

Abstract—This paper describes a simulation architecture

developed to address the need in the defence and aerospace

industry for a rapid prototyping capability to test new and

existing network protocols and systems where analytical

methods no longer suffice. In particular, the simulator

introduced here allows study of High Frequency (HF) radio

networks and other unorthodox systems that cannot be easily

modelled using existing communications network simulators.

This paper describes the architecture and gives an example use

case – modelling an HF System using the 2G Automatic Link

Establishment (ALE) linking protocol under a variety of

conditions; exploring the effects of changing the number of

nodes in the network, and of altering the input data rate to the

system. The network performance was analysed under a wide

range of combinations of conditions, and it was found that

increasing the number of nodes in these networks causes

specific latency increases and an overall throughput decrease,

both in the unidirectional and bidirectional case, although it is

better tolerated in the unidirectional case. Increasing the input

data rate causes an overall throughput increase up to a

threshold point, after which it saturates and then decreases as

data remains unsent, due to the physical limits of the system

(including networking overhead) being surpassed. This

simulator, known as CommNetSim has been developed for use

in evaluating the technical capabilities of, and business cases

for, real-world applications to be developed by Thales UK.

Index Terms—Communication networks, discrete event

simulation, high frequency radio, modelling, simulation.

I. INTRODUCTION

A challenge faced by industry is the modelling of

large-scale and often heterogeneous communication network

systems in a dynamic technological environment. Being able

to reliably predict the performance of a system, either

hypothetical or extant, adds great support to any business

decision concerning the use of the system in a project or

product.

Many platforms exist for simulating communication

networks – these include commercially developed

proprietary tools at a cost, open source frameworks and

research tools [1]. The business needs of the organisation

have to be taken into consideration in order to select the

optimal platform for the environment it will be deployed into.

Manuscript received March 10, 2013; revised June 28, 2013. This work

was supported by the EPSRC, The Systems Centre at University of Bristol

and University of Bath, LSCITS and Thales UK.

D. M. G. Tait is with the University of Bristol, Bristol, UK, BS8 1UB and

Thales UK (e-mail: cexdt@bristol.ac.uk)

A. F. R. Gillespie is with Thales UK, Crawley, W. Sussex, UK, RH10

9TS (e-mail: afr.gillespie@uk.thalesgroup.com).

D. Cliff is with the University of Bristol, Bristol, UK, BS8 1UB (e-mail:

dc@cs.bris.ac.uk).

This paper aims to outline a simulation architecture

developed to meet the needs of an industrial stakeholder, who

develops and integrates communication network systems.

The needs of the modelling capability were elicited through

various interviews, meetings and general stakeholder

engagement. These needs, and the design decisions they

necessitated, are listed as follows:

• Fast prototyping of new protocols: the Python [2]

programming language was used, a very high-level language

that enables a large amount of functionality with concise

coding to speed up development. The rationale was that

coding and development time was more critical than

processing time.

• Detailed analytics: a Discrete Event Simulation (DES)

methodology was chosen, and a DES framework was used –

a library for Python called SimPy [3]. This is the usual

methodology for network simulation as it enables monitoring

of the simulation at any desired level.

• Combinatorial modelling of systems – ability to test

different combinations of configurations without large

amounts of recoding: A modular architecture was chosen

(Fig. 1), based on the Open Systems Interconnection model

[4] (Fig. 2), the design goal was to allow swapping of

modules at each layer of the OSI stack.

• Extensible to different forms of physical network: the

architecture was made flexible enough to allow mechanisms

for modelling multiple types of network bearers, for example

Ethernet or wireless connections.

It was found that many of the proprietary platforms, whilst

powerful, were too costly for occasional use. When

developing models for novel protocols or equipment, time

needs to be allowed for coding and debugging their

behaviour to fit the APIs of the platforms. The language used

is often relatively low level (e.g. C, C++) and thus requires

more lines of code, and thus more time for development. In

large companies this may not be a problem, but for smaller

teams the time and resource investment can prove inefficient

[5]. To this end it was decided that developing a new

simulation architecture to allow for more rapid development,

using an open source framework was worth the time

investment as it can take into account all the stakeholder

needs.

