
 

Abstract—In this study, new version of the extended trial 

equation method is applied the nonlinear fractional partial 

differential equations. The fractional partial differential 

equations can be turned into the nonlinear non-fractional 

ordinary differential equations by the fractional derivative and 

traveling wave transformation. So, we find some traveling wave 

solutions to the time-fractional nonlinear dispersive KdV 

equation by the using of the complete discrimination system for 

polynomial method. As a result, these exact solutions to this 

nonlinear problem are constructed such as single king solution 

and hyperbolic function solutions.  

 
Index Terms—The extended trial equation method, Time 

fractional nonlinear dispersive KdV equation, elliptic integral 

functions.  

 

I. INTRODUCTION 

Recently, the fractional differential equations play an 

important role in applied physics, applied mathematics, 

chemistry and engineering. The nonlinear fractional partial 

differential equations represent the mathematical modelling 

of various real life problems. In order to solve these 

problems, a general method cannot be defined even in the 

most useful works. A great deal of work with the 

approximate solutions for fractional nonlinear partial 

differential equations is being done [1]-[3]. Also, some new 

methods for the exact solutions of the nonlinear fractional 

differential equations have been constructed. The exact 

solutions of these problems, when they exist, are very 

important in the understanding of the nonlinear fractional 

physical phenomena. There are a lot of methods which can be 

constituted the wave solutions for some time fractional 

differential equations [4], [5]. Single kink soliton solutions, 

compacton-like solutions, singular solitons and other 

solutions have been found by use of these approaches. Apart 

from all these, some new exact solutions are obtained by 

using the trial equation methods. Some of them are elliptic 

integral F , E  and   function solutions.  

In Section II, we provide at some of the definitions and 

properties of fractional analysis and also give a new version 

of the extended trial equation method for time-fractional 

nonlinear equations. The main feature of this method can be 

applied to the different equations.  

In Section III, as an application, we solve the nonlinear 
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fractional partial differential equation such as the 

time-fractional nonlinear dispersive KdV equation [6, 7] 
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where a  is real valued constant,   
xxxuu and   

xxxuu  are 

dispersive terms. 




t

  is Jumarie’s modified 

Riemann–Liouville derivative of order   defined in Section 

2. Eq. (1) governs the behavior of weakly nonlinear ion 

acoustic waves in a plasma comprising cold ions and hot 

isothermal electrons in the presence of a uniform magnetic 

field. Early studies for the classical nonlinear dispersive KdV 

equation have been established some profound results and it 

seems that detailed studies of the nonlinear fractional 

differential equation are only beginning. Using the new 

version of the extended trial equation method, we find some 

new exact solutions of the time-fractional nonlinear physical 

problem. The purpose of this paper is to obtain exact 

solutions of the time-fractional nonlinear dispersive KdV 

equation by new version of extended trial equation method, 

and to determine the accuracy of this method in solving these 

kinds of problems. 

 

II. PRELIMINARIES 

In this part of the paper, it would be helpful to give some 

definitions and properties of the fractional calculus theory. 

For an introduction to the classical fractional calculus we 

indicate the reader to [1]-[3]. Here, we shortly review the 

modified Riemann-Liouville derivative from the recent 

fractional calculus proposed by Jumarie [8]-[10]. Let 

 f : 0,1 　  be a continuous function and  0,1  　 . The 

Jumarie modified fractional derivative of order   and f  

may be defined by expression of [11] as follows:  
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In addition to this statement, fractional modified 

Riemann-Liouville derivative are summarized below which 

are commonly used features in this paper. Some of the useful 

formulas are given as follows: 
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Some new trial equation methods were defined in literature 

[12]-[24]. In this paper, a new approach to the extended trial 

equation method will be given. In order to apply this method 

to fractional nonlinear partial differential equations, we 

consider the following steps. 

Step 1. We consider time fractional partial differential 

equation in two variables and a dependent variable u   

  0,,,,, xxxxxxt uuuuDuP                (4) 

and take the wave transformation 
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t
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where 0 . Substituting Eq. (5) into Eq. (4) yields a 

nonlinear ordinary differential equation 

  0,,,,  uuuuN                  (6) 

Step 2. Take trial equation as follows:  
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and 
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where  uF  and  uG  are polynomials. Substituting above 

relations into Eq. (6) yields an equation of polynomial  u  

of u : 

  001   uuu s

s             (9) 

According to the balance principle, we can get a relation of 

n  and l . We can compute some values of n  and l .  

Step 3. Let the coefficients of  u  all be zero will yield 

an algebraic equations system: 

sii ,,0,0                    (10) 

Solving this system, we will specify the values of 
naa ,,0   

and 
lbb ,,0  . 

