

239

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

Abstract—Web service-business process execution
Language (WS-BPEL) is a promising language for describing a
web service composition. Unfortunately, WS-BPEL lacks
expressive power of formal semantics to support verifiability.
Consequently, timed trace theory has been used to assure the
correctness and reliability of the web service composition with
timing constraints. Moreover, since most of business processes
are more complicated, the cost of verification is high. It is likely
that the state explosion problem will take place. In order to
tackle this problem, in this paper a partial order reduction
algorithm for timed trace theoretic verification has been
applied to minimize the number of states. Experimenting with a
tourism information system, the proposed approach expresses
its effectiveness.

Index Terms—Partial order reduction, timed trace theory,
web service composition.

I. INTRODUCTION

Web service composition is an ability to integrate existing
web services together to fulfill the practical requirements.
Presently, WS-BPEL (Web Service–Business Process
Execution Language) [1] has been introduced to composite
web services. Since creating composite web services is more
complex task, formal verification of WS-BPEL is essential to
guarantee the correctness and reliability of web service
compositions with timing constraints [2]. However,
WS-BPEL has some defect on verification.

Recently, a number of research efforts on the verification
of the web service composition have been activated including
[3]-[8]. Even though all of them are successful in unraveling
weaknesses of verification of web service composition, they
do not consider timing constraints of business processes.
Therefore, [9]-[13] have been proposed formal semantics for
verifying WS-BPEL with timing constraints. Whereas they
are not able to detect safety and timing failures, timed trace
theoretic verification proposed in [14] does. Using this
approach, a specification and implementations are modeled
by time Petri net [15] and conformance relation between
them is checked.

However, since practically most of businesses processes
not only involve functionality but also involve the timing
constraints, they are quite complicated interactions. The cost
of verification is rather high. It is likely that the number of
states may explode or the state explosion problem will occur.
Hence, a partial order reduction algorithm for timed trace
theoretic verification [16] has been applied to reduce the
number of states while verifying the web service composition

Manuscript received January 31, 2014; revised April 2, 2014.
The authors are with the Department of Computer Science, Thammasat

University, Pathumthani, Thailand (e-mail: denduang@cs.tu.ac.th;
oatt_fanclub@hotmail.com).

with timing constraints.
This paper is organized as follows. Timed trace theoretic

verification and its partial order reduction algorithm are
described in the Section II. How to transform WS-BPEL into
time Petri net is explained in the Section III. Then,
experimenting with a case study is demonstrated in the
Section IV. Finally, the conclusion is given in the Section V.

II. PARTIAL ORDER REDUCTION FOR TIMED TRACE
THEORETIC VERIFICATION

Since our approach relies on the framework of partial order
reduction for timed trace theoretic verification proposed in
[16], we briefly its idea in this section.

A. Timed Trace Theoretic Verification
We introduce the important notions of timed trace theory

including module, semimodule and time trace structure.
A module M is a tuple (I, O, N), where I am a set of input

transition, O is a set of output transition, and N is a time Petri
net. A time Petri net is a six-tuple of Petri net N = (P, T, B, F,
M0, Time)

1) P = {p1, p2,…, pm} is a finite nonempty set of places.
2) T = {t1, t2,…, tn} is a finite set of transitions (P ∩ T = ∅).
3) B is the backward incidence function P × T → N or

input arc flow relation from place to transition.
4) F is the forward incidence function T × P → N or

output arc flow relation from transition to place.
5) M0 ⊆P is initial marking of the time Petri net.

6) Time is delay function Let Q+ denote the set of positive
rational numbers T → Q+ × Q+ ∪ {∞}, T = [ai, bi] such
that ai, bi represent the static bound for the earliest and
latest firing times of transitions, respectively, satisfying
ai(t) ≤ bi(t) for all t ∈ T.

A semimodule is the same as a module except the
definition of its timed trace structure.

