
  

                                                                                                                                                                                                                                                    

Abstract—The adaptive fault-tolerant control problem for 
descriptor nonlinear system is researched in this paper. 
Contents include the properties of Adaptive Fault-tolerant like 
uncertainties, state delays, and input delays using T-S fuzzy 
model. First, the design of the state observer to estimate system 
state and sensor fault is introduced. Then, the adaptive 
fault-tolerant control structure with the state observer is 
proposed when combining with the sliding model control (SMC) 
and the adaptive generic model control (AGMC). Finally, an 
adaptive fault-tolerant control structure for nonlinear 
descriptor system is constructed. About above results, both of 
theoretical analysis and illustrative examples demonstrating the 
feasibility and validity were proposed.  
 

Index Terms—Fault-tolerant control, T-S fuzzy, observer, 
sliding model control, adaptive generic model control. 

 

I. INTRODUCTION 
Because of an effective method to improve the reliability 

and safety of devices adaptive fault-tolerant control 
technology has been widely investigated by industries [1]-[3]. 
Recently, researches on fault-tolerant control were developed 
rapidly using fuzzy system, neural network, expert system, 
pattern recognition, and other methods. Among them, T-S 
fuzzy model was proposed by Takagi and Sugeno to 
described complex nonlinear systems. Furthermore, 
Taniguichi T et al., extended this normal T-S fuzzy model to 
generalized situations [4]. T-S fuzzy model was proposed to 
describe the complicated nonlinear system, though the 
reliability of a nonlinear descriptor system and the optimal 
fault-tolerant control were not taken into consideration 
[5]-[7]. Z. W. Gao proposed a descriptor system, describe the 
fuzzy system with sensor fault [8]. Designed fuzzy state 
observer can estimate both the system states and faults 
simultaneously. The problem is that the system time-delay 
was ignored. These nonlinear adaptive fault-tolerant systems 
are usually designed based on nonlinear process model and 
nonlinear controllers. One of them is the generic control 
model (GMC) [9] which was proposed in 1988 introduced the 
new control structure in which the nonlinear process model 
can be used directly in control strategy. GMC has been 
applied experimentally to a diverse range of processes, such 
as bench-scale yeast fermentation, binary distillation, and a 
continuous metallurgical process. But GMC has unobvious 
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physical meaning and not particularly good effect [10]. P. D. 
Signal proposed general model adaptive control which using 
model parameters adaptive changing to estimate the model 
parameters online. The weakness of Kalman filter is a poor 
robustness to model errors [11]. Sliding model control (SMC) 
is an effective nonlinear control method which has attractive 
features such as a fast response, a good transient performance, 
and the insensitiveness of uncertainties and external 
disturbances. It can improve the reliability and robustness of 
the system [12]-[14]. Therefore, it is proposed in this paper 
that the Kalman filter in general model adaptive control 
method can be replaced by the state observer, the general 
model adaptive fault-tolerant control architecture can be 
proposed based on SMC control.  

This paper is organized as follows. In Section II, a class of 
descriptor nonlinear system with time-delays, and 
uncertainties are described by T-S fuzzy model. Then, the 
state observer is designed which estimates system state and 
sensor fault. In Section III, the adaptive general model 
control based on sliding model control is proposed by 
combine SMC and AGMC to improve the robustness and 
effectiveness of the nonlinear descriptor system. In Section 
IV, the control law reconfiguration is proposed in case of 
sensor fault occurring. In Section V, the whole adaptive 
fault-tolerant control structure for nonlinear system was 
proposed based on T-S fuzzy model. Finally, both the 
theoretical analysis and illustrative example demonstrate the 
feasibility and validity of the adaptive fault-tolerant control 
structure were proposed. 

 

II. T-S FUZZY DESCRIPTOR SYSTEM MODEL 

T-S fuzzy [15]-[17] descriptor system is a nonlinear 
system which is described by a group of if-then (i-th) fuzzy 
rules, and each rule represents one subsystem. Considering 
the uncertain model of T-S fuzzy descriptor system with state 
delays and input delays, the i-th fuzzy rule can be described 
as follows: 
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Here, ( ) ( )tt pξξ L1
 are the premise variables assumed 

measurable, 
pii MM L1

 are the fuzzy sets. r  is the number of 

fuzzy rules. ( ) nRtx ∈  is the state vector. ( ) nRtu ∈  is the input 
vector. ( ) nRty ∈  is the measurable output vector. d  is the 
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state time-delay and τ  is the input time-delay. 

iidiidi CBBAA ,,,,  and iN  are the known constant matrices 
with appropriate dimensions. ( ) ( ) ( )tBtAtA iidi ΔΔΔ ,,  and 

( )tBidΔ  are the parametric uncertainties and considered 
norm-bounded, in the form: [ ] ( )tFHBBAA iiidiidi =ΔΔΔΔ  

[ ]iiii EEEE 4321 . Where iiii EEEH 321 ,,,  and iE4  are the 
known real constant matrices with appropriate dimension. 

