
 

Abstract—The asymptotic behavior of solutions to vorticity 

equation that describes the dynamics of viscous nondivergent 

forced fluid on a rotating sphere is studied as t→∞. Special 

forms of forcing are given that guarantee the existence of a 

bounded set that eventually attracts all solutions. The 

asymptotic behavior of the BVE solutions depends on both the 

geometric structure and smoothness of forcing. Sufficient 

conditions for the global asymptotic stability of vorticity 

equation solutions are also obtained. It is well known that 

Hausdorff dimension of global attractor of vorticity equation is 

limited from above by the generalized Grashof number. An 

example given in this work shows that for a fixed bounded 

Grashof number, the Hausdorff dimension of spiral global 

attractor under a quasi-periodic polynomial forcing can become 

arbitrarily large. Since the small scale quasi-periodic forcing 

more adequately depicts the forcing in the barotropic vorticity 

equation, this result is of meteorological interest showing that 

the dimension of attractive sets depends not only on the forcing 

amplitude, but also on its spatial and temporal structure. It also 

shows that the search of finite-dimensional global attractor in 

the barotropic atmosphere is not well justified. 

 
Index Terms—Viscous and forced nondivergent fluid, 

asymptotic behavior, global stability, attractor dimension.  

 

I. INTRODUCTION 

The nonlinear barotropic vorticity equation (BVE) 

describing the vortex dynamics of viscous incompressible 

and forced fluid on a rotating sphere is considered. Although 

the three-dimensional Euler and Navier-Stokes equations are 

the fundamental equations for the numerical simulation of 

dynamics of atmosphere and global climatic processes, the 

shallow-water equations is also widely used as a good 

approximation for the large-scale atmospheric motions, since 

the characteristic length scale of horizontal motions is much 

larger than that of vertical motions [1]. The shallow-water 

equations support both fast (gravity) waves and slow 

(Rossby-Haurwitz) waves [2]. The barotropic vorticity 

equation (BVE) is obtained from the shallow water model as 

a result of filtering the surface gravity waves. 

In this work, the asymptotic behavior of solutions of 

forced and viscous BVE as t→∞ is studied. Particular forms 

of the external vorticity source have been found which 

guarantee the existence of such bounded set B in a phase 

space X that eventually attracts all the BVE solutions. It is 

shown that the asymptotic behavior of the BVE solutions 
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depends on both the structure and the smoothness of external 

vorticity source. Sufficient conditions for the global 

asymptotic stability of both smooth and weak BVE solutions 

are also given. 

Simple attractive sets of a viscous incompressible fluid on 

a sphere under quasi-periodic polynomial forcing are 

considered. Each set is the BVE quasi-periodic solution of 

the complex (2n+1)-dimensional subspace 
nH  of 

homogeneous spherical polynomials of degree n. The 

Hausdorff dimension of its path, being an open spiral densely 

wound around a 2n-dimensional torus in
nH , equals to 2n. As 

the generalized Grashof number G becomes small enough 

then the basin of attraction of such spiral solution is expanded 

from 
nH  to the entire BVE phase space. It is shown that for 

given G, there exists an integer ( )n G  such that each spiral 

solution generated by a forcing of 
nH  with ( )n n G is 

globally asymptotically stable. Thus, whereas the dimension 

of the fluid attractor under a stationary forcing is limited 

above by Grashof number, the dimension of spiral attractive 

solution may, for a fixed limited number G, become 

arbitrarily large as the degree n of the quasi-periodic 

polynomial forcing grows. Since the small scale 

quasi-periodic functions, unlike the stationary ones, more 

adequately depict the BVE forcing in the atmosphere, this 

result is of meteorological interest and shows that the 

dimension of attractive sets depends not only on the forcing 

amplitude, but also on its spatial and temporal structure. This 

example also show that the search of finite-dimensional 

global attractor in the barotropic atmosphere is not well 

justified. 

 

II. PROJECTORS AND FRACTIONAL DERIVATIVES 

Let 3{ : 1}S x R x    be a unit sphere in the 3D 

Euclidean space; we denote by ( )C S  the set of infinitely 

differentiable functions on S and by 

, ( ) ( )
S

f g f x g x dS    and  1/2
,f f f           (1)  

the inner product and norm in ( )C S , respectively. Here 

( , )x    is a point on the sphere, sin  ; [ 1,1]  ,   is 

the latitude, and  is the longitude. 