A timed trace structure of a module M, denoted by T(M),
is a tuple (I, O, S, F) where S is called success trace set and F
is called failure trace set, contains a trace y(w, τ) ∉ S shown as
(1).

 y ∈ F, or
 y ∈ S, τ ≤ TL(y, N), w ∈ I , or
 y ∈ S, τ > TL(y, N), limit (y, N) ⊆ I. (1)

TL(y, N) is the latest time until when the firing of all
enabled transitions in N can be postponed after y. limit (y, N)
is the set of wires that correspond to the enable transitions
which determine TL(y, N).

Equation (2) must be considered in order to check the
correctness between a module M1 and a module M2. We use
notion T1 = (I1, O1, S1, F1) and T2 = (I2, O2, S2, F2) such that I1

Partial Order Reduction for Verification of WS-BPEL

Denduang Pradubsuwun and Wutthipong Kongburan

DOI: 10.7763/IJMO.2014.V4.380

240

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014∪ O1 = I2 ∪ O2. Intersection of T1 and T2, denoted by T1 ∩ T2,
is shown as follows.

(I1 ∩ I2, O1 ∪ O2, S1 ∩ S2, (P1 ∩ F2) ∪ (F1∩P2)) (2)

If (P1 ∩ F2) ∪ (F1∩ P2) = ∅ then the module M1 conform to
the module M2. It means that the module M1 behaves
similarly to the module M2 with any environment. From this
definition, the following theorem is inherited.

Theorem 1: {M1,…, Mk-1, MK1,…, Mkm, Mk+1,…, Mn}
conforms to Ms, if {Mk1,…, Mkm} conforms to Mk, and {M1,…,
Mk-1, Mk, Mk+1, … , Mn } conforms to Ms

Note that M1,…, Mk-1, MK1,…, Mkm, Mk+1,…, and Mn are
represented as implementation modules and Ms is represented
as a specification module of a system.

Refer to the verification algorithm in [16] which is derived
from Theorem1; safety failure will occur when an output
produced by a (semi)module cannot be accepted by some
other (semi)module. On the other hand, timing failure will
happen when an input expected by a (semi)module cannot be
given in time by some other (semi)module. Both types of
failure are shown in Fig. 1 and Fig. 2 respectively.

Fig. 1. Module that cause a safety failure.

Fig. 2. Module that cause a timing failure.

Fig. 3. Transition a (out) hides a timing failure.

TABLE I: MAPPING FROM WS-BPEL ACTIVITY TO TIME PETRI NET
Basic activity Time Petri net

<invoke partnerLink=" Seller"
portType="SP:Purchasing"
operation="Purchase"
inputVariable="sendPO"
outputVariable="receivePO"

/invoke>

<receive partnerLink=" NCName"
portType="QName"
operation="NCName"
variable="BPELVariableName"

/receive>

<reply partnerLink=" NCName"
portType="QName"
operation="NCName"
variable="BPELVariableName"

/reply>

<assign
copy from variable="var1"
to variable="var2"

