
 
 Abstract—This paper starts with presenting a novel 

kinematics modelling approach for a snake-like robot 
travelling with concertina locomotion. The paper ends with 
confirmation studies using Webots simulation software. The 
significant advantage of the proposed kinematics model is in 
its flexibility to model natural snake robot concertina 
locomotion. Concertina locomotion refers to a type of motion 
where parts of the body contract, expand or do not change 
their shape. To simulate this, first we introduce a 
mathematical equation, called dynamic function, in which by 
varying a certain function parameter, body curve during 
motion is realized. To obtain concertina gait, the snake body is 
divided into three different modules, head module, tail module 
and main body module that connects the head to the tail 
module. Each module forms a specific curve which can be 
modelled using the proposed dynamic function. At each 
moment during snake locomotion, the kinematics of different 
links can be derived by fitting robot links to the body curve. 
Results indicate concertina locomotion is achieved. The 
proposed kinematics model represents a new approach to 
simulation of a snake-like mechanism in order to get basic 
characteristics of such locomotion and to enable our future 
research. Several ideas to further obtain natural snake 
locomotion is also presented. 
 

Index Terms—Snake-like robots; Dynamic Curve; 
Concertina Curve; Body Shape; Concertina gait; Kinematics 

 

I.  INTRODUCTION 
Locomotion of snakes and other limbless animals have 

stimulated research and development of biologically 
inspired crawling robots. Snake can adapt their locomotion 
modes, gaits, according to the different grounds and 
conditions. They have many gaits to choose from and thus 
can move well on almost all grounds even on water.  

Based on studies in exiting literature, snake movement 
can be divided into four main categories: Serpentine 
movement; Rectilinear movement; Concertina movement 
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and Sidewinding movement. Each movement, also called 
gait or locomotion, has its own characteristic and is used for 
different grounds and conditions. In this paper, Concertina 
locomotion is investigated 

The first qualitative research on snake locomotion was 
made by J. Gray in 1946 [1] and the first snake robot was 
built by Hirose [2]. Hirose studied kinematics of serpentine  
gait and proposed a ‘serpenoid curve’ as a means to 
generate Serpentine  locomotion. M. Walter [3], J. Gray, C. 
Gans [4], [5] are, among many others, biologists specialized 
in limbless locomotion who tried to explain the principles 
of the snake locomotion and to model it. However among 
these works, there aren’t any detailed geometrical 
approaches which describe body forms and trajectory 
characteristics. 

Klaassen and Paap [6] have presented a new snake-like 
robot (GMD-SNAKE2) and an algorithm for curvature 
controlled path calculation. Their work, mathematically is 
based on an enhancement of the well-known clothoid curve. 
Saito et al [7] made a snake-like robot without wheels and 
analyzed the optimally efficient serpentine locomotion. 
More recently Sh. Hasanzadeh and A. Akbarzadeh [8] 
presented a novel gait, forward head serpentine (FHS), for a 
two dimensional snake robot. They use Genetic Algorithm 
(GA) to find FHS gait parameters. J. Safehian et al.[9] 
proposed a novel kinematics modeling method for 
travelling wave locomotion. They also [10] considered 
kinematics and dynamics of traveling wave locomotion of a 
snake robot along symmetrical and unsymmetrical body 
curve. They investigated the effects of friction coefficient, 
initial winding angle and the unsymmetrical factor on the 
joint torques.   

Snake-like gaits can be divided into two main classes: 
Snake-like and non snake-like gaits. Serpentine, concertina 
and sidewinding are three common snake-like gaits which 
are inspired from real snakes. Non snake-like gaits do not 
exist in nature but are useful in snake robot motion.  
However, these gaits are less addressed in literature. 
Spinning gait, flapping gait and travelling wave [8, 11, 12, 
13] are examples of such gaits. Chen [13] analyzed the 
mechanism of travelling wave locomotion and showed that 
one period of this locomotion can be divided in four phases. 
He showed that these phases are based on the number of 
joints contacting the supporting surface and the resultant 
friction forces on contacting joints. Chen et al., [14] 
presented a model for travelling wave locomotion and 
considered its kinematics and dynamics. 