( )tFi  is an unknown matrix function satisfying 

( ) ( ) ItFtF i
T

i ≤ , in where I  is the identity matrix of 
appropriate dimension. 

Using center-average defuzzifier, product interference, 
and singleton fuzzifier, the T-S fuzzy system can be inferred 
asfollows: 
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where the rules are defined as follows: 
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Considering the state of the system (1) is immeasurable, 
we construct an observer which can estimate both the system 
state and sensor fault directly. If the delay parameters have 
been known accurately, an observer contains time-delay 
parameters in the original system. In this paper, because 
accurate parameters in practical systems can’t be got, we 
constructed a state observer without time-delay parameters in 
the original system. 

We established the observer which can estimate both the 
system state and sensor fault as follows:  
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where ( )tϕ  is an auxiliary vector of the observer and ( )tx̂  is 
the state estimation of (1). Obviously, ( )tx̂  contains the 
estimation of state. H  is the observer gain to be determined 
later.  

To obtain the parameters of the state observer, we defined 
the estimation error as ( ) ( ) ( )txtxte ˆ−= . From equation (2) 
and equation (3), we obtain,  
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Then, it is calculated as following result: 
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III. ADAPTIVE GENERAL MODEL CONTROL BASED ON 
SLIDING MODEL CONTROL (SMC-AGMC) 

In order to use adaptive general model control, the 
nonlinear system (1) with multiple inputs and outputs is 
transferred as follows:  
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+=                             (5) 

 
where, ( ) ( )xgxf ,  and ( )xh  are the nonlinear functions of 

( )tx . ( )tys  is the sensor fault vector, and every relative order 
of outputs is 1. In classical optimal control, the trajectory of 
output ( )ty  is usually compared with some nominal 
trajectory as a system performance index. Having considered 
the speediness and unbiased property of the system, in order 
to get the satisfied output response, the reference trajectory of 
output is defined as follows: 
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where ( )tysp

 is the output setting. By choosing the matrix 1K  

and 2K , the reference trajectory can be improved to the 
satisfied output response. By choosing control input )(tu , the 
system output can be made to track the reference trajectory as 
much as possible. 

From equation (6), it can be calculated that: 
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SMC is one of the effective robust control methods for 

nonlinear system; it provides system dynamics with an 
invariance property to uncertainties. This paper combines 
SMC and AGMC to improve the robustness of the adaptive 
general model control. Let the model tracking error in SMC 
be defined as ( ) ( ) ( )tytyte ry −=1

, that is same to 

( ) ( ) ( )tytyte ry &&& −=1
. Then, the error matrix could be defined 

as ( ) ( )[ ]Tyy teteE 111 &= . 

Variable structural control requires a sliding model with 
ideal sliding modality, good dynamic quality, and robustness. 
All of them can be achieved by appropriate choice of the 
sliding surface model that is designed by closed-loop 
performance in the state of a variable space. Then, design the 
control scheme, so that the system trajectories are forced 
toward the sliding surface and stay on it. Therefore, the 
sliding surface in SMC-AGMC can be designed as:  

( ) ( ) ( )∫+=
t

yy dektekts
0 12111 ττ                    (8) 

According to sliding control method, design the general 
sliding model reaching law as ( ) ( ))sgn( 11 tsts ρ−=& . Then 
based on equation (8) can get: 

( ) ( ) ( )tektekts yy 12111 += &&                        (9) 
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In order to get the sliding control law, transfer equation (9) 
as: 
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Finally, the sliding control law is obtained as:  
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The stability analysis of the SMC-AGMC proofed as 

follows: 
( ) ( )( )tsts 11 sgnρ−=&  and ( )tsV 2

12
1=  are obtained from 

equation (10) and Lyapunov function, respectively. As a 
result, the differentiating V  and time yields following 
equation, 
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Similarly, the system output ( )ty  is ineffective when the 

sensor fault is detected. In this case, replace ( )ty  in 
SMC-AGMC by the estimated output ( )tŷ  which is got by 
state observer. Then get the method of state estimation and 
output prediction based on SMC-AGMC. According to 
sliding model control method the model tracking error is can 
be defined as ( ) ( ) ( )tytyte ry −= ˆ2

this means 

( ) ( ) ( )tytyte ry &&& −= ˆ2
 also. The error matrix can be defined as 

( ) ( )[ ]Tyy teteE 222 &= . The sliding surface in term of ( )tey2
 is 

( ) ( ) ( )∫+=
t

yy dektekts
0 22212 ττ . Therefore, the sliding control 

law is designed as: 
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In the case of detecting fault, the proof of the stability by 

the sliding model control method is same to equation (12). 
 