/assign>

<empty
do nothing

/empty>

<sequence>
activity 1
activity 2

</sequence>

<flow>
activity 1
activity 2

</flow>

<switch>
<case condition cond1>

activity1
activity2

</case>
<otherwise>

activity3
activity4

</otherwise>
</switch>

<while>
<condition> bool-expr </condition>

 activity1
</while>

<pick>
<onMessage standard-attributes>

activity1
</onMessage>
<onAlarm standard-attributes>

(<for> duration-expr </for> |
<until> deadline-expr </until>
)
activity2

</onAlarm>
</pick>

B. Partial Order Reduction for Timed Trace Theoretic
Verification

A partial order reduction algorithm is used to avoid a
complete enumeration set of the state space. Some subset of
possible states will be produced as long as the correctness is
not affected. We call a state space obtained by the partial
order reduction algorithm the reduced state space. The
partial order reduction algorithm for timed trace theoretic
verification has been proposed in [16]. The reduced state
space must satisfy the three rules including [PT1], [PT2] and
[PT3]. [PT1] is necessary because a new deadlock state must
not be generated in the reduced state space. [PT2] is for
handling conflict transitions. When a transition that conflicts
with another one is fired, the conflicting transition or its
ancestor should also be fired. [PT3] is for handling
transitions hiding timing failures. To understand [PT3], we
firstly define a firable transition. It is an enabled transition
that can fire earlier than any other enabled transitions. [PT3]
defines that limiting transition which is a firable output
transitions such that its latest firing time point is smallest
among the firable output transitions of all modules. For
example, consider the modules illustrated in Fig. 3. A set of
output firable transition at the current state consists of a (out)
and b(out). If b (out) fires firstly, then a timing failure occurs
because a (out) can fires later than a (in). On the other hand,

241

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

if a (out) fires before firing a transition b (out), a timing
failure is never detected because a (out) hides the timing
failure. Thus, [PT3] forces b (out) to fire, if a (out) is firstly
chosen to fire.

Database

Airline
WS Broker

Users

Hotel
WS Broker

Car Rental
WS Broker

BPEL
Process Flow

TIS

Task
Manager

UDDI

CES

Thai Airway WS

Air Asia WSSofitel Hotel WS

Srichan Car WS

Kosa Hotel WS

Power Car WS

N

N

N

Transfer data

Interactive

Fig. 4. Architecture of a tourism information system.

III. HOW TO TRANSFORM WS-BPEL INTO
TIME PETRI NET

In order to verify web service compositions, the WS-BPEL
describing a web service composition must be transformed
into time Petri nets by our algorithm which is proposed in
[14]. The brief idea of the algorithm is shown as follows.

1) A state of web service is represented by the place.
2) A web service activity is represented by the transition.
3) A message or a variable is represented by the token.
4) A control flow relation between activities is represented

by the firing rule and the arc.
5) A timing constraint of the web service activity is

mapped to delay function.

In this work, we only consider the most frequently used
workflow pattern in WS-BPEL. There are two types of
activities including the basic and structure activity. The basic
activity includes invoke, receive, reply, assign, and empty
activity. The structure activity includes sequence, flow,
switch, while, and pick activity. Time Petri net derived from
each activity of WS-BPEL is relatively straightforward.
Mapping basic and structure activity is illustrated in Table I.

A. Basic Activity

1) The <invoke> activity enables us to call an operation
which offered by service. The operation can be
asynchronous one-way or synchronous
request-response. An asynchronous invoke requires
only the input variable of operation. Synchronous
invoke requires both an input variable and an output
variable.

2) The <receive> activity specifies the received
information, the port type and operation form the
partner link to invoke. This activity waits for an
asynchronous callback response message from a
service.

3) The <reply> activity allows the process to send a
message to a previous request. It must happened after a
receive activity.

4) The <assign> activity provides a method for data
manipulation, such as copying the contents of one
variable to another one.

5) The <empty> activity enables us to insert a no-operation
instruction into a process.

B. Structure Activity

1) The <sequence> activity is a container where activities
are performed sequentially following the order in the
sequence element. The activity is complete when the
last activity in the sequence is finished.

2) The <flow> activity is a container where enclosed
activities concurrently execute. Activities within a flow
start simultaneously and the flow finished when the
activities are complete.

3) The <switch> activity consists of an ordered list of one
or more conditional branches defined in a case
statement. The branches are considered following the
order in the switch element. The switch activity is
finished when the activity of the selected statement
completes.

4) The <while> activity executes a contained activity
repeatedly as long as its condition evaluates to true.
Otherwise, the contained activity do not execute at all.

5) The <pick> activity waits for the occurrence of exactly
one event from a set of events, and then executes the
activity associated with that event. After one of events is
selected, the pick will no longer accept other events.

