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Abstract—Web service-business process execution 
Language (WS-BPEL) is a promising language for describing a 
web service composition. Unfortunately, WS-BPEL lacks 
expressive power of formal semantics to support verifiability. 
Consequently, timed trace theory has been used to assure the 
correctness and reliability of the web service composition with 
timing constraints. Moreover, since most of business processes 
are more complicated, the cost of verification is high. It is likely 
that the state explosion problem will take place. In order to 
tackle this problem, in this paper a partial order reduction 
algorithm for timed trace theoretic verification has been 
applied to minimize the number of states. Experimenting with a 
tourism information system, the proposed approach expresses 
its effectiveness.

Index Terms—Partial order reduction, timed trace theory, 
web service composition. 

I. INTRODUCTION

Web service composition is an ability to integrate existing 
web services together to fulfill the practical requirements. 
Presently, WS-BPEL (Web Service–Business Process 
Execution Language) [1] has been introduced to composite 
web services. Since creating composite web services is more 
complex task, formal verification of WS-BPEL is essential to 
guarantee the correctness and reliability of web service 
compositions with timing constraints [2]. However, 
WS-BPEL has some defect on verification.  

Recently, a number of research efforts on the verification 
of the web service composition have been activated including 
[3]-[8]. Even though all of them are successful in unraveling 
weaknesses of verification of web service composition, they 
do not consider timing constraints of business processes. 
Therefore, [9]-[13] have been proposed formal semantics for 
verifying WS-BPEL with timing constraints. Whereas they 
are not able to detect safety and timing failures, timed trace 
theoretic verification proposed in [14] does. Using this 
approach, a specification and implementations are modeled 
by time Petri net [15] and conformance relation between 
them is checked.  

However, since practically most of businesses processes 
not only involve functionality but also involve the timing 
constraints, they are quite complicated interactions. The cost 
of verification is rather high. It is likely that the number of 
states may explode or the state explosion problem will occur. 
Hence, a partial order reduction algorithm for timed trace 
theoretic verification [16] has been applied to reduce the 
number of states while verifying the web service composition 
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oatt_fanclub@hotmail.com). 

with timing constraints. 
This paper is organized as follows. Timed trace theoretic 

verification and its partial order reduction algorithm are  
described in the Section II. How to transform WS-BPEL into 
time Petri net is explained in the Section III. Then, 
experimenting with a case study is demonstrated in the 
Section IV. Finally, the conclusion is given in the Section V. 

II. PARTIAL ORDER REDUCTION FOR TIMED TRACE 
THEORETIC VERIFICATION 

Since our approach relies on the framework of partial order 
reduction for timed trace theoretic verification proposed in 
[16], we briefly its idea in this section. 

A. Timed Trace Theoretic Verification 
We introduce the important notions of timed trace theory 

including module, semimodule and time trace structure. 
A module M is a tuple (I, O, N), where I am a set of input 

transition, O is a set of output transition, and N is a time Petri 
net. A time Petri net is a six-tuple of Petri net N = (P, T, B, F, 
M0, Time) 

1) P = {p1, p2,…, pm} is a finite nonempty set of places.  
2) T = {t1, t2,…, tn} is a finite set of transitions (P ∩ T = ∅). 
3) B is the backward incidence function   P × T → N   or 

input arc flow relation from place to transition. 
4) F is the forward incidence function  T × P → N  or

output arc flow relation from transition to place. 
5) M0 ⊆P is initial marking of the time Petri net. 

6) Time is delay function Let Q+ denote the set of positive 
rational numbers T → Q+ × Q+ ∪ {∞}, T = [ai, bi] such 
that ai, bi represent the static bound for the earliest and 
latest firing times of transitions, respectively, satisfying 
ai(t) ≤ bi(t) for all t ∈ T. 

A semimodule is the same as a module except the 
definition of its timed trace structure.  