This Simulation Architecture, known as CommNetSim has

since been developed as an extensible framework for use in

evaluating the technical capabilities of, and business cases

for, real-world applications developed by Thales UK.

The rest of this paper is structured as follows: Section II

gives an overview of the simulation methodology developed

for this project, including explanations of the protocol

development process and the scenarios simulated; Section III

A New Simulation Architecture for Communication

Network Systems with Application to HF Radio

Duncan M. G. Tait, Andrew F. R. Gillespie, and Dave Cliff

324

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

DOI: 10.7763/IJMO.2013.V3.291

mailto:cexdt@bristol.ac.uk

describes the results of these scenarios, and Sections IV and

V discuss and analyse these results. Section VI suggests

further work for the expansion and improvement of this

Simulation Architecture.

II. METHODOLOGY

A. Outline

A communication network system will be populated with

nodes – and the connections between them will form the

network. Fig. 1 shows the flow of information within each

node; each container represents a layer in the node‟s

processing system, and the structure is based upon the OSI

model.

Fig. 1. Map of the information flow within each node – only adjacent Layers

can communicate with one another, and only the Physical Layer can

communicate with the Environment. In this map all Layers are depicted as

Containers, as these are the structural mechanisms within the Simulation

Architecture that contain the modules.

Fig. 2. Description of OSI model.

These layers interact hierarchically, passing data and

internal messages up and down – the data being structured

into segments, packets, and frames depending on the layer

they are within. Each layer, in both the OSI Model and the

software architecture, has 3 attributes:

1) Functions (what is the layer‟s responsibility)

2) Interface (how it is supposed to communicate with the

layer directly above and below it)

3) Protocol (the rules on how to communicate with its

peer layer on other network services).

The software architecture allows a separate Python module

for each layer. The architecture has a container for each layer

module, that all have a standard format. This can be thought

of as an interface mechanism between the layers. There are

two types of information that are passed throughout the node;

the first is data that is ultimately to be sent to another node.

The second is internal messages that remain within the node,

and form the basis of communication between layers. These

are both handled by the aforementioned interface

mechanism, but remain separate systems.

Within each module there are processes that operate

independently, each as a Finite State Machine (FSM).

Together, these processes handle all the functionality of that

respective layer, and form a complete module. During

module design, the functions of each layer must be

comprehensively catalogued, and then responsibility for

those functions divided between the processes. How the

functionality of a layer is divided up can almost always be

done in multiple ways, and it is the author‟s opinion that

functional blocks should be selected in order to aid

understanding, rather than for efficient programming.

An event-driven internal messaging system facilitates

interfacing between layers. To illustrate this, the architecture

for three arbitrary layers is described in the text that follows,

and is shown schematically in Fig. 3.

Fig. 3. Architecture of internal messaging system

Internal messaging is used in cases where no data needs to

be sent or received externally to the node; an example might

be a check to see whether a communication channel is vacant

or not. There is a specific event for each possible message,

and each Process may wait upon these events as needed. A

good example to demonstrate how this works is the „abort

event‟ cascade, where a layer higher up in the hierarchy

decides to abort what is currently occurring at the layer below

it (as it has precedent to do). If a process decides to do this, it

signals the corresponding event in the interface events, which

is being watched by the msg kernel process in its

neighbouring layer, which then passes the message down to

any process within its module that is waiting upon it. Upon

receiving this signal, the next behaviour for that Process

should be to abort its current task.

