,ݐ 1; ݊ െ ݅, 1, ݅  1ሿ| ݎ ≔ 11 െ  .ݐ

We write ࢇ  ࢇ for any column vector ࢈ ൌ (ܽ)ଵஸஸ௦, ࢈ ൌ(ܾ)ଵஸஸ௦ ∈ R௦ such that ܽ  ܾ, ݅ ൌ 1,⋯ ,  For any column .ݏ
vector ࢇ ∈ Rୱ, let ࢇ(݇) be the column vector in R௦ such that 
the ݇-th element is equal to ܽ  and the other elements are 
equal to 0, and put ࢇ ൌ (|ܽ|)ଵஸஸ௦. 

Let ࢇ ൌ ൫ܽ()൯ଵஸஸଷℓିାଵ, ݊  1  ݇  3ℓ , be the ݇ -th 
column of ܶሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ  and we define the column 
vectors ࢈ ൌ ൫ܾ()൯ଵஸஸଷℓିାଵ, ݊  1  ݇  3ℓ as follows: 

First, we set the column vector ࢈ାଵ ൌ ൫ܾ(ାଵ)൯ଵஸஸଷℓି ∈
Rଷℓି such that ܾ(ାଵ) ൌ ቄ 0 1  ݅  2ℓ െ ݊, 2ℓ  2  ݅  3ℓ െ ܯ݊ .݁ݏ݅ݓݎ݄݁ݐ 	(23) 

For each ݇, ݊  2  ݇  ℓ , we put the column vector ࢈ ൌ ൫ܾ()൯ଵஸஸଷℓିାଵ ∈ Rଷℓିାଵ satisfying that 
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																		ܾ() ൌ ቐݎି(ାଵ) ∙ ܯ ݅ ൌ 2ℓ  1ܾାଵ(ିଵ)  ܾ(ିଵ)2  (24)									.݁ݏ݅ݓݎ݄݁ݐ
 
Furthermore, we set the column vectors ࢈ ൌ൫ܾ()൯ଵஸஸଷℓିାଵ ∈ Rଷℓିାଵ, ℓ 1  ݇  3ℓ such that 

 										ܾ() ൌ ܾାଵ(ିଵ)  ܾ(ିଵ)2 ,					1  ݅  3ℓ െ ݇  1	.		(25) 
 

Then, we easily see that ࢇାଵ   ାଵ. And we observe࢈
that ࢇ  ,࢈ ݊  2  ݇  3ℓ. Because, for each ݇, ݊  2 ݇  ℓ, ࢇ ൌ ൫ܽ()൯ଵஸஸଷℓିାଵ ∈ Rଷℓିାଵ is obtained by 

 

	ܽ() ൌ ቐሼ(െ1) ∙ ,ݐሽି(ାଵ)݂ሾݎ 1; 1, ݊  1ሿ ݅ ൌ 2ℓ  1ܽାଵ(ିଵ) െ ܽ(ିଵ)2  (26)			݁	ݏ݅ݓݎ݄݁ݐ

 
And for each ݇, ℓ  1  ݇  ࢇ ,3 ൌ ൫ܽ()൯ଵஸஸଷℓିାଵ  ଷℓିାଵ is got fromࡾ∋

		ܽ() ൌ ܽାଵ(ିଵ) െ ܽ(ିଵ)2 , 1  ݅  3ℓ െ ݇  1.																		(27) 
In particular, we have ࢇଷℓ ൌ |݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ|   .ଷℓ࢈
To evaluate ࢈ଷℓ, let ݓ be a linear map from R(݉  2) 

to Rିଵ such that for all ࢉ ൌ (ܿ)ଵஸஸ ∈ R 
 ൫ݓ(ࢉ)൯ ൌ ܿ  ܿାଵ2 , ݅ ൌ 1,⋯ ,݉ െ 1	.							(28) 

 
And let us consider the real-valued function ߮  on R 

which is defined by 
(ࢉ)߮	  ൌ ଶݓ ∘ ଷݓ ∘ ⋯ ∘ ࢉ	all	for		(ࢉ)ݓ ∈ R.								(29) 