A timed trace structure of a module M, denoted by T(M), 
is a tuple (I, O, S, F) where S is called success trace set and F
is called failure trace set, contains a trace y(w, τ) ∉ S shown as 
(1). 

   y ∈ F, or 
   y ∈ S, τ ≤ TL(y, N), w ∈ I , or 
   y ∈ S, τ > TL(y, N), limit (y, N) ⊆ I.                        (1) 

TL(y, N) is the latest time until when the firing of all 
enabled transitions in N can be postponed after y. limit (y, N) 
is the set of wires that correspond to the enable transitions 
which determine TL(y, N). 

Equation (2) must be considered in order to check the 
correctness between a module M1 and a module M2. We use 
notion T1 = (I1, O1, S1, F1) and T2 = (I2, O2, S2, F2) such that I1
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is shown as follows. 

(I1 ∩ I2, O1 ∪ O2, S1 ∩ S2, (P1 ∩ F2) ∪ (F1∩P2))         (2)

If (P1 ∩ F2) ∪ (F1∩ P2) = ∅ then the module M1 conform to 
the module M2. It means that the module M1 behaves 
similarly to the module M2 with any environment. From this 
definition, the following theorem is inherited.

Theorem 1: {M1,…, Mk-1, MK1,…, Mkm, Mk+1,…, Mn} 
conforms to Ms, if {Mk1,…, Mkm} conforms to Mk, and {M1,…, 
Mk-1, Mk, Mk+1, … , Mn } conforms to Ms   

Note that M1,…, Mk-1, MK1,…, Mkm, Mk+1,…, and Mn are 
represented as implementation modules and Ms is represented 
as a specification module of a system.  

Refer to the verification algorithm in [16] which is derived 
from Theorem1; safety failure will occur when an output 
produced by a (semi)module cannot be accepted by some 
other (semi)module. On the other hand, timing failure will 
happen when an input expected by a (semi)module cannot be 
given in time by some other (semi)module. Both types of 
failure are shown in Fig. 1 and Fig. 2 respectively. 

Fig. 1. Module that cause a safety failure.

  
Fig. 2. Module that cause a timing failure. 

Fig. 3. Transition a (out) hides a timing failure. 

TABLE I: MAPPING FROM WS-BPEL ACTIVITY TO TIME PETRI NET
Basic activity Time Petri net 

<invoke partnerLink=" Seller" 
portType="SP:Purchasing" 
operation="Purchase" 
inputVariable="sendPO" 
outputVariable="receivePO" 

/invoke>

<receive partnerLink=" NCName" 
portType="QName" 
operation="NCName" 
variable="BPELVariableName" 

/receive> 

<reply partnerLink=" NCName" 
portType="QName" 
operation="NCName" 
variable="BPELVariableName" 

/reply> 

<assign 
copy from variable="var1" 
to variable="var2" 

/assign> 

<empty 
do nothing 

/empty> 

<sequence>  
activity 1 
activity 2 

</sequence> 

<flow> 
activity 1 
activity 2 

</flow> 

<switch>   
<case condition cond1> 

activity1 
activity2 

</case> 
<otherwise> 

activity3  
activity4    

</otherwise> 
</switch> 

<while>  
<condition> bool-expr </condition> 

 activity1  
</while> 

<pick>  
<onMessage standard-attributes> 

activity1  
</onMessage>  
<onAlarm standard-attributes> 

(  <for> duration-expr </for> |  
<until> deadline-expr </until>  
)   
activity2   