 

II. CONCERTINA LOCOMOTION MECHANISM 
The word concertina represents a small accordion 

instrument. This name is used in snake locomotion to 
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indicate that the snake stretches and contracts its body to 
move forward. This motion is similar to the motion of the 
concertina instrument. Concertina movement occurs 
in snakes and other legless organisms and consists of 
gripping or anchoring section of the body while 
pulling/pushing other sections in the direction of movement 
[1]. In concertina locomotion parts of the body stop while 
other parts move forward. The sequence repeats and the 
snake moves forward. The key element of concertina 
locomotion is the utilization of the difference between 
higher forces resulting from static coefficient of friction and 
lower forces resulting from the dynamic coefficient of 
friction along different parts of the body. Fig. 2 shows a 
snake moving forward into the pipe by using concertina 
locomotion. As shown in this figure, the snake keeps the 
end parts of its body in contact with the pipe wall. Then 
gradually expand its body. 

Forward motion occurs because of the passive action of 
the ventral scales. The posterior edges of the scales cause 
the static resistance due to backward motion. This 
resistance is four or five times greater than the resistance 
due to forward motion [15].  As shown in Fig. 1, the 
directions of the scales are so that snake moving forward 
will face less friction than moving backward. Jayne claims 
that concertina is seven times less efficient when compared 
to other kinds of locomotion used by real snakes [16]. 
However, snakes use concertina only when other options of 
locomotion are ineffective such as traversing tight spaces 
with high friction. Due to momentum changes, static 
friction, and slower speeds, concertina is a relatively 
inefficient mode of locomotion [17]. However, concertina 
allows motion not otherwise possible, such as moving along 
wires and cables as well as through tree branches. 

 

III. A NOVEL CURVE FITTING TO SNAKE BODY SHAPE 
Because the snake body is string like, it can be likened to 

a curve. The curve attributed to the snake body is called 
body curve. The spine of the snake is along the body curve. 
Therefore, links of a snake-like robot that imitate the 
movement of a real snake may be fit to the body curve. 

In this section, for the first time, concertina curve is 
defined and explained. To do this, the snake body curve is 
assumed to include several modules. Next, a simple 
dynamic curve will be defined and fitted to each module.  

 

 
Figure 1. Scales covered the snake body 

 
Consider snake moving in concertina locomotion as 

shown in Fig. 2.  This figure shows 5 stages of progression. 
The more details of progression from stage 1 to stage 3 are 
shown in Fig. 3. Consider a frame that encompasses part of 
a snake body.  This frame is shown in Fig. 3. As shown in 
this figure, a part of the snake body curve within the frame 
can be likened to the curve shown in diagram on the right 
side. As snake body changes from stage 1 to stage 2, the 

curves in the diagram on the right side also change. The 
two variations between snake body curve and the other 
curve, on the right, are in accordance with each other. The 
two stages, 1 to 2 and 2 to 3 are repeated for the other parts 
of snake body. Therefore, the snake movement may be 
simulated using these curves. In what follows, we will 
introduce a curve which allows kinematics modeling body 
of a snake in concertina locomotion. The concertina curve 
is then made by combining several of these curves, each 
called a dynamic curve. 

 
Figure 2. Progression stages of real snake Concertina Locomotion in 

pipe 
 
 

 
(a) 

 

 
(b) 

Figure 3. Similarity of snake body with dynamic curve 
 

 

A. Dynamic Curve 
Equation for the dynamic curve representing any section 

of the concertina curve, may be written as, 
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where ]1,0[=γ . The dynamic curve for 1=nω  and 
different values of γ  is shown in Fig. 4. 