The spherical harmonics ( , )m

nY   form orthogonal basis 

in ( )C S , besides, m m

n n nY Y  ,  m n  and ( 1)n n n   . 

For each integer 0n  , the span of 2n+1 spherical harmonics 

( , )m

nY   forms a generalized (2n+1)-dimensional eigenspace 

 { : }n nH                              (2) 
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of homogeneous spherical polynomials of degree n. 

Let 0n  . Orthogonal projector 
2( ) : ( )n nY L S H�\ �o  is 

introduced by 

( ) (2 1)( )( ) ( )�\ �\ �\
� ��

� �� �u � �¦
n

m m
n n n n

m n

Y n P x Y x         (3) 

Let 0s�!  and ( ) ( )x C S�\ �f�• . A spherical operator 

/2( )s s�/ � ���'  of real order s is defined by 

/2( ) ( )s s
n n nY Y�\ �F �\� / �                             (4) 

Thus, s�/  is a multiplier operator which is completely 

defined by infinite set of multiplicators /2s
n�F . We will 

consider s�/  as a derivative of real order s of functions on a 

sphere, besides, 

/2 /2

1 1

( ) ( ) ( )
n

s s s m m
n n n n n

n n m n

x Y Y x�\ �F �\ �F �\
� f � f

� � � ��

�/ � � �¦ �¦ �¦           (5) 

Let 
0 0( ) { ( ): ( ) 0}C S C S Y� \ � \� f � f� �• � . For any real s, we 

introduce in 
0 ( )C S�f  the inner product ,

s
� ˜ � ãnd norm 

s
�˜  as 

1

, , ( ), ( )s s s
n n ns

n

g g Y Y g�\ �\ �F �\
�f

� 

� �/ �/ � �¦             (6) 

1/2
1/2 2

1

, ( )s s
n ns s

n

Y�\ �\ �\ �\ �F �\
�f

� 

�  � ½
� �/ � � � ® � ¾

� ¯ � ¿
�¦           (7) 

The Hilbert spaces obtained by closing the space 
0 ( )C S�f in 

the norms (7) we denote as s�+ .   

Lemma 1 [3]. Let s be real, 0r �! , and s r�\ ��� • �+ . Then 

s�\ � • � +  and 

/22 r
s s r

� \ � \��
��

�d     and    r

s r s
� \ � \

��
�  � /              (8) 

 

III. ASYMPTOTIC BEHAVIOR OF VORTICITY EQUATION 

SOLUTIONS 

Let us consider the nonlinear nonstationary barotropic 

vorticity equation describing the behavior of relative 

vorticity ( , )t x�\�'  in a viscous 2D incompressible rotating 

fluid on unit sphere S [4]. Here 1s�t . 

1( , 2 ) ( )s
t J F�\ �\ �\ �P �V �\ �Q �\���' �� �' �� � �� �' �� ���' ��     (9) 

In this section we study the asymptotic behavior of BVE 

solutions as t→∞. Evidently, the geometric structure of the 

attractive set of the BVE depends on the form of external 

forcing [5]. We consider here such particular forms of 

external vorticity source that there exists a bounded set B in a 

phase space X, and the trajectories of all the solutions of Eq. 

(9) are eventually attracted by B. Some assertions are similar 

to well-known results obtained for solutions of 2D 

Navier-Stokes equations in a bounded domain on the plane 

[6]. 

First we suppose that forcing is steady. The following 

assertions are valid. 

Theorem 1. Let 1s�t in (9) and the steady vorticity source 

( ) rF x � • �+ , 1r � t � � . Then every solution ( , )t x�\ of (9) will 

eventually be attracted by a bounded set B of phase space X. 

Moreover,  

    1) if 0r �t  then 2�  � +X  and 

 2 / 2
2

{ : 2 ( 2 )�\ �\ �V �Q��� �• �+ �d ��r s
r

B F          (10) 

    2) if [ 1,0)r � • � �  then 1�  � +X and 

 1 ( 1) / 2
1

{ : 2 ( 2 )�\ �\ �V �Q� � � �� �• �+ �d ��r s
r

B F        (11) 

Remark 1. All the steady and periodic solutions (if they 

exist) belong to the set B. Obviously, the set B contains the 

maximal attractor of the problem [7].  

