
 

  
Abstract—Modeling large frictional contact is a numerical 

tool to simulate abrasion resistant material. We have therefore 
proposed a new method to impose contact constraints in 
eXtended Finite Element Method (XFEM) framework. For this 
technique we impose penalty constraint on Node To 
Segment(NTS) elements. Moreover, the effect of friction has 
been investigated based on the Coulomb friction law. In our 
algorithm, new Lagrangian shape functions are proposed to 
solve the problems of the conventional Heaviside enrichment 
function. Finally, two numerical simulations for non-smooth 
constraints are delivered to show the efficiency of our 
algorithm. 
 

Index Terms—Coulomb law, large sliding contact, 
non-smooth constraint, X-FEM. 
 
 

I. INTRODUCTION 
Nano-architecture as the new contemporary architectural 

style of the 21st century has revolutionized every aspects in 
this major even in the way architects think or how they 
inspire their ideas. This adaption of architecture with 
technology has peaked with the discovery of new 
conventions of different materials and has revolted the 
traditional way of thinking. For instance, Walt Disney 
concert Hall, designed by Frank Ghery in 2003 shows how 
the new materials has helped the architect to develop his 
ideas to come up with different new adaptable forms and 
construction system. Thus, this technology contributes to the 
architectural inspiration which relies on the creativity with no 
limits in order to be able to form new exquisite patterns of 
architecture. Architects therefore now can produce more 
controversial ideas and create novel designs for the current 
and future generations. 

One kind of new materials which is considerably 
considered by architectural engineers has scratch proof and 
abrasion resistant quality. Nanotechnology makes it possible 
for substance to have this characteristic while they maintain 
transparent. Scratch-resistance is a desirable property for 
many materials and also for coatings which can be applied to 
wood, metal and ceramics. 

To improve our program to consider this physical 
phenomenon, we needed a very robust algorithm for 
modeling large frictional contact. In the following this 
algorithm is discussed completely.  
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Imposing constraints in eXtended Finite Element Method 
(XFEM) framework is one of the debating issues between all 
computational mechanics researchers. Not directly related to 
contact problems, firstly professor Ji concerned the difficulty 
to impose conditions on an interface with XFEM[1]. After 
that, this concept was investigated by many researchers from 
different aspects, and several costly methods have proposed 
to solve the problem. For instance, LBB stabilization 
algorithm was suggested by Professor Geniaut et al. and then 
used by other groups in modeling large sliding contact[2]. 
What’s more, this problem was investigated by Professor 
Moes et al.[3, 4] to find the reason of oscillations of contact 
pressure by imposing constraints in XFEM. But, it should be 
mentioned that all methods presented have a costly numerical 
algorithm.  

In this work, a new algorithm has been presented to model 
large deformation- large sliding frictional contact in XFEM. 
Node To Segment (NTS) elements have been used in order to 
simulate large relative displacements of interfaces. This 
method has a search algorithm which can efficiently model 
the updated status of the interfaces. Moreover, new shape 
functions have been used in order to alleviate the burden 
caused by ordinary Heaviside enrichment function. In 
addition, the effect of friction on the movement of two sliding 
bodies has been presented. Furthermore, in order to impose 
the non-penetration constraint, the stiffness of the normal 
spring has a great value based on the penalty method. In the 
following, first, our new shape functions have been 
introduced. Then, after a brief explaining of NTS elements in 
Finite Element (FE), the usage of this method with our shape 
functions will be discussed. Finally, numerical simulations 
result has been presented to show the accuracy of our new 
algorithm.  

II. GENERALIZED FINITE ELEMENT METHOD 
ሺܺሻݑ  ൌ ෍ ூܰሺܺሻݑതூூ൅ ෍ ௃ܰሺܺሻሺߖሺܺሻ௃െ ሺߖ ௃ܺሻሻܽ௃           ݊ூ א  ்݊   and ݊௃א ݊௘ 

(1)

The difficulty of mesh generation in finite element method 
motivated the scientist to invent new method which is not 
dependent to this factor. Therefore, XFEM proposed which 
can model the discontinuous displacement field inside the 
element by adding several degrees of freedom to the nodes of 
that element[5], and changing the displacement field of the 
element to the following equation to consider the 
discontinuity. So, the standard FE approximation can be 
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enriched with additional functions by using the notion of 
partition of unity. The enriched approximation in modeling 
of discontinuity Γ௖ can be expressed in form (1). 