 
If ࢋ() ൌ (ܽ) ∈ R  denotes the column vector such that ܽ ൌ 1 and ܽ ൌ 0 otherwise, from the definition of ࢈ଷℓ and 

the linearity of ߮, we have 
ଷℓ࢈  ൌ (ାଵ࢈)߮  ߮൫࢈ାଶ(2ℓ  1)൯  ⋯ ߮൫࢈ℓ(2ℓ  1)൯ൌ ߮൫࢈ାଵ(2ℓ െ ݊  1)  ⋯ ାଵ(2ℓ࢈  1)൯ ߮൫࢈ାଶ(2ℓ  1)൯  ⋯ ߮൫࢈ℓ(2ℓ  1)൯ൌ ܯ ቄ߮ ቀࢋଶℓିାଵ(ଷℓି) ቁ  ߮ ቀࢋଶℓିାଶ(ଷℓି) ቁ  ⋯ ߮ ቀࢋଶℓାଵ(ଷℓି)ቁቅ ߮ܯݎ ቀࢋଶℓାଵ(ଷℓିିଵ)ቁ  ߮ܯଶݎ ቀࢋଶℓାଵ(ଷℓିିଶ)ቁ  ⋯ ߮ܯℓିିଵݎ ቀࢋଶℓାଵ(ଶℓାଵ)ቁ 						ൌ ܣ   (30)																																																																									,ܤ
 
where 
ܣ  ൌ ܯ ቄ߮ ቀࢋଶℓିାଵ(ଷℓି) ቁ  ߮ ቀࢋଶℓିାଶ(ଷℓି) ቁ  ⋯ ߮ ቀࢋଶℓାଵ(ଷℓି)ቁቅܤൌ 2ℓ1(3ℓെ݊െ1)ቁࢋቀ߮ܯݎ  2ℓ1(3ℓെ݊െ2)ቁ⋯ࢋቀ߮ܯ2ݎ  (31)																		2ℓ1(2ℓ1)ቁ.ࢋቀ߮ܯℓെ݊െ1ݎ

For any nonnegative integer ݉, ݇  with ݉  ݇ , ൫൯ 
denotes the binomial coefficient, that is, 

ቀ݉݇ቁ ൌ ݉!݇! (݉ െ ݇)!. 
By using Pascal’s triangle, since it hold that for all positive 

integers ݏ, ݏ with ݐ   we have ,ݐ
 ߮൫ࢋ௧(௦)൯ ൌ 12௦ିଵ ൬ݏ െ ݏ1 െ ܣ										 (32)																															൰ݐ ൌ 2ାଵ ∙ 2ଷℓܯ ቆ3ℓ െ (݊  1)ℓ െ (݅  1) ቇ

ୀ  

൏ 2ାଵ ∙ 2ଷℓܯ ∙ (݊  1) ൬3ℓℓ ൰　										(33) 
 

And 
ܤ  ൌ 2ାଵ ∙ 2ଷℓܯ  ௦(ݎ2) ∙ ൬3ℓ െ ݏ)  ݊  1)ℓ െ ݏ)  ݊  1) ൰ℓି(ାଵ)

௦ୀଵൌ 2ାଶ ∙ 2ଷℓܯ ݎ ൜൬3ℓ െ (݊  2)ℓ െ (݊  2) ൰  ݎ2 ൬3ℓ െ (݊  3)ℓ െ (݊  3) ൰  ⋯				 ℓି(ାଶ)(ݎ2) ൬2ℓ0 ൰ൠൌ 2݊2 ∙ 23ℓܯ ݎ ቆ3ℓ െ (݊  2)ℓ െ (݊  2) ቇ ቊ1  ݎ2 ℓ െ (݊  2)3ℓ െ (݊  2) 													 2ݎ4 ℓ െ (݊  2)3ℓ െ (݊  2) ∙ ℓ െ (݊  3)3ℓ െ (݊  3) ⋯			 ℓെ(݊2)(ݎ2) ℓ െ (݊  2)3ℓ െ (݊  2)⋯ 12ℓ  1ቋ.													 			(34) 
Since 
 (0 ൏) 11 െ ߙ ൏ ݎ ൏ 11 െ 13 ൌ 32																						(35) 
And 

 	13  ℓ െ (݊  2)3ℓ െ (݊  2)  ℓ െ (݊  3)3ℓ െ (݊  3)  ⋯  12ℓ  1,			(36) 
 

Putting ܴ ൌ ݎ2 ∙ ℓି(ାଶ)ଷℓି(ାଶ), we obtain (0 ൏)ܴ ൏ 2 ∙ ଷଶ ∙ ଵଷ ൌ1. 
Hence we have the following estimation of ܤ: 
ܤ	  ൏ 2ାଶ ∙ 2ଷℓܯ ݎ ቆ3ℓ െ (݊  2)ℓ െ (݊  2) ቇ ൛1  ܴ  ܴଶ ⋯ ܴℓି(ାଶ)ൟ 

				ൌ 2ାଶ ∙ 2ଷℓܯ ݎ ቆ3ℓ െ (݊  2)ℓ െ (݊  2) ቇ 1 െ ܴℓି(ାଵ)1 െ ܴ 　　　　　　 				൏ 2ାଶ ∙ 1ܯݎ െ ܴ ∙ 12ଷℓ ൬3ℓℓ ൰ 										　　　				(37) 
 