</onAlarm> 
</pick> 

B. Partial Order Reduction for Timed Trace Theoretic 
Verification 

A partial order reduction algorithm is used to avoid a 
complete enumeration set of the state space. Some subset of 
possible states will be produced as long as the correctness is 
not affected. We call a state space obtained by the partial 
order reduction algorithm the reduced state space. The 
partial order reduction algorithm for timed trace theoretic 
verification has been proposed in [16]. The reduced state 
space must satisfy the three rules including [PT1], [PT2] and 
[PT3]. [PT1] is necessary because a new deadlock state must 
not be generated in the reduced state space. [PT2] is for 
handling conflict transitions. When a transition that conflicts 
with another one is fired, the conflicting transition or its 
ancestor should also be fired. [PT3] is for handling 
transitions hiding timing failures. To understand [PT3], we 
firstly define a firable transition. It is an enabled transition 
that can fire earlier than any other enabled transitions. [PT3] 
defines that limiting transition which is a firable output 
transitions such that its latest firing time point is smallest 
among the firable output transitions of all modules. For 
example, consider the modules illustrated in Fig. 3. A set of 
output firable transition at the current state consists of a (out) 
and b( out). If b (out) fires firstly, then a timing failure occurs 
because a (out) can fires later than a (in). On the other hand, 
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if a (out) fires before firing a transition b (out), a timing 
failure is never detected because a (out) hides the timing 
failure. Thus, [PT3] forces b (out) to fire, if a (out) is firstly 
chosen to fire. 

Database

Airline
WS Broker

Users

Hotel
WS Broker

Car Rental
WS Broker

BPEL
Process Flow

TIS

Task
Manager

UDDI

CES

Thai Airway WS

Air Asia WSSofitel Hotel WS

Srichan Car WS

Kosa Hotel WS

Power Car WS

N

N

N

Transfer data

Interactive

Fig. 4. Architecture of a tourism information system. 

III. HOW TO TRANSFORM WS-BPEL INTO 
TIME PETRI NET

In order to verify web service compositions, the WS-BPEL 
describing a web service composition must be transformed 
into time Petri nets by our algorithm which is proposed in 
[14]. The brief idea of the algorithm is shown as follows. 

1)  A state of web service is represented by the place. 
2)  A web service activity is represented by the transition. 
3)  A message or a variable is represented by the token. 
4)  A control flow relation between activities is represented 

by the firing rule and the arc. 
5) A timing constraint of the web service activity is 

mapped to delay function. 

In this work, we only consider the most frequently used 
workflow pattern in WS-BPEL. There are two types of 
activities including the basic and structure activity. The basic 
activity includes invoke, receive, reply, assign, and empty 
activity. The structure activity includes sequence, flow, 
switch, while, and pick activity. Time Petri net derived from 
each activity of WS-BPEL is relatively straightforward. 
Mapping basic and structure activity is illustrated in Table I. 

A. Basic Activity 

1) The <invoke> activity enables us to call an operation 
which offered by service. The operation can be 
asynchronous one-way or synchronous 
request-response. An asynchronous invoke requires 
only the input variable of operation. Synchronous 
invoke requires both an input variable and an output 
variable.  

2) The <receive> activity specifies the received 
information, the port type and operation form the 
partner link to invoke. This activity waits for an 
asynchronous callback response message from a 
service.  

3) The <reply> activity allows the process to send a 
message to a previous request. It must happened after a 
receive activity.   

4) The <assign> activity provides a method for data 
manipulation, such as copying the contents of one 
variable to another one. 

5) The <empty> activity enables us to insert a no-operation 
instruction into a process.  

B. Structure Activity 

1) The <sequence> activity is a container where activities 
are performed sequentially following the order in the 
sequence element. The activity is complete when the 
last activity in the sequence is finished.  

2) The <flow> activity is a container where enclosed 
activities concurrently execute. Activities within a flow 
start simultaneously and the flow finished when the 
activities are complete.  

3) The <switch> activity consists of an ordered list of one 
or more conditional branches defined in a case 
statement. The branches are considered following the 
order in the switch element. The switch activity is 
finished when the activity of the selected statement 
completes.  

4) The <while> activity executes a contained activity 
repeatedly as long as its condition evaluates to true. 
Otherwise, the contained activity do not execute at all.  

5) The <pick> activity waits for the occurrence of exactly 
one event from a set of events, and then executes the 
activity associated with that event. After one of events is 
selected, the pick will no longer accept other events. 