The first term of above equation denotes the classical finite 
element approximation and the second term indicates the 
enrichment function considered in X-FEM. In this 
equation, ݑതூ is the classical nodal displacement,  ܽ௃ the nodal 
degrees of freedom corresponding to the enrichment 
functions, ߖሺܺሻ  the enrichment function, and ܰሺܺሻ  the 
standard shape function. In equation (1), ்݊ is the set of all 
nodal points of domain, and ݊௘ the set of nodes of elements 
cut by the interface, i.e. , ݊௘ ൌ ሼ ݊௃: ݊௃ א ்݊ ሽ , and ,߱௃ ת
Γ௖ ് 0, with ,߱௃ ൌ  ሺ݊௃ሻ, denoting the support of nodal݌݌ݑݏ
shape function ௃ܰሺܺሻ, which consists of the union of all 
elements with ݊௃ as one of its vertices, or in other words the 
union of elements in which ௃ܰሺܺሻ is non-zero. The idea of 
adding a displacement field term to the continuous 
displacement field of the ordinary FEM could bring a lot of 
works in this field, and various enrichment functions used for 
different types of discontinuities [6,7,8]. The conventional 
enrichment function for contact problems is Heaviside which 
should model the large relative sliding of two side of the 
element in which the interface has been passed. However all 
computational simulators who are involved in working with 
this type of enrichment function, assert that they have 
problem for contact pressure on the interface even in static 
contact interface. Moreover, in large sliding they can 
obviously see that this displacement formula is not 
responsive for the discontinuous displacement field of the 
element as it still have the term of connectivity between 
nodes on both sides which are not beside each other anymore. 
In other word, in the state such as shown in Fig. 1 the 
discontinuous displacement field will bring stiffness between 
two sides which do not have any connection any more. And it 
cannot represent the total discontinuities of the system. 
Therefore, a new shape function has been proposed which 
has the FEM basement and does not have any problem in 
modeling large sliding of the system. Furthermore, these 
shape function will not bring the oscillation of the contact 
pressure and we have the accuracy near to FEM simulations. 
In this simulation we have two types of elements as shown in 
Fig. 2. Therefore, we have two types of shape functions for 
these different elements as it is specified in (2) and (3). 

  In our method in situation similar to case (2), node (1) is 
not enriched, instead node (3) has two enrichment shape 
function These shape functions can model the large relative 
sliding of two sides of interface very well and do not show 
any connectivity between two side nodes. 

Fig. 1. Typical large sliding in XFEM 
 

 

ଵܰ ൌ ሺ1 െ ߦ െ ,ݔሺെܶሺܪ ሻߟ  ሻሻݕ

ଶܰ ൌ ,ݔሺെܵሺܪ ሻሻݕ ቐ ሺ1ߦ ൅ ሻሺ1ߦ െ ሻ4ߟ     ܶሺݔ, ሻݕ ൑ 0ܶሺݔ, ሻݕ ൐ 0 

ଷܰ ൌ ,ݔሺܵሺܪ ߟ  ሻሻݕ

ସܰ ൌ ,ݔ൫െܵሺܪ ሻ൯ݕ ൝ ሺ1ߟ െ ሻሺ1ߦ െ ሻ4ߟ    ܶሺݔ, ሻݕ ൑ 0ܶሺݔ, ሻݕ ൐ 0 

ଶܰ௘௡௥ ൌ ሺ1 ൅ ሻሺ1ߦ ൅ ሻ4ߟ ,ݔሺെܵሺܪ  ሻሻݕ כ ,ݔሺܶሺܪ  ሻሻݕ

ଷܰ௘௡௥ሺଵሻ ൌ ,ݔሺܵሺܪ ߦ  ሻሻݕ

ଷܰ௘௡௥ሺଶሻ ൌ ሺ1 െ ߦ െ ,ݔሺܵሺܪሻߟ  ሻሻݕ

ସܰ௘௡௥ ൌ ሺ1 െ ሻሺ1ߦ ൅ ሻ4ߟ ,ݔሺെܵሺܪ ሻሻݕ כ ,ݔሺܶሺܪ  ሻሻݕ

(3)

TABLE I. EQUATIONS (2),(3)  ܰ1 ൌ ሺ1 െ ሻሺ1ߦ െ ሻ4ߟ ,ݔሺെܵሺܪ  ሻሻݕ
ܰ2 ൌ ሺ1 ൅ ሻሺ1ߦ െ ሻ4ߟ ,ݔሺെܵሺܪ   ሻሻݕ
ܰ3 ൌ ሺ1 ൅ ሻሺ1ߦ ൅ ሻ4ߟ ,ݔሺܵሺܪ   ሻሻݕ
ܰ4 ൌ ሺ1 െ ሻሺ1ߦ ൅ ሻ4ߟ ,ݔ൫ܵሺܪ   ሻ൯ݕ