C. Timing Constraints
To make business process more efficient, timing constraints

should be included in a process model. Thus, we need model
to represent WS-BPEL with timing constraints. In this paper,
we define them by using the annotation concept [11]. Timing
constraint annotations are defined separately from a
WS-BPEL. In some scenarios, the execution time of an
activity is often nondeterministic, but may be within bounds.
Therefore, a time interval can be used to represent a flexible
execution time of activity. Note that the time interval of an
activity can be obtained from domain experts or derived from
the history log. The time interval based approach allows us to
model duration time of each activity. A simple WS-BPEL
with a timing constraint annotation is shown as below. For
example, an activity “T3” is one of basic activities and has
the interval 4.10 units of time. It means that the activity T3
must be executed from 4 until 10 units of time.

<process name = “CompositeProcess”>
<partnerLinks> … </partnerLink>
<variables> … </variable>
<sequence>
<invoke name= “Tinquire”>
<sequence>
<flow>
 <sequence>
 <invoke name= “T2”>
 <invoke name= “T3”>
 </sequence>
</flow>
</sequence>
<invoke name= “Tchoose”>
<switch>

242

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

 <case condition= “bpws:getVariableData('S')
=0”>
 <invoke name= “T6”/>
 </case>
 <case condition= “bpws:getVariableData('S')
=1”>
 <invoke name= “T7”/>
 </case>
</switch>
</sequence>
</process>

<?The timing constraint annotation layer of the
process “process” ?>
<process : CompositeProcess rdf :ID = “T”>

< process: AtomicProcess rdf : resource = “#T2” />
 Time(T3) = 4..10
< process: AtomicProcess rdf : resource = “#T3” />
 Time(T4) = 4..10
< process: AtomicProcess rdf : resource = “#T6” />
 Time(T6) = 6..12
< process: AtomicProcess rdf : resource = “#T7” />
 Time(T6) = 6..10
< process: AtomicProcess rdf : resource =
“#Tinquire” />
 Time(T6) = 1..5
< process: AtomicProcess rdf : resource =
“#Tchoose” />
 Time(T6) = 5..6
< /process: CompositeProcess >

User TIS Airline Hotel Car CES

Source, Destination
Forward

Flight Info.

Selection
Forward

Order Booking
Booked

Destination
Arrival Time

Air Fares
Hotel Info.

Forward
Selection

Order Reservation
Hotel Reserved

Hotel Name
Price

Car Rental Info.

Forward
Selection

Order Reservation
Car Reserved

Price
Corporate Expense

Invoke
Confirm Payment

E-Ticket, Ticket

1

2

3

4

5

6

7

Fig. 5. Sequence diagram of a tourism information system.

IV. THE CASE STUDY

In this section, the partial order reduction algorithm for
timed trace theoretic verification has been applied to
minimize the number of state while verifying the web service
composition with timing constraints. We demonstrated with a
Tourism Information System (TIS) [17]. This system is a
flight ticket, hotel, and car rental reservations. The TIS
architecture is illustrated in Fig. 4. The TIS is a coordination
middleware or central control engine. It consists of three
broker web services including Airline Broker Web Service,
Hotel Broker Web Service, and Car Rental Broker Web
Service. All broker web services perform as a representative
so that they will call services from business providers within
their groups and send results to the TIS. In this experiment, a
main scenario shown in Fig. 5 is verified.

TIS are a coordination middleware or central control
engine. It consists of three broker web services including
Airline Broker Web Service, Hotel Broker Web Service, and

Car Rental Broker Web Service. They perform as a
representative so that they will call services from business
providers within their groups and send results to the TIS.

A. The Specification of the Tourism Information System
The business process starts receiving initial requirements

from customers through task manager service. Then the TIS
sends information to be processed by all broker web services
including Airline Broker Web Service, Hotel Broker Web
Service, and Car Rental Broker Web Service. Customers may
reserves a flight ticket and hotel, but probably not a car rental.
Lastly, corporate expense service (CES) calculates the
expense for the customer.

Airline Broker Web Service is a business process service
agents used to book a seat. The agent includes partner Thai
Airway web service and AirAsia web service. These services
show a list of flight and wait for a customer requirement

Hotel Broker Web Service is a business process service
agents used for hotel reservations. The agent includes Sofitel

243

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

hotel web service and Kosa hotel web service. These services
show hotel information and wait for a customer requirement.