C. Timing Constraints 
To make business process more efficient, timing constraints 

should be included in a process model. Thus, we need model 
to represent WS-BPEL with timing constraints. In this paper, 
we define them by using the annotation concept [11]. Timing 
constraint annotations are defined separately from a 
WS-BPEL. In some scenarios, the execution time of an 
activity is often nondeterministic, but may be within bounds. 
Therefore, a time interval can be used to represent a flexible 
execution time of activity. Note that the time interval of an 
activity can be obtained from domain experts or derived from 
the history log. The time interval based approach allows us to 
model duration time of each activity. A simple WS-BPEL 
with a timing constraint annotation is shown as below. For 
example, an activity “T3” is one of basic activities and has 
the interval 4.10 units of time. It means that the activity T3 
must be executed from 4 until 10 units of time. 

<process name = “CompositeProcess”> 
<partnerLinks> … </partnerLink> 
<variables> … </variable> 
<sequence> 
<invoke name= “Tinquire”> 
<sequence> 
<flow> 
  <sequence> 
    <invoke name= “T2”> 
    <invoke name= “T3”> 
  </sequence> 
</flow> 
</sequence> 
<invoke name= “Tchoose”> 
<switch> 
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  <case condition= “bpws:getVariableData('S') 
=0”> 
    <invoke name= “T6”/> 
  </case> 
  <case condition= “bpws:getVariableData('S') 
=1”> 
    <invoke name= “T7”/> 
  </case> 
</switch> 
</sequence> 
</process> 

<?The timing constraint annotation layer of the 
process “process” ?> 
<process : CompositeProcess rdf :ID = “T”> 

< process: AtomicProcess rdf : resource = “#T2” /> 
  Time(T3) = 4..10 
< process: AtomicProcess rdf : resource = “#T3” /> 
  Time(T4) = 4..10 
< process: AtomicProcess rdf : resource = “#T6” /> 
  Time(T6) = 6..12 
< process: AtomicProcess rdf : resource = “#T7” /> 
  Time(T6) = 6..10 
< process: AtomicProcess rdf : resource = 
“#Tinquire” /> 
  Time(T6) = 1..5 
< process: AtomicProcess rdf : resource = 
“#Tchoose” /> 
  Time(T6) = 5..6 
< /process: CompositeProcess > 

User TIS Airline Hotel Car CES

Source, Destination
Forward

Flight Info.

Selection
Forward

Order Booking
Booked

Destination
Arrival Time

Air Fares
Hotel Info.

Forward
Selection

Order Reservation
Hotel Reserved

Hotel Name
Price

Car Rental Info.

Forward
Selection

Order Reservation
Car Reserved

Price
Corporate Expense

Invoke
Confirm Payment

E-Ticket, Ticket

1

2

3

4

5

6

7

Fig. 5. Sequence diagram of a tourism information system. 

IV. THE CASE STUDY

In this section, the partial order reduction algorithm for 
timed trace theoretic verification has been applied to 
minimize the number of state while verifying the web service 
composition with timing constraints. We demonstrated with a 
Tourism Information System (TIS) [17]. This system is a 
flight ticket, hotel, and car rental reservations. The TIS 
architecture is illustrated in Fig. 4. The TIS is a coordination 
middleware or central control engine. It consists of three 
broker web services including Airline Broker Web Service, 
Hotel Broker Web Service, and Car Rental Broker Web 
Service. All broker web services perform as a representative 
so that they will call services from business providers within 
their groups and send results to the TIS. In this experiment, a 
main scenario shown in Fig. 5 is verified. 

TIS are a coordination middleware or central control 
engine. It consists of three broker web services including 
Airline Broker Web Service, Hotel Broker Web Service, and 

Car Rental Broker Web Service. They perform as a 
representative so that they will call services from business 
providers within their groups and send results to the TIS. 

