
  
 Abstract—Cogeneration power and MSF water desalination 

plant has been modelled using the IPSEpro software package 
based on plant operational scenarios and validated against 
measured recorded data from the plant. The relative differences 
between the model results and measured plant data vary from 
1.1% to 3.7% for the power plant and 1.0 % to 1.8 % for MSF 
desalination. The model uncertainties could be attributed to 
either modelling assumptions or to input data uncertainties, 
with measured plant performance uncertainties due to 
measurement device precision and effects of external factors.   
 

Index Terms—Cogeneration, modeling, IPSEpro, validation 
 

I. INTRODUCTION 
To analyze thermal systems (eg. cogeneration power and 

water desalination), computational modeling and simulation 
can avoid the restrictions and cost of physical testing [1]-[6]. 
However, model validation with measured plant operational 
data is then an important step before starting any analysis, 
either to justify the use of the model for further analyses or to 
demonstrate improvements to the model [7].  

In arid and semi-arid countries power demand is 
characterized by high variation due to changes in the ambient 
temperature and relative humidity, whereas water demand 
remains almost the same over the whole year [8]. These 
changes result in operating cogeneration plant (power and 
water) in different seasonal scenarios to meet the variation in 
power while maintaining water supply. This causes 
significant variation in the plant performance parameters 
such as: net power and water production, thermal efficiency, 
heat utilization factor, and environmental impact (eg CO2 
emissions). Thus, in assessing a simulation model it is 
essential to compare it with measured plant performance 
across the range of expected operational scenarios and 
ambient environmental conditions. This highlights the value 
of the validated plant model to provide operating engineers 
with a tool to understand performance indicator variation 
associated with changing the operating scenario and the 
possibility of operation optimization. Therefore, this study 
has three aims: 

 To model a cogeneration plant (power and water) using 
the IPSEpro software package [9]-[10] for the purposes 
of investigating plant operations and improvements.  

 To validate this model by comparison against measured 
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plant data over a range of typical operating scenarios. 
 To investigate the variations in performance when 

changing operating scenarios.  
 

II. PLANT DESCRIPTION  
Fig. 1 describes the plant studied which has the 

specifications listed in Table I. The Gas Turbine (GT) 
exhaust is directed to the Heat Recovery Steam Generator 
(HRSG), which provides high-pressure steam to the High 
Pressure Turbine (HPT) [11] to provide further power. The 
major part of the steam moving to the Low Pressure Turbine 
(LPT) is extracted to the Multi Stage Flash (MSF) distiller. 
The pressure of the MSF desalination steam is maintained 
through a cross-over valve, which dumps excess LP steam to 
the LP turbine. MSF LP steam is used to heat the seawater in 
the MSF brine heater and then returns back to the power plant 
deaerator after mixing with condensate that comes from the 
LP steam turbine condenser. To maintain water production in 
case of lower power demand when the GT load is reduced 
which causes less production of steam from the HRSG, 
Supplementary Firing (SF) for both boilers is used to 
maintain steam production to the desalination units through 
the steam turbine.  

 
Fig. 1. Schematic of the combined power and desalination plant 

 
Fig. 2 describes the MSF evaporator.  The main sea water 

pump (SWP) supplies the seawater to heat rejection stages 
19, 18 and 17.  Most of this of this seawater will be rejected 
again to the sea while part of it will pass to the deaerator as 
makeup.  Inside the deaerator, oxygen is removed from the 
sea water to avoid tube corrosion of the heat recovery stages 1 
to 16.  Recycle brine (which is the sea water that is 
accumulated in the deaerator or last stage) is transferred by 
brine recycle pump (BRP) to the tube side of the heat 
recovery stages, where the flashed brine at the condenser of 
each stage gradually heats it.  After exiting from stage 1 the 
brine is finally heated to its terminal temperature by the 
heating steam in the brine heater.  It then flows to stage 1 of 
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operation measurement systems for the series of MSF stages 
[18]. For the MSF validation (Fig. 9) the relative differences 
were small (in the range 1.0% - 1.8%). The main source of 
these differences was the unavailability for modeling of the 
stage dimensions and detail design characteristics such as 
overall heat transfer coefficient and stage tube area.  