ݎ1݁݊ܰ ൌ ሺ1 െ ሻሺ1ߦ ൅ ሻ4ߟ ,ݔሺെܵሺܪ   ሻሻݕ
ݎ2݁݊ܰ ൌ ሺ1 ൅ ሻሺ1ߦ ൅ ሻ4ߟ ,ݔሺെܵሺܪ   ሻሻݕ
ݎ3݁݊ܰ ൌ ሺ1 ൅ ሻሺ1ߦ െ ሻ4ߟ ,ݔሺܵሺܪ   ሻሻݕ
ݎ4݁݊ܰ ൌ ሺ1 െ ሻሺ1ߦ െ ሻ4ߟ ,ݔሺܵሺܪ  ሻሻݕ

(2)
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Fig. 2. Two types of enriched elements 

III. NODE TO SEGMENT ELEMENTS 
The main factor in large relative displacement between 

two interfaces is having an efficient search algorithm in order 
to update the new status of interfaces during two bodies 
movement. Furthermore, it should be capable of imposing 
constraint in the new situation. NTS contact elements not 
only have an efficient search algorithm, but also it establishes 
the condition with a very easy method. Its formulation is 
based on the energy stored in the springs which is considered 
at the normal and tangential direction between slave node and 
master segment Fig3. In other words, to impose the 
non-penetration condition it considers a spring in the 
direction of normal vector of the master segment, and based 
on the penalty algorithm its stiffness considered as great 
number. Besides, it considers tangential spring to model the 
tangential stiffness which two interface show during 
movement along each other based on the friction rules. 
Therefore, two following terms will be added to the whole 
energy of the system, which are the energy stored in these 
springs.  ߎ ൌ 12 ௡ሻଶݑ௡ሺ݀ߙ ൅ 12 ௧ሻଶ (4)ݑ௧ሺ݀ߙ

 
If we consider the shape function of the whole of the Node 

To Segment element as: ࡺ ൌ ൤1 0 െሺ1 െ ሻ0ߦ 1 0 0 െߦ 0െሺ1 െ ሻߦ 0 െߦ൨ 

We can consider the normal relative movement (the relative 
penetration) as , ௡ݑ݀ ൌ ,ഥ࢛௡݀ࡺ௠்࢔  in which  
௡ࡺ, ൌ ሺ࢔௠ ٔ ௠࢔ and ,ࡺ௠ሻ࢔  is the unit normal vector to 
master segment. Moreover, the tangential relative movement 
(the sliding) is calculated based on, ௧ݑ݀ ൌ ഥ࢛௧݀ࡺ௠்࢚ , 
that ,ࡺ௧ ൌ ሺࡵ െ ௠࢔ ٔ  ௠ is the unit tangentialݐ  and ,ࡺ௠ሻ࢔
vector along the master segment. Therefore by differentiating 
from the total energy of the system relative to displacement 
we have two more terms, (ࡷ௡௖ ൌ ௧௖ࡷ , ௡ࡺ௡ߙ௡்ࡺ ൌ ௧்ࡺ  ,(௧ࡺ௧ߙ
added to the ordinary finite element problem which show the 
normal and tangential stiffness matrix. Therefore, we can 
impose our constraints very easily just by adding these two 
terms to the whole stiffness of the system. It should be 
mentioned that based on the coulomb friction law the max 
tangential strength of the system cannot be more than the max 
resistance of material which is ,ሺ∆ܨ௧ሻ௠௔௫ ൌ ௙ܥ ൅  ,௡ሻܨ∆௙ ሺߤ
and so if it increase this value the tangential strength, and the 
tangential relative movement will be modified based on the 
following formula.  

௧ߙ  ൌ ሺ∆ܨ௧ሻ௠௔௫ ∆ݑ௧  
(5)

௧ܨ∆ ൌ ሺ∆ܨ௧ሻ௠௔௫ ௧ (6)ݑ∆࢚࢛∆

 

 
Fig. 3. Modeling of contact constraints in normal and tangential directions in 

concave edge 
 

IV. NTS CONTACT ELEMENTS IN XFEM FRAMEWORK 
As it was shown in our paper [9] completely, to use the wo 

nodes which are at extremes of the edge. So, the stiffness of 
the slave master pairs will be added if they were active to 
each other. This stiffness is similar to the Finite Element 
Method(FEM) stiffness matrix of NTS elements as based on 
our new shape functions each added degree of freedom to the 
system has a meaning of these slave and master nodes. 
Therefore after finding slave and master nodes, we conduct a 
search algorithm to find active pairs, and then after we will 
add the stiffness of these pairs to the total stiffness matrix of 
the system. 