A. The Specification of the Tourism Information System  
The business process starts receiving initial requirements 

from customers through task manager service. Then the TIS 
sends information to be processed by all broker web services 
including Airline Broker Web Service, Hotel Broker Web 
Service, and Car Rental Broker Web Service. Customers may 
reserves a flight ticket and hotel, but probably not a car rental. 
Lastly, corporate expense service (CES) calculates the 
expense for the customer. 

Airline Broker Web Service is a business process service 
agents used to book a seat. The agent includes partner Thai 
Airway web service and AirAsia web service. These services 
show a list of flight and wait for a customer requirement 

Hotel Broker Web Service is a business process service 
agents used for hotel reservations. The agent includes Sofitel 
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hotel web service and Kosa hotel web service. These services 
show hotel information and wait for a customer requirement. 

Car Rental Broker Web Service is a business process 
service agents used for renting a car. The agent includes 
partner Srichan car rental web service and Power car rental 
web service. These services show car rental information and 
wait for user requirement. The specification of the TIS is 
modeled in Fig. 6. 

receive
receiveInput

choose

invoke
Invoke_AB

choose

choose

invoke
Invoke_HB

invoke
Invoke_CB

invoke
Invoke_2

invoke
Invoke_1

invoke
Invoke_2

invoke
Invoke_1

invoke
Invoke_2

invoke
Invoke_1

receive
receiveTask

Result

invoke
callbackClient

invoke
callbackClient

invoke
callbackClient

invoke
initiateTask

receive
receiveTask

Result

invoke
initiateTask

invoke
initiateTask

receive
receiveTask

Result

TInvoke_AB
[0,5]

TinitiateTask
[0, 10]

TcallbackClient
[0, 10]

TInvoke_2
[4, 8]

TInvoke_1
[4, 8]

Fig. 6. Time petri net of a specification of tourism information system. 

The TIS must satisfy the following properties.
1)  After the TIS get request from a customer, the service will 

forward some information to the airline broker web 
service within 5 units of time. 

2)  The airline broker web service will search and display 
flight information corresponding to a customer request. It 
must respond to the customer within 10 units of time. 

3)  The hotel broker web service will accept a customer 
request, such as find, select and reserve a room, and 
respond to the customer within 10 units of time. 

4) The car rental broker web service will accept a customer 
request and forward it to partners simultaneously from 4 
until 8 units of time.  

B. The implementation of the Tourism Information 
System  

The WS-BPEL implementation of TIS is obtained from 

[17]. And, it is transformed into time Petri net by using the 
algorithm proposed in [14]. Time Petri net implementation of 
TIS, Airline Broker Web Service, Hotel Broker Web Service, 
and Car Rental Broker Web Service are shown in Fig. 7, Fig. 8, 
Fig. 9 and Fig. 10, respectively.  
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Fig. 7. Time Petri net of the implementation of tourism information system. 

C. Verification Result of the Tourism Information 
System  

The experiments have been done on a 2.10 GHz Intel core 
i7 with 4 gigabytes of memory. We have verified the TIS by 
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tool in [16]. We then give some result obtained with the 
analysis of our nontrivial case study. The CPU times and 
memory usage for verification of the TIS are 0.04 sec. and 
271 kilobytes, respectively.  

Fig. 8. Time Petri net of the implementation of airline broker web service. 

Fig. 9. Time Petri net of the implementation of hotel broker web service. 
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Fig. 10. Time Petri net of the implementation ofcar rental broker web service. 

V. CONCLUSION

In this paper, we have applied a partial order reduction 
algorithm for timed trace theoretic verification to assure the 
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correctness and reliability of web service composition with 
timing constraint. We demonstrated the effectiveness of our 
proposed method to verify a tourism information system. In 
the future, we are planning to verify a practical system by 
using the hierarchical verification method. According to our 
framework, we are also implementing a tool in order to 
automatically verify the whole process of web service 
composition.  
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