 
Figure 4. Effect of γ on dynamic curve 

 

International Journal of Modeling and Optimization, Vol. 1, No. 2, June 2011

135



As can be seen from this figure, as parameter γ  
increases the high peak of the curve flattens and appears as 
though the curve is stretched. The stretched mode of the 
curve is similar to the case when the snake extends its body 
onward and thereby advances forward. When 1=γ , the 
dynamic curve is  stretched the most. Referring to (1), when 
the value of γ  move towards zero, 0→γ , the curve 
obtained becomes similar to the serpenoid sine curve. 
Serpenoid curve is known as the most similar curve to the 
snake body [2].  

Thus far, only a section of a concertina snake body curve 
is simulated by using the dynamic curve. In the following 
section, several combination of the dynamic curves are used 
to simulate the entire snake body curve, the concertina 
curve. 

B. Composition of Dynamic Curves 
Consider a snake moving in concertina locomotion as 

shown in Fig. 5.  The developed concertina curve, made of 
connecting several dynamic curves, is also shown in this 
figure. As can be seen the developed concertina curve 
closely matches the real snake body curve.  Next consider 
Fig. 6. To develop the concertina curve, the snake body is 
divided into tail, body and head modules. 

 

 
Figure 5. Similarity of snake body curve to concertina curve 

 
 

 
Figure 6. Modules of concertina curve 

 

Figure 7. Coordinate system 
 

A. Tail Section: The left segment of the snake body is 
referred to as tail module. A simplified dynamic curve is 
used to represent the tail section. This function is presented 
by, 

1&]]
2

,0[),sin()( =∈−= nnModuleTail xwherexxy ωπω (2)

 
To define a reference point, we designate point (0,0) as 

the start point for the tail section. See Fig. 7. Further, the 
start configuration for the snake body is assumed to be in 
the contracted mode. This configuration represents the 
condition where snake is ready to start stretching. Note, the 
value for nω  is arbitrary. In this paper, nω  is assumed to be 
constant and equal to 1. 

B. Body Section: The body section connects tail section 
to head section. The number of body modules is again 
arbitrary and can assume any even number. In this paper, 
the number of body modules considered is four. See Fig. 6 
& Fig. 7. If the modules were numbered from left to right, 
and the number zero is allocated to tail module, then the 
equation for each body module would be determined as, 
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Additionally, ConcertinaF  is defined by the dynamic curve 

in (1). The concertina curve made of tail, body and head 
sections with 1=nω  and 0=γ is shown in Fig. 6.  

C. Head Section: The dynamic curve for the head 
module is developed by, 

)()( ModuleHeadConcertinaModuleHead xxFxy −=  (4) 
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During locomotion, snakes generally keep their head 
mostly parallel to ground and straight. Furthermore, the 
up/down motion of the head is mostly negligible. Therefore, 
an appropriate dynamic curve for the head module is a 
curve where the end section of the curve remains on line 
y=0. To insure the end of head module remains fixed on the 
line y=0, the (4) is modified as following, 
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NC=2, (NC: Intersection Number) 
Consider (5), the output of head module for values 

greater than 'x  is considered zero. Therefore, one must 

y 

x
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identify a suitable value for 'x . To do this, the behavior of 
the dynamic curve should be examined. Consider Fig. 8. 
The dynamic curves for interval [x=0 ~ x=10] and different 
values of γ are plotted. As can be seen, depending on the 
value of γ , the dynamic curves intersects the x-axis at 
different points. 

 

 
Figure 8.  2nd intersection )2( =CN  of the dynamic curve 

( 01.01 '' == γxx , 25.02 '' == γxx , 55.03 '' == γxx , 80.04 '' == γxx ) 
 

 
Figure 9. second intersection point of curve with line y=0 

 
 

 
Figure 10. Effect of γ  on the head link 

 
 To find the 'x point we note, 
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where, 

NC=intersection number 
221 1,1,,cos γωδγβγωαγθ −=−=== −

nn  
As stated earlier, the requirement for the head module is 

to stay flat and without any lateral changes. Part of this 
requirement is enforced by equating the dynamic curve 
with value zero. Next, consider Fig. 9. A more natural form 
of the head module is obtained by selecting the second 
intersection point, NC=2, as a candidate for 'x . Therefore, 
when NC=2, we can write, 
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 Consider Fig. 8 and Fig. 10, as the value of γ moves 

toward one, the dynamic curve stretches and intersects the x 
axis in the infinity ( ∞→'x ). In this case, high torque 
values are exerted on the robot links. Furthermore, the 
numbers of robot links are limited. To solve this problem, 
the maximum allowable γ is limited to Maxγ . In this paper 

8.0=Maxγ is selected. 
 