Aside from the node structures, the other important part of

the model is the environment module, which defines how the

signals traverse the intermediate space between nodes. Fig. 5

325

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

shows the mechanism for this, for a generic model with

multiple channels. The entire procedure is as follows: a

process within a node‟s physical layer wants to transmit its

message, so it sends it to the Environment‟s physical Q via an

event payload. The environment then forwards it into the

Environment process itself, where a new on air process is

spawned that will take care of all activity to do with that

message on the channel. After a propagation time, it puts the

message into the list that corresponds to the channel and fires

a channel taken event. This means any physical processes

currently listening to that channel will be notified and able to

receive the message. After the calculated time that the

message is on the channel for, on air removes the message

and fires the channel freed event before terminating itself.

Fig. 4: Data Interface for an example container (ContainerC) and connections

to its two adjacent Containers. These queues are event driven – the data is

passed as a payload. A Process (e.g. C) will fire the queue event

corresponding to the desired destination of the data (e.g. queueB) and attach

the data to pass as the event payload. queueB will then fire the corresponding

queue event (queueC here) in the neighbouring container, which will then

relay the event payload to whichever Process is active within that container

(e.g. perhaps B).

Fig. 5. A node sending a message via the environment, which is disseminated

to all other nodes via their „physical‟ containers. A Process (e.g. proc A) will

fire the physical Q event in Environment Container that then relays the data

to the environment process queue. This then creates a temporary process „On

Air‟ that handles the subsequent events – upon the data packet being placed

onto a channel (frequency contents), a „channel taken‟ event is fired that is

detected by all physical containers to synchronise their behaviour. The same

occurs for channel freed when the data packet comes off air, and the packet is

removed from the channel.

CommNetSim has been used to model many different

network scenarios. Primarily the type of systems modelled

have been High Frequency (HF) radio networks. For this type

of system, the Physical Layer module will be a model of the

transmission equipment – antenna, modem, power amplifier

etc. The Link layer will deal with the HF protocols for linking

and data transfer, and the Network Layer, and all layers

above, can remain generic.

B. Finite State Machines

All processes within modules can be simple or

complicated, but all must adhere to the Finite State Machine

(FSM) structure. Fig. 6 is an example of a process; the

Linking Protocol for the Master node in a linking handshake,

named ALE (Automatic Link Establishment) Master. Each

progression of state is caused by some event, this may well be

a Sim Event, or some other simulation occurrence such as an

item being added to a queue.

This process is relatively straightforward: with each

successful event in the handshake‟s itinerary, the process

moves one step closer to being linked, and any failure event

takes it back to the initial state (wait for packet). It is of

critical importance that all processes are complete FSMs, and

can successfully handle transitions resulting from all events

at all times – even if outside the intended scope of operation,

to prevent Byzantine failure modes.

Fig. 6. Finite state machine diagram for master linking protocol.

C. Scenarios

A commonly implemented system configuration for HF

radio communications is the use of a linking protocol defined

by the standard MIL-STD 188-141B [6] in conjunction with

a data link protocol defined by the standard STANAG 5066

[7]. This linking protocol is often referred to as 2G ALE

(Automatic Link Establishment).

As an example use case of this Simulation Architecture, an

investigation into the network behaviour of a 2G ALE HF

system will be demonstrated. Two common variants in the

configuration and operation of a radio system are the data rate

it is required to run at, and the number of radio nodes in the

network. Many Naval HF radio links are unidirectional

point-to-point links, for example ship-to-shore

communications – having only two nodes in the network.

Full network behaviour is not often used as it is not required,

although the protocol does support it. To reflect this, at least

some of the results will be of unidirectional point-to-point

scenarios, for comparison with scenarios exhibiting full

326

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

network behaviour.

To observe the effect of network operation on radio links,

in particular the effect of different numbers of nodes running

at different data rates, factors corresponding to these two

parameters must be altered, while all others are held constant.

The simulation must reflect this. Hence, the variant

parameters are: input data rate, and number of nodes.