Remark 2. Theorem 1 is also valid in the case when 

forcing ( , )F t x is a periodic in time function from the space 

(0, ; )sC �Z ���+  where �Z  is the period. 

We now show that under certain conditions on the forcing 

and dissipation, the maximal attractor of BVE (9) coincides 

with the zero solution. The first part of the assertion is 

analogous to theorem 8 from [6]. 

Theorem 2. If forcing ( , )F t x  is such that the integral 

0
( , )

r
F t x dt

�f

�³  converges then ( , ) 0t x�\ �o
X

 as t → ∞ .  

Besides, 2�  � +X  if 0r �t  and 1�  � +X  if [ 1,0)r � • � � . 

 

IV. GLOBAL ASYMPTOTIC STABILITY OF BVE SOLUTIONS 

In this section, the global asymptotic stability of BVE 

solutions is considered. A norm related with kinetic energy 

and enstrophy of perturbations is introduced, and an equation 

describing the evolution of this norm is derived. Then three 

sufficient conditions for the global asymptotic stability of a 

solution to the barotropic vorticity equation are obtained. 

These conditions differ by the smoothness of basic solution 

and guarantee that the BVE solution is the only attractor of 

the problem, that is, the trajectories of all other BVE 

solutions will exponentially tend to it as time tends to infinity. 

In a bounded domain on the plane, in the absence of linear 

drag, a condition for the global asymptotic stability were 

earlier obtained by Sundstrëm [8] for the basic flow whose 

stream function had continuous derivatives up to the third 

order inclusive. The first condition for global asymptotic 

stability obtained here (see theorem 3 below) generalized his 

result to flows on a rotating sphere when the linear drag is 

also taken into account. However, in the general case, the 

solvability theorems do not guarantee the existence of the 

solution whose third or higher derivatives are continuous. 

The theorems 4 and 5 below give the sufficient conditions for 

the global asymptotic stability, in which the requirement on 

the smoothness of basic solution is weakened and is in full 

accordance with the solvability theorems. 

Let now ( , )t x�\ be a solution of (9), and let p and q be 

non-negative numbers, not equal to zero simultaneously. 

Then the functional 1/2[ ( , , , )]
Q

Q p q t� \ � \�  where 

2 2
( , , , ) ( ) ( ) 0.5( )Q p q t pK t q t p q�\ �K �\ �\� �� �{ �’ �� �' , 

( )K t  is the energy and ( )t�K  is the enstrophy of 

perturbations. 
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We now obtain sufficient conditions for the global 

asymptotic stability of a BVE solution, when any its 

perturbation tends to zero as t→∞ (see below theorems 3-5). 

Theorem 3. Let 1s�t , 0�Q�! and 0�V�t . Let the basic 

solution ( , )t x�\  of BVE (9) be rather smooth, such that two 

values are finite, and 2s pq� V � Q� � � !. Then any perturbation 

of ( , )t x�\  will exponentially decrease with time in the norm 

Q
�\ . 

0 0
supmax ( , ) and   supmax ( , )

x S x St t
p t x q t x� \ � \

� • � •� t � t
� �’�' � �’     (12) 

Note that both theorem 3 and asymptotic-stability 

condition by Sundstrëm [8] demand the uniform 

boundedness of ( , )t x�\�’  and ( , )t x�\�’�' . However, as it was 

mentioned earlier, the existence of BVE solutions is proved 

only in the classes of twice continuously differentiable 

streamfunctions. We now show that the restriction (12) on 

the smoothness of basic solution can be weakened so as to 

agree with the requirements of the solvability theorems [4].  

Theorem 4. Let 1s�t , 0�Q�! and 0�V�t . Let the basic 

solution ( , )t x�\  of BVE (9) be such that two values are finite 

and ( 1)/2( 2 ) 2s s pq�Q �V �Q ��� � � !. Then any perturbation of ( , )t x�\  

will exponentially decrease with time in the norm 
Q

�\ . 