By (33) and (37), we see that 
ଷℓ࢈																					  ൌ ܣ  ൏						 　　　　　　　　　　　　　　　　	ܤ ቊ(݊  1)2ାଵ ∙ ܯ  2ାଶ ∙ 1ܯݎ െ ܴ ቋ ∙ 12ଷℓ ൬3ℓℓ ൰ 			ൌ 2ଷℓߣ ൬3ℓℓ ൰ ,　　　　　				　　　		(38) 
 

where ߣ ൌ (݊  1)2ାଵ ∙ ܯ  ଶశమ∙ெଵିோ . Since |(ݐ  1)ଶ(ݐ െ
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1)|  ଷଶଶ, from (38), we obtain 
(ݐ)݂|  െ ܳℓ(ݐ)| ൌ |݂ሾെ1, ,ݐ 1; 2ℓ, 1, ℓሿ| ∙ ݐ)|  1)ଶ(ݐ െ 1)|ℓ 2ଷℓߣ ൬3ℓℓ ൰ ∙ ൬3227൰ℓ ൌ ߣ ൬ 427൰ℓ ൬3ℓℓ ൰.												(39) 
 

By use of Starling formula, for any positive number ߩଵ,  ଶߩ
with ߩଵ ൏ 1 ൏  ଶ, there exists a positive integer ܰ satisfyingߩ
that 
݇ߨଵ√2ߩ  ൬݇݁൰ ൏ ݇! ൏ ݇ߨଶ√2ߩ ൬݇݁൰ 												(40) 
 

For all ݇  ܰ. Hence, for any positive integer ℓ  ܰ, it 
holds that  	 ൬ 427൰ℓ ൬3ℓℓ ൰ ൌ ൬ 427൰ℓ (3ℓ)!ℓ! (2ℓ)!

൏ ൬ 427൰ℓ ߨଶ√2ߩ ∙ 3ℓ ቀ3ℓ݁ቁଷℓߩଵ√2ߨ ∙ ℓ ቀℓ݁ቁℓ ∙ ߨଵ√2ߩ ∙ 2ℓ ቀ2ℓ݁ቁଶℓൌ ൬ 427൰ℓ ∙ ଵଶߩଶߩ ඨ ℓߨ34 ൬274 ൰ℓ ൌ ଵଶߩଶߩ ඨ   (41)										ℓߨ34
This means that ܳℓ(ݐ)  converges to ݂(ݐ)  as  tends to 

infinity. 
In the case ݐ ∈ ቀଵଷ ,  ቁ, we have an estimationߚ

ଷℓ࢈	  ൏ ቊ(݊  1)2ାଵ ∙ ܯ  2ାଶ ∙ 1ܯݎ െ ܴ ቋ ∙ 12ଷℓ ൬3ℓℓ ൰,						(42) 
 
where ܯ ≔ maxୀ,⋯,|݂ሾെ1, ,ݐ 1; (݊  1) െ ݅, 1, ݅ሿ| ݎ ≔ ݐ1  1 ܴ ≔ ݎ2 ∙ 2ℓ െ (݊  2)3ℓ െ (݊  2). 

In the case ݐ ൌ ଵଷ , Since  ቀଵଷቁ ൌ ݍ ቀଵଷቁ , we have an 
estimation, 
ଷℓ࢈		  ൏ ݊2ାଵܯ ∙ 12ଷℓ ൬3ℓℓ ൰.																													(43) 
 

This completes the proof. 
 

IV. CONCLUSIONS AND FUTURE WORK 

Theorem 1 states that spline functions on ൫െ√2, √2൯ with 
one knot 0 have the two point Taylor expansions about െ1, 1 

with the multiplicity weight (1, 1). Moreover, in this note, we 
prove that spline functions on (ߙ,  with one knot ଵଷ possess (ߚ
the two point Taylor expansions about െ1, 1  with the 
multiplicity weight (2,1) . From these conclusions, we 
observe that the position of one knot stated in Theorem 1 and 
2 is closely related to the multiplicity weight. Hence, we give 
problems which lead to a next step. 

A. Problems 
1) Find spline functions with one knot which have two 

point Taylor expansions about െ1, 1  with the 
multiplicity weight (݉, ݊) , where ݉, ݊  are positive 
integers. 

2) Let us consider spline functions with one knot which 
have two point Taylor expansions about െ1, 1 with the 
multiplicity weight (݉, ݊). Then find relations between 
the multiplicity weight and positions of one knot. 
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