Car Rental Broker Web Service is a business process
service agents used for renting a car. The agent includes
partner Srichan car rental web service and Power car rental
web service. These services show car rental information and
wait for user requirement. The specification of the TIS is
modeled in Fig. 6.

receive
receiveInput

choose

invoke
Invoke_AB

choose

choose

invoke
Invoke_HB

invoke
Invoke_CB

invoke
Invoke_2

invoke
Invoke_1

invoke
Invoke_2

invoke
Invoke_1

invoke
Invoke_2

invoke
Invoke_1

receive
receiveTask

Result

invoke
callbackClient

invoke
callbackClient

invoke
callbackClient

invoke
initiateTask

receive
receiveTask

Result

invoke
initiateTask

invoke
initiateTask

receive
receiveTask

Result

TInvoke_AB
[0,5]

TinitiateTask
[0, 10]

TcallbackClient
[0, 10]

TInvoke_2
[4, 8]

TInvoke_1
[4, 8]

Fig. 6. Time petri net of a specification of tourism information system.

The TIS must satisfy the following properties.
1) After the TIS get request from a customer, the service will

forward some information to the airline broker web
service within 5 units of time.

2) The airline broker web service will search and display
flight information corresponding to a customer request. It
must respond to the customer within 10 units of time.

3) The hotel broker web service will accept a customer
request, such as find, select and reserve a room, and
respond to the customer within 10 units of time.

4) The car rental broker web service will accept a customer
request and forward it to partners simultaneously from 4
until 8 units of time.

B. The implementation of the Tourism Information
System

The WS-BPEL implementation of TIS is obtained from

[17]. And, it is transformed into time Petri net by using the
algorithm proposed in [14]. Time Petri net implementation of
TIS, Airline Broker Web Service, Hotel Broker Web Service,
and Car Rental Broker Web Service are shown in Fig. 7, Fig. 8,
Fig. 9 and Fig. 10, respectively.

receive
receiveInput

inputVariable switch
Switch_1

sequence
sequence_1

sequence
main

assign
assign_AB1

customerName from
input

variable
to

invoke_AB

assign
assign_AB3

customerName
from

expression= “0”
to

receive_ABassign
assign_AB1

source
from
input

variable
to

invoke_AB assign
assign_AB1
destination

from
input

variable
to

invoke_AB assign
assign_AB1

departureDate
from
input

variable
to

invoke_AB assign
assign_AB1
passenger

from
input

variable
to

invoke_AB

invoke
Invoke_AB

receive
receive_AB

assign
assign_AB2

AirlineService from
receive_AB

to
outputVariable

switch
Switch_2

sequence
sequence_2

assign
assign_HB1

customerName
from

input variable

to
invoke_HB

assign
assign_HB3

customerName
from

receive_AB

to
receive_HB

assign
assign_HB3
destination

from
input variable

to
invoke_HB

invoke
Invoke_HB

receive
receive_HB

assign
assign_HB2
HotelService from

receive_HB

to
outputVariable

case otherwise

case otherwise

from
receive_AB

to
receive_HB

assign
assign_HB1
destination

from
expression= string

(‘N/A’)
to

receive_HB

assign
assign_HB1
hotelName

to
receive_HB

assign
assign_HB1
priceHotel from

expression= “0”

switch
Switch_3

sequence
sequence_3 assign

assign_CB1
customerName from

receive_HB

to
invoke_CB

assign
assign_CB3

priceCar
from

Expression= “0"

assign
assign_CB1
destination

from
receive_HB

to
invoke_CB

receive
receive_CB

assign
assign_CB2

CarRentalService from
receive_CB

to
outputVariable

case otherwise

assign
assign_CB1

arrTime from
receive_HB

to
invoke_CB assign

assign_CB1
hotelName from

receive_HB

to
invoke_CB

invoke
Invoke_HB

/switch
Switch_3

to
receive_CB

assign
assign_1

priceAirline from
receive_AB

to
invoke_CES

sequence
sequence_4

assign
assign_1

priceHotel from
receive_HB

to
invoke_CES assign

assign_1
priceCar from

receive_CB

to
invoke_CES

invoke
invoke_CES

from
receive_CES

to
outputVariable

assign
assign_2

total

invoke
callbackClient

TInvoke_AB
[0, 5]

Fig. 7. Time Petri net of the implementation of tourism information system.