IV. EXTENTION & CONTRACTION OF BODY 
Thus far, the snake body curve in concertina locomotion 

is developed by combination of the tail, body and head 
modules. Next, these modules must change their form in 
order to generate the concertina locomotion. 

 

 
Figure 11. Gradual stretching head module 

 

A. Stretching of the snake body curve 
Note that all the dynamic curves making the different 

modules can be changed using only the parameter γ which 
changes from 0 to Maxγ . To model the concertina 
locomotion, first the head module is stretched followed by 
the body module and last the tail module. According to the 
number of modules types, the stages of stretching can be 
divided into three stages:  

First stage (stretching of the head module): Parameter 
changes according to Maxγγ →0: . The head module will 
then stretches in the interval 'xxx ModuleHead ≤≤ . The 

stretching occurs while the other modules remain fixed. See 
Fig. 11. 

Second stage (stretching of the body modules): Similar 
to the stretching of the head module, the γ parameter for 
each body module is increased according to Maxγγ →0: . 
Each one of the body modules will stretch in the interval of 

π+≤≤ i
ModuleBodyxi

ModuleBodyx x . Consider Fig. 12. 

Coordination between modules that are stretched, Maxγγ = , 
and those that are being stretched, increasing γ, is required. 
For example, first consider Fig. 12 stages 1 through 4. 
During these stages, module #5 is stretching while module 
#4 is fixed. At stage 4, the parameter γ  has reached its 
maximum, Maxγγ = . At this point, module #4, begins 
stretching by increasing its parameter γ according to 

Maxγγ →0: . Observe stages 4 and 5. Note that, as module 
#4 is stretching, further stretching of module #5 occurs. To 
insure proper coordination between these two modules, the 
total value of the function representing the stretched 
module, module #5, is multiplied by the corresponding 

International Journal of Modeling and Optimization, Vol. 1, No. 2, June 2011

137



value of the module being stretched, module #4. The 
amount of multiplication is equal to the value of the 
dynamic function at the junction point of the two modules, 
in this case, point  P4-5. 

 
Figure 12. Stages of stretching and Contracting – (Effect of active module 

on extended module) 
 

The multiplication process continues until the value of 
the dynamic function being stretched reaches zero. At that 
point, the dynamic curve being multiplied becomes a 
straight line. 

Third stage (stretching of the tail module): When all 
bodies and the head modules are stretched, all reach Maxγ , 
then the tail module begins its stretching. Note that there 
are no more modules before to the tail module. Therefore, 
to stretch the tail, its corresponding dynamic curve is 
multiplied by numbers smaller than one. The rate of change 
of this multiplier is equal to the rate of change that was 
selected for γ when the head and body modules were being 
stretched. In this paper, the same rate of stretching and later 

contracting is selected. However, it should be noted that the 
rate of stretching/contracting for each module can be set to 
a different value and thereby creating more natural 
concertina like motion for the snake. When the tail module 
is fully stretched, the entire snake body curve will lie flat on 
a horizontal line.  

B. Contraction  of The Snake Body Curve 
The contraction cycle begins when the stretching cycle is 

completed. The cycle is identical to the stretching cycle 
except that γ starts from its maximum value and goes to 
zero. The head module will begin contracting using 

0: →Maxγγ . The same procedure is repeated for the 
remaining modules. Consider Fig 13. The dark part of the 
snake body is the length that is non moving and the light 
part of the snake body is the length that is being either 
stretched or contracted. 