 
TABLE II: POWER PLANT INPUT/OUTPUT PARAMETERS 

Model inputs  Model outputs  
Ambient temperature  ºC GT gas flow kg/s
GT load MW HRSG steam flow t/h 
Supplementary firing 
fl

kg/s ST load MW 
Steam pressure bar Condensate flow kg/s 
Steam temperature ºC MSF unit  load kg/s 

 
TABLE III: MSF UNIT INPUT/OUTPUT PARAMETERS 

Model inputs  Model outputs  

Top brine temperature ºC Steam flow t/h
Brine recirculation flow kg/s Makeup flow kg/s
Seawater inlet temperature ºC Blow down flow kg/s
Seawater feed flow kg/s Stages brine temperature ºC
Distillate production kg/s Stages distillate 

temperature 
ºC

  Stages cooling water ºC

 
For the power plant validation, the model gas flow for all 

three scenarios is predicted closely with differences in the 
range 1.1% to 1.7% (Fig. 4). In Scenario 1 both GTs are used 
giving 2 × 40 readings (where Scenario 2 and 3 use only one 
GT). These differences in gas flow probably represent the 
best that can be expected from a simulation model taking into 
account the precision of the measurement devices. Both 
Scenario 1 data sets are correlated against ambient 
temperature in Fig. 4 and show greater differences at higher 
temperature. This suggests there may be issues with 
simulation model, e.g. assumption of constant Lower Heating 
Value (LHV). 

The differences in HRSG steam flow measurements (Fig. 
5) could be the result of data measurement uncertainty (from 
measurement devices precision and location, etc.) or model 
deficiencies or both. The model HRSG flow could be 
affected by other related model parameters (such as steam 
pressure, steam temperature or even calculated gas turbine 
exhaust mass flow rate and exhaust temperature) as well as 
external (unmodelled) factors. In Scenario 1 both HRSG are 
operational, giving 2 × 40 readings (whereas scenarios 2 and 
3 use only one HRSG). One of the HRSG records steam 
flows higher than the other by almost 15-20 t/h, when both of 
them are in principle identical and at the same operating 
conditions. With the readings sorted by ambient temperature, 
this difference was observed only at low ambient temperature 
and the difference reduces with increase of ambient 
temperature (Fig. 5). This indicates issues with site measured 
data, either due to instrumentation problems for one of the 
HRSG units, or due to features of the plant not modeled in the 
simulation. In turn, these latter could be due to either 
differences in the otherwise nominally identical plant 
physical layout not incorporated into the model, or issues 
such as unidentified (and thus unmodeled) flange leakage.   

Steam turbine load validation took place only for two 
scenarios (Fig. 6), since it is shut down for Scenario 2. 

Measurement device uncertainty is not likely to be significant 
for the steam turbine load, because these are payment 
dependent devices and have to be checked and certified for 
billing purposes. The differences between model results and 
measured data are 1.4% for Scenario 1 and 3.7% for Scenario 
3. The trend of the model data suggests that the higher 
Scenario 3 steam turbine load difference may be due to the 
assumption of constant mechanical efficiency in the model 
because the differences are almost the same for all 
comparisons. 

Understanding the plant operation is important in 
analyzing the patterns for MSF flow and ST condensate flow 
(Fig. 7-8). Reduction of the MSF flow results in raising steam 
passing to the LP turbine and increasing ST condensate. This 
relationship can be observed by noticing the improvement for 
the Scenario 2 validation where there is no condensate flow. 

 

 

 
Fig. 4. Power plant validation: gas flow (kg/s) 
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the validation process can identify potential issues with site 
operation or instrumentation (e.g. HRSG steam flow), as well 
as highlighting the need for possible modeling enhancement 
(e.g. GT gas flow, ST load). Finally, one issue of validation 
against real plant is that plant operational instrumentation 
may not exist to enable all aspects of the model to be fully 
tested (e.g. MSF).    
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