Step 4. Reduce Eq. (7) to the elementary integral form 

 
 
 

du
uF

uG
 0                        (11) 

Using a complete discrimination system for polynomial to 

classify the roots of  uF , we solve Eq. (11) with the help of 

MATHEMATICA and classify the exact solutions to Eq. (6). 

In addition, we can write the exact traveling wave solutions 

to Eq. (4), respectively.  

III. APPLICATION TO THE FRACTIONAL GENERALIZED KDV 

EQUATION 

In the case of 1 , Eq. (1) reduces to the classical 

nonlinear dispersive KdV equation. Many researchers have 

tried to get the exact solutions of this equation by using a 

variety of methods [25]. Compactons, solitary patterns, 

periodic and solitary traveling plane waves solutions of this 

equation are found. 

Let us consider the travelling wave solutions of Eq. (1), 

and we perform the transformation    ,, utxu   

 








1

t
kx  where ,k  are constants. Then, integrating 

this equation with respect to η and setting the integration 

constant to zero, we get 

  02 3232  uukukukau         (12) 

Substituting, Eqs. (7) and (8) into Eq. (12) and using 

balance principle yields 

2 ln  

This resolution procedure is applied and we obtain results 

as follows: 

Case 1: 

If we take 0l  and 2n , then  

  ,
0

2

2102

b
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21

b
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 (13) 

where 02 a , 00 b . Thus, we have a system of algebraic 

equations from the coefficients of polynomial of u . Solving 

the algebraic equation system (10), we get 

3

0 1
0 1 1 2 0 0
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3
     

ab k a
a a a a b b

k b
(14) 

Substituting these coefficients into Eq. (11), we have 
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       (15) 

Integrating eq. (15), we procure the solutions to the Eq. (1) 

as follows: 

  10 ln   uA                    (16) 

  210 ln2   uuA               (17) 

where
a

k
A

3
 . Also 

1 , 
2  are the roots of the 

polynomial equation 

2 01

2 2

aa
u u 0

a a
                           (18) 

Therefore, we find solutions 
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If we take 020   and 11  , then the solutions 

(19)-(20) can reduce to single king solution and the 

hyperbolic function solution respectively, 

     txBtxu 1exp1,                 (21) 

      txBtxu 1cosh1
2

1
,                 (22) 

where 
 

.
1

2
,

0

1

2

1






b

ak

A

k
B  Here, B  is the inverse width 

of the solitons. 

Remark 1. Using the new version of the extended trial 

equation method we obtained the solutions (21)-(22) and 

results have been checked by Mathematica. To our 

knowledge, the hyperbolic function solution and single king 

solution that we find in this paper are not shown in the 

previous literature. These results are new traveling wave 

solutions of Eq. (1). 

 

    
 

 
Fig. 1. Graph of the solution (21) corresponding to the values 

025.0,01.0  and 5.0  from left to right when 

5.2,1,5.0 1  aak  and 
0 0.5.b   

 

Case 2: 

If we take 1l  and 3n , then  
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where 03 a , 01 b . Respectively, solving the algebraic 

equation system (10) yields  
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Substituting these results into Eq. (11), we have  
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Integrating Eq. (26), we obtain the solutions to the Eq. (1) 

as follows:  
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where 
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Also 
1 , 

2  and 
3  are the roots of the polynomial 

equation  

3 2 02 1

3 3 3

aa a
u u u 0

a a a
                         (32) 

   
 

 
Fig. 2. Graph of the solution (22) corresponding to the values 5.0,01.0  

and 85.0   from left to right when 

5.2,1,5.0 1  aak  and 
0 0.5.b   
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Fig. 3. Graph of the solution (22) corresponding to the values 5.0,01.0  

and 85.0  from left to right when 

5.2,1,5.0 1  aak  and 5.00 b  

 

Fig. 1-Fig. 3 show solutions for different values of α when 

time is fixed. We can see that when the values of α increase, 

the amplitudes of the solitary pattern solutions also increase. 

 

IV. CONCLUSIONS 

In this paper, new version of the extended trial equation 

method is studied for the nonlinear time-fractional 

differential equations. We used it to obtain some soliton and 

elliptic function solutions to the time-fractional nonlinear 

dispersive KdV equation. This method is reliable and 

effective, and gives several new solution functions such as 

elliptic integral functions. We think that the proposed method 

can also be applied to other generalized fractional nonlinear 

differential equations. In our future studies, we will solve 

nonlinear fractional partial differential equations by this 

approach. It is interesting to point out that the fractional 

derivative parameter α plays an important role in modulating 

the amplitude of the soliton solution. 
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