 
Fig. 4. The large sliding along discontinuity 

V. SLIDING ALONG INCLINED AND CURVED INTERFACES 
The main objective of this study was modeling large 

frictional contact along inclined and curved interfaces. In the 
following, the results of these two simulations are delivered. 
The problem statement for the first example is shown in Fig. 
5(a). Middle plate is subjected to large sliding while the 
inclined displacement of 2.0 cm is applied at the left hand 
side of it. Three X-FEM meshes are employed to model the 
sliding, as shown in Fig.5(a). The deformed configuration of 
X-FEM meshes are presented in Fig. 5(b) for three different 
meshes. In Fig. 5(c)-5(e), the distribution of ߪ௫ ௬ߪ , , and ߬௫௬contours are shown for various X-FEM meshes. Good 
agreement can be observed among various X-FEM meshes. 
This example clearly illustrates the performance of proposed 
X-FEM technique in modeling of large deformation – large 
sliding contact problems with inclined interfaces. The 
force-displacement diagram shows the different force needed 
for various coefficients of friction.Fig.6. Finally, as depicted 
in the contact pressure diagram, we have not confronted with 
oscillation of stress along the interface as shown in Fig. 7. 
This can be considered as the main virtue of our new shape 
functions. The next example has been chosen to show the 
power of our algorithm in modeling non-linear contact 
interfaces.  The results of the XFEM meshes have been 
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compared to the FEM outcome. The problem statement for 
this example is shown in the Fig.8(a). The upper block will 
have a large sliding relative to lower one when it subject to 
inclined pre-displacement of 2cm at the left hand side. 
Various contours show a good compatibility between XFEM 
and FEM results Fig.9(a)-(c). Furthermore, force- 
displacement diagram has been shown in the last figure, 
which shows good agreement between XFEM and FEM 
results. 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
In numerical examples which are given, good agreement 

between different sizes of mesh was observed. The force 
Displacement diagram does not show any substantial 
difference due to various friction coefficients. The reason is 
that we do not have any compression loading on contact 
interface. If we got result with the same geometry, but by 
putting compression loading on upper and lower cube, we 

could see more difference in force-displacement diagram. 

 
(e) 

Fig. 5. a) Geometry and three XFEM meshes. b) Deformed configuration. 
c) ߪ௫ contour. d) ߪ௬ contour. e) ߪ௫௬ contour. 

 

 
Fig. 6. Force-Displacement diagram 

 

 

Fig. 7. The distribution of contact pressure along the contact surface at 
different sliding 

 

 
(a) 

 
(b) 

Fig. 8. a) Geometry and FEM and XFEM meshes. b) Deformed 
configuration 
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(a) 

 
(b) 

 

Fig. 9. a) σ୶ contour. d) σ୷ contour. e) σ୶୷ contour 

Fig.10 Force-Displacement diagram 

VI. CONCLUSIONS 
The main objective of this study was modeling large 

frictional contact in order to simulate material against 
abrasion.  We therefore solved the problem of shape function 
of the XFEM as it could not describe the displacement field 
especially in large deformation. Furthermore, to impose the 
non-penetration condition of contact we have used the node 
to segment elements combined with penalty method. To 
consider friction between interfaces, we have used the 
coulomb friction law to revise our maximum strength of the 
interface. A numerical simulation has been shown to 

investigate the accuracy of our algorithm on two kinds of 
interfaces. Good agreement was observed in these 
simulations which show the accomplishment of our 
algorithm in modeling large sliding frictional contact 
problems. With this algorithm, we are able to model different 
material to see which one is more resistant to friction and can 
be considered as a good abrasion resistant material. For 
developing our algorithm, we are intended to add this 
technique to fracture modeling algorithm. In that case, we can 
see the effect of frictional contact after two sides of the crack 
separate and start to slide along each other. Therefore, we 
will be able to calculate the amount of energy dissipated due 
to fracture mechanics and also frictional contact. Finally, we 
can deliver numerical analysis of the toughness of the 
specimen and decide that which material show more 
toughness under loading. 
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