0 0
supmax ( , ) and   supmax ( , )

x S x St t
p t x q t x� \ � \

� • � •� t � t
� �' �     (13) 

Note that theorem 4, in contrast to theorem 3, requires a 

non-zero viscosity coefficient ɜ.  
We now consider the global asymptotic stability of a weak 

steady BVE solution 2( ) sx�\ ��� • �+ ( 1s�t ), whose existence is 

guaranteed by the solvability theorem [4].    

Theorem 5. Let 1s�t , 0�Q�! and 0�V�t . A weak steady 

solution 2( ) sx�\ ��� • �+ of BVE (9) is globally asymptotically 

stable in the norm 
Q

�\  if 2 1( 2 ) / 2s sp�Q �V �Q ��� � � ! where p and 

q are defined as and 
0C  is the constant from estimate 

4
0( )

( ) ( )
L S

x C x� \ � \�’ �d �'  [9]. 

 
4 4

0 0( ) ( )
( ) and   ( )

L S L S
p C x q C x� \ � \� �' �         (14) 

Remark 3. It is easily seen from theorem 3-5 that if the 

order s of Laplace operator in the turbulent term of (9) 

increases then the restriction on the magnitude of viscosity 

coefficient �Q will relax. Also, one can see that although the 

number q is absent in explicit form, in the stability condition 

of theorem 5, yet it is present implicitly through the norm 

Q
�\ . 

 

V. DIMENSION OF SPIRAL ATTRACTOR OF THE BVE 

SUBJECTED TO A QUASI-PERIODIC FORCING 

A. On Hausdorff Dimension of BVE Attractor Subjected to 

a Stationary Forcing 

Estimates of the Hausdorff dimension of the attractor of a 

two-dimensional viscous incompressible fluid subjected in 

the periodic hypercube to a stationary forcing were made by 

Babin and Vishik [10] and in the more general case, by 

Constantin et al. [11]. Doering and Gibbon [12] provided a 

more simple proof of the estimate by Constantin et al. [11] 

using the vorticity equation. The main result states that the 

attractor dimension is limited by the nondimensional 

generalized Grashof number (Temam [13]). This problem is 

also discussed by Babin and Vishik [10], Gibbon [14], and 

others. For a viscous non-divergent fluid on the rotating 

two-dimensional unit sphere S, the Hausdorff dimension of 

the attractor was estimated by Ilyin [15-17] who used the 

vorticity equation  

1( , 2 ) ( )( )s
t J s F�\ �\ �\ �P �Q �\���' �� �' �� � ���' ��          (15) 

with the streamfunction ( , )t x�\ . Here ( )F x is a stationary 

forcing; ( )s�Q is the viscosity coefficient, 1s�t , and 1s�  

corresponds to the Navier-Stokes equations. According to 

theorem 2.1 by Ilyin [17], the Hausdorff dimension of the 

attractor is limited above by 

   
1/(2 1)3

2/(2 1)
( )

( 1)
dim ( ) 2 ( )

(2 1)

s

s
G s

s
A s G s

s
�H

�S

��

��� ª � º��
� d � �� « � »��� ¬ � ¼

 

(16) 

1/(2 2)

1/(2 1)
1

log ( ) log [2 ( 1)]
s

s

sG s s
�S

��

��
� ª � º�  � ½

�u �� ��� ® � ¾� « � »
� ¯ � ¿� ¬ � ¼

 

  

where ( )G s�H →0 as ( )G s �o � f , and ( )G s  is the generalized 

Grashof number 

 2 1 2
1( ) ( ) / ( )sG s F x s� O � Q���                      (17) 

Here 
1 2�O�  is the smallest positive eigenvalue of the 

spherical Laplace operator, and is the LϜ-norm of the 

stationary forcing. In particular, the inequality (16), as 

applied to the large-scale barotropic processes of atmosphere 

for 2s�  and ( ) 1500G s � , yields the upper limit of the 

barotropic atmosphere attractor dimension [17]: 

 �� ��
1/21/2 22

0
1

( ) ( )
n

m
n

n m n

F x F x dx F
�f�f

� � ��

� § � ·
�  �  � ¨ � ¸

� © � ¹
� ¦ � ¦�³       (18) 

 

dim (2) 60A �d                             (19) 