Snake stretches its body by anchoring parts of its body, 
the dark part, mostly the end part of its body. Then the 
contraction cycle begins by anchoring mostly the front part 
of its body. Therefore, allowing the body and tail section to 
be pulled forward.  

V. KINEMATIC 
Thus far a new dynamic curve for modeling concertina 

locomotion is presented. Next, successive links of the robot 
must be fit to this curve and the corresponding angle for 
each link should be specified. To do this, first link is fit to 
the curve by drawing a circle having a radius equal to the 
length of the robot link [9]. See Fig. 14. The center and the 
intersection of the circle with the body curve determine 
begging and end of the first link, respectively. Similarly, 
center of the next circle is placed at end of the first link and 
circle is drawn. This identifies begging and ends of the 
second link. The process is repeated for the remaining links. 
In this paper, the Secant method [10] is used to obtain the 
intersection of the circles with the body curve. Upon 
calculation of all absolute angles, the Five-Point Formula 
[10] is used to obtain corresponding angle velocity and 
acceleration. 

VI. MAKING MORE NATURAL OF LOCOMOTION 
MODELING 

Snake-like gaits are the result of long term motion 
optimization of nature. Therefore, modeling as close to the 
snake-like locomotion seems to be more desirable. The 
dynamic curve introduced in this paper enables closer 
imitation of real snake locomotion. This is made possible 
by dividing the snake body into several modules and 
allowing a dynamic curve to model each of these modules. 
As stated earlier, by allowing different rate of stretching 
and contracting more natural snake locomotion may be 
generated. Furthermore, there is no strict requirement on 
when the modules begin stretching and contacting. For 
example, in certain situations snake may contract his front 
part of the body at a much faster rate than the end part. 
Additional natural snake locomotion is still possible by 
allowing different parts of the body contract/expand at 
different times. Refer to Fig. 12 where stages of expansion 
and contraction are defined. As shown in this figure, links 
expansion and contraction follow a certain order. However, 

7 

5. 
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again in certain specific situations, it may be more natural 
and desirable to not necessarily follow the specified 
expansion and contraction format. For example, consider 
Fig. 13. As can be seen from this figure two modules 
stretch simultaneously. In fact, before the full stretching of 
a module, the next module begins to stretch, then for some 
moments both modules become active simultaneously. 

 
Figure 13. Simultaneity of two active module in snake 

 
 

 
Figure 14. Fitting snake robot links to body curve 

 

VII. SIMULATION 
In this paper WebotsTM software is used for simulation. 

A robot with 26 links is selected. By using the method 
described in the previous sections, the absolute angles of a 
concertina locomotion are determined. Using these angles, 
the 26 link robot is simulated in Webots software. Results 
indicates concertina locomotion is obtained. Snap shots of 
simulated snake robot  in concertina locomotion is shown in 
Fig. 15. 

 

VIII. CONCLUSIONS 
In the  present research, a novel method for kinematics 

modeling of snake robot in concertina locomotion is 
investigated. The kinematics model has the advantage of 
closely following the concertina locomotion of real snakes. 
A new dynamic curve for modeling different parts of the 
snake robot is presented. It is shown that the shape of the 
dynamic curve can easily be modified using a single 
parameter �. The dynamic curve offers significantly high 
flexibility in imitating natural snake body curves. To obtain 
concertina gait, the snake body is divided into three 
different modules, head module, tail module and main body 
module that connects the head to the tail module. Each 
module forms a specific curve which is modeled using the 
proposed dynamic function. Stages of expansion and 
contraction of the snake in concertina locomotion are 
specified and graphically shown. At each moment during 
snake locomotion, the kinematics for different links are 
derived by fitting links to the body curve. Finally a 26 link 
snake robot is selected. Absolute joint angles are derived by 

fitting the links to the body curve. The joint angles are used 
as input to simulate the 26 link robot in Webots software. 
Results indicate concertina locomotion is achieved. The 
present study should better enable our future research in the 
area of snake locomotion specifically in characterization of 
natural like concertina locomotion 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Webots Simulstion 
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