IV. THE CONTROL LAW RECONFIGURATION LOGIC 

The active fault-tolerant control system should have an 
algorithm for fault estimation and isolation for unknown 
faults. The isolation of the system fault is performed based on 
adjusting the state observer estimation and the sensor fault. 
Fig. 1 shows a control law reconfiguration when sensor fault 
occurs. 

First, estimate the sensor fault vector )(tys  by state 
observer. Then, use the estimation value ( )tysˆ  to construct 
the fault detection and isolation algorithm. Finally, the 
control law reconfiguration logic is constructed as shown in 

Fig. 1. As a result, the corresponding fault-tolerant logic will 
be gotten when the sensor fault is detected. In Fig. 1, 1ε  and 

2ε are threshold values defined before. If the condition 
satisfies ( ) 1ˆ ε>tys

, it will be considered that the sensor has 

fault. Then, the control law will be switched to the state 
estimation and output prediction of SMC-AGMC. On the 
other hand, if ( ) 2ˆ ε<tys

, the control law will be switched to 

the normal SMC-AGMC automatically when the sensor has 
no fault. 

)(ˆ tys

1)(ˆ ε>tys

2)(ˆ ε<tys

 
Fig. 1.  The control law reconfiguration when sensor fault occurs. 

 

V. FAULT-TOLERANT CONTROL ARCHITECTURE MODEL 

Because the Kalman filter in traditional adaptive generic 
model has poor robustness to model error, the control effect is 
poor too. In this paper, the state observer (3) is used to 
estimate the system state and sensor fault online to improve 
the stability and reliability of the system. Also, SMC and 
AGMC are combined to improve the robustness. Fig. 2 shows 
the SMC-AGMC fault-tolerant control architecture model 
with the state observer. 
 

spy AGMCSMCy −)(tu )(tx

)(ˆ tx

)(ˆ tys

 
Fig. 2.  Fault-tolerant control architecture model. 

 
The fault-tolerant control architecture model is constructed 

as following steps. First, the state observer (3) is used to 
estimate system state ( )tx  and output ( )ty  online. Next, get 
the state estimation ( )tx̂ , output estimation ( )tŷ , and sensor 
fault estimation ( )tysˆ . Then, according to estimation ( )tysˆ to 
judge that the sensor has fault or not. If the sensor is normal, 
choose the control law (7). If the sensor fault is detected, 
reconfigure the sensor. The estimation ( )tx̂  and ( )tŷ  are used 
to construct the state estimation and output prediction based 
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on SMC-AGMC. ( )tysˆ  is used to construct the fault detection 
and isolation algorithm. In this case, choose the control law 
(9). If the sensor returns to normal, keep the choice of the 
actual system output )(ty  and the control law (7).  
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Fig. 3. Model output ySMC-AGMC, reference output yck and setting output ysp. 
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Fig. 4. Model state x2 and estimation. 

 

VI. SIMULATION RESULT 

Considering the T-S fuzzy descriptor model with 
uncertainties and double time-delays is described as follows: 
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where the parameters is taken as follows: 
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If the output is set as 2.0=spy , the parameters in 

SMC-AGMC control method are 11 =ε , 2.02 =ε , 51 =k and 
5.02 =k . 

When the initial conditions are chosen as [ ]000 =x , the 
simulation results of system output and input are shown as 
follows: 

Fig. 3 shows the system output y-SMCAGMC of the 
adaptive fault-tolerant generic model containing sliding 

model control, the reference model output cky , and the 

setting output spy . The output of system has a little 

deviation from the reference trajectory while it is consistent 
with specified output. 

The system input 2x  and the state observer estimation 2x̂  
are shown in Fig. 4 where the trajectory of the state 
estimation 2x̂  traces the state 2x  well. It means that the 
proposed adaptive fault-tolerant control structure of T-S 
fuzzy model is effective. 
 

VII. CONCLUSION 

In this paper, the descriptor system containing 
uncertainties and time-delays is described by T-S fuzzy 
model. The observer is designed based on parallel distributed 
compensation (PDC) algorithm which can estimate system 
state and sensor fault directly. Thus, the fault detection 
system was established. Having combined SMC and AGMC, 
a strategy of sensor adaptive fault-tolerant generic model 
control is constructed. Finally, the effective control law 
reconfiguration logic was proposed when the sensor has fault. 
Also the adaptive fault-tolerant control structure was 
established based on sliding model control with state 
observer. 

The results of simulation show that state-observer can 
estimate sensor fault, the system output is consistent with the 
setting output, and the control system keeps good effect. This 
demonstrates the proposed adaptive fault-tolerant control 
structure based on T-S fuzzy model was feasibility and 
validity. As well as, it has explicit physic meaning, simple 
structure, strong robustness, and easy tuning property. It is an 
effective fault-tolerant control strategy for a complex 
nonlinear control. 
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