Despite the fact that (16) and (19) are of considerable 

theoretical interest, some doubts are cast upon their 

practicability to the dynamics of large-scale processes of the 

barotropic atmosphere. The point is that the BVE forcing 

describing the influence of small scale baroclinic processes 

(convection, etc.) on large scale dynamics of the barotropic 

atmosphere is typically nonstationary with rather 

complicated spatial and temporal behavior. Thus one might 

expect that small scale quasi-periodic functions, in contrast to 

stationary fields, more adequately depict the barotropic 

atmosphere forcing. In order to show that the Hausdorff 

dimension of the attractive sets crucially depends on the 

forcing spectral composition, we consider the asymptotic 

behavior of a viscous incompressible fluid subjected on a 

sphere to a quasi-periodic forcing in the form of a 

homogeneous spherical polynomial of degree n. Clearly the 
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forcing geometric scale decreases as n increases. We show 

that the BVE with such external forcing from 
nH  has an 

attractive solution of 
nH  representing a symmetric BVE 

response. The solution path is generally an open spiral 

densely wound around a 2n-dimensional torus in the 

(2n+1)-dimensional complex subspace 
nH  of homogeneous 

spherical polynomials of the degree n. Since the completion 

of such open spiral coincides with the torus [18], the 

Hausdorff dimension of the spiral attractive solution is 2n. It 

is shown here that for a forcing of 
nH  with a given limited 

Grashof number G, there always exists a natural number 

( )n G  such that the spiral solution of 
nH  with ( )n n G  is 

globally asymptotically stable. Thus, despite the fact that the 

generalized Grashof number (17) is fixed and finite, the 

Hausdorff dimension of the open spiral attractive solution, 

2n, may become arbitrarily large as n grows. The distinction 

between this result and the estimate (19) obtained by Ilyin 

[17] for a stationary forcing, shows that the dimension of the 

BVE attractive sets depends not only on the Grashof number 

(that is, on the viscosity coefficient �Q and LϜ-norm of the 

forcing), but also on the spatial and temporal structure of 

forcing. 

B. Simple Quasi-Periodic Attractive Sets on a Sphere 

Let us consider the asymptotic behavior of the vorticity 

equation (9) under a quasi-periodic forcing of the 

(2n+1)-dimensional subspace 
nH of homogeneous spherical 

polynomials of degree n, with the Fourier coefficients 

 ( , ) ( ) ( )
n

m
m n

m n

F t x F t Y x
� ��

� �¦                     (20) 

 ( ) exp{ ) ,m m mF t f im t m n�Z�  � d               (21) 

where i is the imaginary unit, mf  is the constant amplitude, 

and the numbers m�Z  are some incommensurate fundamental 

frequencies. Note that the spherical variant of the 

well-known example by Marchioro [19] corresponds to the 

time-independent forcing (20) of degree 1n � . Also note that 

the norm of forcing (20), (21) is time-independent, and 

therefore we will use the same generalized Grashof number 

(17) as in the case of a stationary forcing. Obviously, there 

are a host of quasi-periodic forcings of the form (20) that 

have the same norm (22), or the same Grashof number (17), 

but differ by their degrees n or/and amplitudes mf . 

1/2 1/2
2 2

( , ) ( )
n n

m m
m n m n

F t x F t f
� �� � ��

�§ �· �§ �·
�  �  �¨ �¸ �¨ �¸

�© �¹ �© �¹
� ¦ � ¦   (22) 

Note that any solution of (9) that starts in 
nH  will never 

leave this set. Moreover, the subspace 
nH  of homogeneous 

spherical polynomials of degree n is the domain of attraction 

of the BVE solution ( , ) nt x H�\ �•  defined by its Fourier 

coefficients [5] 

 1( ) {[ ] ( 2)} ( )s
m n n n m mt im F t�\ �V �Q�F �F �F �Z ��� �� �� �� ��       (23) 

where m n . 

Since the frequencies m�Z  are rationally independent, the 

attractive solution ( , )t x�\  is quasi-periodic, and its path is an 

open (endless) spiral densely wound around a 

2n-dimensional torus in the (2n+1)-dimensional complex 

space 
nH . According to Theorem 3 by Samoilenko [18], the 

closure of this trajectory coincides with the torus. Hence, the 

Hausdorff dimension of the attractive set, that is solution 

(23), coincides with that of the torus and equals 2n. 