For a comparison of different data rates, sets of simulations

are run – each with progressively larger input data rates. In

order to implement a comparison of different numbers of

nodes, all the aforementioned data rates are run for networks

containing varying numbers of nodes (2, 4, 6, 8, 10 in this use

case).

Due to network resources being limited, they are shared

between multiple contesting nodes, which affects

performance. The link-level protocols themselves will also

affect performance by how well they handle a given scenario.

As it will be difficult to differentiate the causes of varying

performance, two tranches of simulation scenarios were

undertaken. The first tranche tests full network behaviour –

with all nodes attempting to transmit traffic to any other node,

this can be termed a bidirectional scenario. The second

tranche consists of dedicated master and slave nodes – with

each master node transmitting only to a single slave node,

this can be termed a unidirectional scenario. In a

unidirectional scenario this means that although network

resources such as number of available channels will still

affect overall performance, nodes will not attempt to connect

to nodes that are already busy in another link, thus testing the

linking protocol separately from major network congestion

effects (bidirectional scenario). Key parameters are as

follows:

Number of channels: 10

Ratio of propagating channels: 0.6

Packet size: 1024 bytes

Data Rates in ARQ scheme: 75, 150, 300, 600, 1200,

3200, 4800, 6400, 8000,

9600 b/s

ARQ Frame length: 10 seconds

All values are the result of averaging over 500 runs.

Linking aborts after 300s if there is no successful link

made.

III. RESULTS

Linking latency with 2G ALE is often calculated

analytically by using an algorithm and certain parameters

such as scanning rate, number of channels and handshake

timing values. Using multiple nodes however causes

contention; both for channels and for availability of receiving

nodes (as they may be busy with another link), this cannot be

accounted for by algorithms. This is reflected in the results

shown in Fig. 7: as the number of nodes increases, so do the

median linking times. Additonally, as the input data rate

increases, the latency increases further as nodes will spend

longer „On Air‟ per link and thus network contention

increases.

In the Unidirectional case, the median latency is very

similar for all scenarios – differing from 11.623 to 11.633

seconds, best to worst case respectively, which can be

statistically accounted for solely by jitter. For this reason, the

mean latency is plotted in order to differentiate performance

based on the effects of statistical outliers on the average

latency (Fig. 8). This shows the latency still increaseing with

number of nodes due to channel contention issues, and also

that both the median and mean latencies are lower in the

unidirectional case, as the receiving node is guaranteed to be

free.

All error bars are calculated from the Standard Error:

s
StErr =

n
 (1)

As we are effectively running a Monte Carlo style

simulation, the sample (500 runs) is an estimate of the true

population – and the standard error is a good estimate of the

standard deviation of the distribution (assuming the sample is

sufficiently large).

The objective of a communication link is to transfer data –

so an important metric is the amount of data successfully

transferred per unit time (in this case, per simulation run

which is 1000s), as a function of the amount of input data to

the system. In a point-to-point link, uncontested, the amount

of data transferred should be 100% of the input data (minus

protocol overheads) up to the limits of the physical bearers.

Fig. 7. Bidirectional median linking latency.

Fig. 8. Unidirectional mean linking latency.

Adding a network element, however, causes the realised

data throughput to decrease – as can be seen in Figs. 9 and 10.

At high input data rates, the throughput demands cannot be

met and a significant percentage of data will build up, only to

be left waiting in queues „to be transmitted‟ at the end of each

simulation. This can account for the drop off in Figs. 9 and 10

after 25kbits per run per node, as between 25k and 50kbits

327

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

per run per node, the network limit is exceeded is this case.

Fig. 9. Bidirectional mean data transferred per simulation run.

Unidirectional performance (Fig. 9) here is almost

identical to bidirectional performance (Fig. 10), with better

performance at higher numbers of nodes –a result of the lack

of contention with busy nodes in the unidirectional case,

which becomes more of an apparent effect with higher

numbers of nodes.

Fig. 10. Unidirectional mean data transferred per simulation run.