C. Verification Result of the Tourism Information
System

The experiments have been done on a 2.10 GHz Intel core
i7 with 4 gigabytes of memory. We have verified the TIS by

244

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

tool in [16]. We then give some result obtained with the
analysis of our nontrivial case study. The CPU times and
memory usage for verification of the TIS are 0.04 sec. and
271 kilobytes, respectively.

Fig. 8. Time Petri net of the implementation of airline broker web service.

Fig. 9. Time Petri net of the implementation of hotel broker web service.

receive
receiveInput

flow
Flow_1

assign
Assign_1
customer

Name

invoke
Invoke_2

invoke
Invoke_1

from
input

variable
to

invoke_
SC assign

Assign_1
destinationfrom

input
variable

to
invoke_

SC

assign
Assign_2

destination from
input

variable
to

invoke_
PW

assign
Assign_2
customer

Name
from
input

variable
to

invoke_
PW

sequence
main

sequence
Sequence_2

sequence
Sequence_1

/flow
Flow_1

assign
configureTask
customerNamefrom

input variable

sequence
Sequence_3

to
reviewTask

title assign
configure

Task
from

expression = String
(‘CarRentalBrokerWS’)

to
reviewTask

creator assign
configureTask

destination
from
input

variable
to

reviewTask
assignee assign

configureTask
result from

Merge SC, PW
to

reviewTask
attachment

assign
setPayload from

reviewTask

sequence
Sequence_4

to
taskRequest

invoke
initiateTask
taskRequest

receive
receiveTaskResult

taskRespond
assign

readPayloadfrom
taskRespond

to
reviewTask

assign
CopyReview

Sheet
attachment

from
reviewTask

to
outputVariable

Item
assign

CopyReview
Sheet

customerName

assign
CopyReview

Sheet
destination

invoke
callbackClient

from
inputVariable

to
outputVariable
customerName

from
reviewTask

to
outputVariable

destination

assign
CopyReview

Sheet
arrTimefrom

reviewTask
to

outputVariable
arrTime

assign
CopyReview

Sheet
hotelNamefrom

reviewTask
to

outputVariable
hotelName

TInvoke_2
[4, 8]

TInvoke_1
[4, 8]

Fig. 10. Time Petri net of the implementation ofcar rental broker web service.

V. CONCLUSION

In this paper, we have applied a partial order reduction
algorithm for timed trace theoretic verification to assure the

245

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

correctness and reliability of web service composition with
timing constraint. We demonstrated the effectiveness of our
proposed method to verify a tourism information system. In
the future, we are planning to verify a practical system by
using the hierarchical verification method. According to our
framework, we are also implementing a tool in order to
automatically verify the whole process of web service
composition.

REFERENCES

[1] A. Alves et al. (April 2007). Web Service Business Process Execution
Language Version 2.0. [Online]. Available:
http://docs.oasis-open.org/wsbpel/ 2.0/wsbpel-v2.0.pdf

[2] N. Guermouche and S. D. Zilio, “Towards timed requirement
verification for service choreographies,” presented at 8th International
Conference on Collaborative Computing: Networking, Applications
and Worksharing, Pittsburgh, PA, United States, October 14-17, 2012.

[3] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri nets,”
in Proc. the Third International Conference on Business Process
Management (BPM 2005), France, pp. 220-235, 2005.

[4] N. Lohmann. (August 2007). A Feature-Complete Petri Net Semantics
for WS-BPEL 2.0 and its Compiler BPEL2oWFN. Available:
http://www.informatik.uni-rostock.de/tpp/publications/Lohmann_200
7_hubtr212.pdf.