C. Globally Asymptotically Stable Spiral Solution 

Sufficient condition for the global asymptotic stability of 

smooth BVE solution ( , )t x�\  (23) is given in the previous 

section by theorems 3. In our case ( , ) nt x H�\ �• , and 

( 1)np q n n q�F� � �� . As a result, condition for the global 

asymptotic stability of solution (23) accepts the form 

2s
nq�V �Q �F� � � !                                 (24) 

where  

0
supmax ( , )

x St
q t x�\

�•�t
�  � ’                            (25) 

Using the estimate 

12 1
( )

4
s
n

n

n
q F�V �Q�F

�S�F
����

� ª � º� d � �� ¬ � ¼
                       (26) 

for the solution (23), condition (24) is satisfied if 

12 1
2 ( )

4
s s

n

n
F�V �Q �V �Q�F

�S
����

� ª � º�� �! ��� ¬ � ¼
                  (27) 

and even more so if 

12 1
2 ( )

4
s s

n

n
F�Q �Q�F

�S
����

�!                         (28) 

Taking into account the definition (17) where 
1 2�O� , 

condition (28) for the global asymptotic stability of solution 

(23) can be written in terms of generalized Grashof number: 

22 ( )
2 1

s s
n G s

n
�S

�F�� �!
��

                        (29) 

Since 

1/2 2 1/21
2

2 1
s s
n n

n
�F � � � ��t

��
 

condition (28) is satisfied if 

3/2 2 1/22 ( )s sn G s�S� � � ��!                         (30) 

Thus, we have proved the following assertion:  

Theorem 6. Let 1s�t , 0�Q�! and 0�V�t , ( , ) nF t x H�•  be a 

quasi-periodic forcing of BVE (9) defined by equations (20) 

and (21), and let ( )G s  be the generalized Grashof number 

(17) of this problem. Then solution (23) of 
nH  is globally 

asymptotically stable provided that inequality (30) is 

fulfilled.  

In particular, solution (23) is globally asymptotically 

stable if 

1/2 7/22 (2)n G�S�� �!                            (31) 
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and 

1/2 3/22 (1)n G�S �!                             (32) 

The last case corresponds to the Navier-Stokes equations. 

It is easily seen from (30) that for a fixed finite value of 

generalized Grashof number G, it is always possible to 

determine such an integer ( )n G  that the spiral solution 

generated by any forcing (20), (21) of 
nH  with ( )n n G  and 

Grashof number G is globally asymptotically stable. For 

example, under the assumption by Ilyin [17] that for the 

barotropic atmosphere, condition (31) is satisfied for a 

forcing (20) of degree 8n �t . 

3 2
1(2) ( ) / (2) 1500G F x � O � Q�  �   

The result obtained is not unexpected. Indeed, for a fixed 

coefficient ( )s�Q , the number ( )G s  is fixed if the LϜ-norm 

(22) of forcing is a constant independent of n. Let the 

amplitudes 
mf  of oscillations of forcing be nonzero for all 

m. Then they must decrease as n grows, and for n large 

enough (or for the amplitudes 
mf  small enough) the 

viscosity ( )s�Q  is sufficient to make the quasi-periodic BVE 

solution (23) globally asymptotically stable. Also note that 

for a fixed LϜ-norm (22) of the forcing, the L2-norm of 

solution (23) decreases as n grows. 

Thus, whereas the Hausdorff dimension of the attractor of 

a nondivergent fluid subjected on a sphere to a stationary 

forcing is limited above by the generalized Grashoff number 

G [17], the Hausdorff dimension 2n of globally attractive 

spiral solution (23) may become arbitrarily large as the 

degree n of the quasi-periodic forcing (20) grows. It should 

be noted that a quasi-periodic forcing (20), as compared with 

a time-invariant forcing, more adequately describes the 

effects of small-scale baroclinic processes in the barotropic 

vorticity equation (9). This result has a meteorological 

interest, since shows that the dimension of the global attractor 

in the barotropic atmosphere can be unlimited even if the 

generalized Grashof number (17) is bounded, and hence, this 

dimension crucially depends not only on the Grashof 

number, but also on the spatial and temporal structure of the 

BVE forcing. 
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