IV. ANALYSIS / DISCUSSION

Graphs like these allow the tipping-points of networks to

be found - useful thresholds that can be used to better

configure networks in order to optimise performance for

given scenarios. For instance in Figs 9 and 10, there is an

overall performance decrease in the system if the input data

per node is above 25000b/s – the exact tipping point is

between 25000 and 50000b/s for both bidirectional and

unidirectional network systems, and can then be further

investigated for each. Latency averages and ranges (Figs 7

and 8) are useful from a system configuration perspective –

for instance to optimise timing parameters and minimise

unecessary timeouts. As network based scenarios become

more common in systems traditionally used for point-to-point

links (the HF systems shown here are a prime example),

examining the effect that network operation has on the

performance of a system becomes increasingly important.

This Simulation Architecture can be used for a variety of

different tasks. The use case demonstrated here has been for

HF systems, but with a simple interchange of certain modules

other systems can be modelled. In this case, the HF/ALE

system was manifested in the Physical and Link layers that

work in conjunction to model the HF physical and linking

system. The layers above (i.e., Network up to Application)

are generic and not specific to HF at all, they can be used with

any other physical and link layer models. This simulation

architecture represents a general purpose communication

network simulation framework that has proven suitability in

the HF radio network domain, and is capable of working with

other communication domains.

V. FURTHER WORK

The Simulation Architecture itself is now relatively

mature, and so tasks are primarily based around developing

new models for the architecture, and then generating results

to analyse [8]. Recent work has gone into improving the

Environment module – by generating instantaneous

signal-to-noise ratio (SNR) values for a given link, based on

environmental parameters retrieved from data generated in

VOACAP [9]. A forthcoming paper will address this in

detail.

VI. CONCLUSION

CommNetSim is a useful tool for testing technical

capabilities of communication networks within industry, and

provides a lightweight, quick-to-employ alternative to

network simulation incumbents, especially for simulating

radio networks where other tools commonly lack the means

to create and implement these protocols with ease.

REFERENCES

[1] E. Weingartner, H. V. Lehn, and K. Wehrle, "A performance

comparison of recent network simulators," in Proc. IEEE International

Conference on Communications, 2009. pp.1, 5

[2] G. V. Rossum, “Python tutorial, technical report CS-R9526,” in

Centrum voor Wiskunde en Informatica, Amsterdam, May, 1995.

[3] K. Muller and T. Vignaux, “SimPy: Simulating systems in python,”

ONLamp.com Python Devcenter, 2003.

[4] H. Zimmermann, “OSI reference model--The ISO model of

architecture for open systems interconnection,” IEEE Trans. on

Communications, vol. 28, no. 4, pp. 425-432, 1980.

[5] T. E. Oliphant, "Python for scientific computing," Computing in

Science & Engineering, vol. 9, no. 3, pp. 10-20, May-June 2007.

[6] MIL-STD 144-110C, Interoperability and performance standards for

medium and high frequency radio systems, DoD. 1999.

[7] NATO Standardisation Agreement 5066, Profile for High Frequency

(HF) Radio Data Communications, NATO.

[8] D. Tait, A. F. R. Gillespie, and S. E. Trinder, “Modelling 2G and 3G

ALE: A quantitative comparison,” in Proc. Ionospheric Radio Systems

and Techniques, 12th IET Conf., York, 2012, pp. 1-5.

[9] G. Hand, “VOACAP‟, ICEPAC and REC-533 Propagation Prediction

Programs for Windows,” NTI / ITS.

Duncan M. G. Tait graduated from University of

Reading with a Physics BSc and a year‟s placement

working at MBDA, and went straight on to begin an

EngD (completion Dec. 2013), at University of Bristol

Systems Centre, working with Thales UK on this

project: Improving business decisions through

modelling and simulation of communication network

systems. This is on-going and based at Thales UK,

Crawley, RH10 9HA.

328

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