[5] Y. Yang, Q. Tan, J. Yu, and F. Liu, “Transformation BPEL to CP-Nets
for verifying web services composition,” in Proc. the International
Conference on Next Generation Web Services Practices, Washington,
DC, USA, pp.137-142, 2005.

[6] Y. Yang, Q. Tan, and Y. Xiao, “Verifying web services composition
based on hierarchical colored Petri nets,” presented at First
International Workshop on Interoperability of Heterogeneous
Information, Bremen, Germany, October 31 - November 5, 2005.

[7] H. Kang, X. Yang, and S. Yuan, “Modeling and verification of web
services composition based on CPN,” presented at IFIP International
Conference on Network and Parallel Computing, Dalian, China,
September 18-21, 2007.

[8] Y. Wang and S. Pan, “CPN-Based verification of web service
composition model,” presented at International Conference on
Educational and Information Technology. Chongqing, China,
September 17-19, 2010.

[9] E. Martinez, M. E. Cambronero, G. Diaz, and V. Valero, “Design and
verification of web services compositions,” presented at 2009 Fourth
International Conference on Internet and Web Applications and
Services, Venice/Mestre, Italy, May 24-28, 2009.

[10] J. Mei, H. Miao, Q. Xu, and P. Liu, “Modeling and verifying web
service applications with time constraints,” presented at 9th

IEEE/ACIS International Conference on Computer and Information
Science, Kaminoyama (Yamagata), Japan, August 18-20, 2010.

[11] G. Dai, R. Liu, C. Zhao, and C. Hu, “Timing constraints specification
and verification for web service compositions,” presented at 2008 IEEE
Asia-Pacific Services Computing Conference, Yilan, Taiwan,
December 9-12, 2008.

[12] R. Liu, C. Hu, C. Zhao, and Z. Gao, “Verification for time consistency
of web service flow,” presented at Seventh IEEE/ACIS International
Conference on Computer and Information Science, Portland, Oregon,
USA, May 14-16, 2008.

[13] W. Song, X. Ma, C. Ye, W. Dou, and J. Lu, “Timed modeling and
verification of BPEL processes using time Petri nets,” presented at
2009 Ninth International Conference on Quality Software, Jeju, South
Korea, August 24-25, 2009.

[14] W. Kongburan and D. Pradubsuwun, “Formal verification of
WS-BPEL using timed trace theory,” presented at 5th KKU
International Engineering Conference, Khonkaen, Thailand, March
27-28, 2014.

[15] P. Bonhomme, G. Berthelot, P. Aygalinc, and S. Calvez, “Verification
technique for time Petri nets,” presented at 2004 IEEE International
Conference on System, Man and Cybernetics, The Hague, Netherlands,
October 10-13, 2004.

[16] D. Pradubsuwun, T. Yoneda, and C. Myers, “Partial order reduction for
detecting safety and timing failures of timed circuits. IEICE Trans.
88-D), pp. 1646-1661, July 2005.

[17] E. Naenudorn, “One stop service for tourism business using web
service composition model,” M.S. thesis, Dept. Information
Technology, Khonkaen University, Khonkaen, Thailand, 2006.

Denduang Pradubsuwun received the B.S. degree
with the 2nd class honors in computer science from
Ramkhamhaeng University, Bangkok, Thailand, in
1995, the M.S. degree in computer science from
Chulalongkorn University, Bangkok, Thailand in
1999, and the D.Eng. degree in computer science from
the Tokyo Institute of Technology, Tokyo, Japan in
2005.

He is a lecturer in the Department of Computer Science, Faculty of
Science and Technology, Thammasat University, Pathumthani, Thailand.
His current research interests are formal verification, timed circuits
verification, and concurrent system.

Wutthipong Kongburan received the B.S. degree
in computer science from Thammasat University,
Pathumthani, Thailand, in 2010.

Currently, he is a computer technical officer at
Ramkhamhaeng University, Bangkok, Thailand. His
research interests include software verification,
formal method and software engineering.

