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Abstract—In hyper spectral imaging applications, the light 

power reaching the image sensofr is greatly reduced compared 

to broadband color image sensors.  Consequently, some typical 

algorithms, such as Flat Field Correction (FFC), are not 

guaranteed anymore to work in the same way as in their normal 

operation for broadband color imaging. This is caused by 

transistor leakage which cannot be neglected anymore. In this 

paper, we propose a mathematical leakage model based on the 

basic transistor theory to tag the validity of the sensor response. 

The model has been validated by comparing the simulation 

results to measurements of the pixel response of a hyper 

spectral imager. We also demonstrate that this leakage model is 

able to select the proper training set for a typical FFC 

algorithm. 

 
Index Terms—Leakage model, transistor leakage, CMOS 

imager, hyper spectral imaging, flat field correction. 

 

I. INTRODUCTION 

Spectroscopy is the study of light that is emitted by or 

reflected from materials and its variation in energy with 

wavelength [1]. Hyper Spectral Imaging (HSI) is the 

combination of spectroscopy and traditional imaging giving a 

spectroscopic measurement for every pixel in the image. This 

typically leads to a better classification, identification and 

understanding of the scene [2]. A hyper spectral camera 

therefore contains a spectral unit next to the image sensor to 

map the light of different narrow bands of wavelengths on 

different pixels. Consequently, the amount of light energy 

and its intensity that falls on the image sensor is quite small 

compared to the traditional wide-band RGB filter in a normal 

imaging system. In the typical pixel structure, the electron 

well of the pixel is normally connected with a transistor 

which is in off-state while the photodiode is integrating the 

light. In the off-state, there exists a leakage current from drain 

to source of the transistor [4]. In strong light conditions, the 

leakage is neglected because the signal, i.e. the 

photon-electron generation rate, is much faster than the 

leakage. However, when a pixel is in a low illumination 

condition, as in many HSI applications, the photon-electron 

generation rate is in the same order of magnitude as the 

leakage current. In this situation, it is possible that the 

electrons leakage equals to the electrons generation, which 

builds a dynamic balance. This leads to a dynamic saturation 
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where the electrons well is not full but the collected electrons 

number will not increase as the exposure time increases. 

Even worse, the saturation level changes with light intensity 

as shown in Fig. 1. 

 
Fig. 1. Sensor response curve under two different illuminations 

 

Therefore, for a given response, the user has no idea 

whether it is saturated or not because the saturation level for 

the corresponding illumination is unknown.  

  Flat Field Correction (FFC), a common method applied 

for removing Fixed Pattern Noise (FPN) in the imaging 

sensor [5], is one of the applications suffering from this 

dynamic saturation. Basically, the FFC uses two training 

images which are supposed to be linearly related to the test 

image to remove FPN. However, the linear relationship 

cannot be guaranteed between training and test images if the 

user has no idea about whether the training image is saturated 

or not.   

To know the saturation level upfront, in this paper, a 

leakage model based on classical transistor theory is 

proposed and validated. The model is able to predict the 

saturation level and accurately describes the actual saturation 

level of the sensor. The model is easy to be calibrated without 

any extra instrument. Moreover, it also provides an easy 

training selection method for FFC.  

The rest of this paper is organized as follows: Section II 

introduces the problem in state-of-the-art. The leakage 

principle and model are discussed in Section III. The 

improved FFC algorithm based on leakage model is 

introduced in section IV. The experiment results are shown 

and discussed in Section V. The conclusion and future work 

are included in section VI. 

 

II. STATE-OF-THE-ART 

A common used linear pixel response model in 

state-of-the-art, such as [6] is: 

 = +Y k t d  (1) 
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where d is the dark offset, representing the response of the 

sensor without illumination. The parameter k is the product of 

the light intensity, the quantum efficiency and the sensor gain. 

The latter parameters are fixed for a given sensor; therefore 

the user can calculate light intensity by measuring k. In Fig. 2, 

k can be interpreted as the slope of the line connected by 

response and dark offset. The data validity is ensured by 

avoiding any pixel with a maximum output, such as 1024 for 

a 10-bit sensor.   

This model has been used many applications such as in [7] , 

[8].However, this is not accurate enough when the sensor is 

in low illumination because the transistor leakage is too big to 

be neglected.  

Due to the dynamic saturation in low illumination, the data 

validity cannot be guaranteed anymore by a fixed saturation 

level. In Fig. 2, the measurements of a 10-bit hyper spectral 

sensor at different ET are shown. In traditional theory, all the 

responses plotted will be considered as valid because all the 

responses are lower than 1024. However, it is clear that the 

triangle data has already been saturated. For the circle data, 

although it is not fully saturated, it is still a good idea to avoid 

the non-linear data since it provides a different k compared 

with the valid data marked by pentagram. To avoid capturing 

the invalid data, based on the leakage model, we also develop 

a response model which is able to decide the validity of 

response without knowing the complete response curve over 

ET.  

For the testing set selection of FFC algorithms, the data 

with high SNR and linearity are always appreciated. But the 

linearity is not able to be quantified by traditional methods 

without the complete response curve as the solid cure in Fig.  

2. It is true that, for training purpose, the complete response 

function can be obtained to analysis the response linearity for 

each response. However, it will greatly increase the cost and 

efficiency of applying FFC on hyper spectral imager. For 

example, suppose we need 20 measurement data to build a 

response curve. The result is, for a 100 bands HSI imager 

where there are 100 pixels in each band, we need to collect 

200,000 extra points in order to evaluate the linearity of each 

response. In this paper, thanks to the leakage model, we can 

tag the linearity only by each response itself without 

measuring extra data points. Therefore, the simplicity of the 

traditional FFC is maintained.  

 

 
Fig. 2. Measurement of the response of a hyper spectral sensor at different 

exposure time 

 

III. LEAKAGE PRINCIPLE AND MODELING 

A. Principle of Leakage in the Pixel Structure 

Part of the standard pinned, 4 Transistorpixel structure 

[3] is shown in Fig. 3,  

 
Fig. 3. Pixel structure before source follower 

 

  V1 is connected to a source follower, which transfers the 

electrons to the following read-out circuit. Before the sensor 

is integrating the light, the V1 is reset to VDD and V2 is at the 

photodiode built-in voltage, which is fixed for a specified 

photodiode. During the exposure time, the photodiode is 

receiving the photons and the generated electrons make V2 to 

drop, which leads to a potential difference between V1 and 

V2. Therefore, a leakage current will be generated from 

Drain to Source although the transistor is in the off state. This 

is called subthreshold leakage where the gate-source voltage 

is less than the threshold voltage [4]. The current depends 

exponentially on the gate-source voltage [9]. 

When TX is in off state, the potential G is fixed. As the 

voltage of the source drops, both Vgs and the leakage current 

from drain-source increase. Therefore, the leakage increases 

as the collected electrons increase. There are two possibilities 

that may happen in the exposure period. If the light intensity 

is so strong that, although the leakage increases as the 

collected electrons increase, the leakage is always lower than 

the speed of photon-electrons generation. In that case, the 

pixel will be in the real saturation if exposure time is long 

enough. However, if the light intensity is low, at beginning, 

the collected signal will also increase because the leakage is 

small. But at one point of the time, the leakage rate will 

increase till the same as the photon-electrons generation rate. 

Then the dynamic balance is achieved. The pixel is in the 

status of dynamic saturation.  

B. Pixel Response Model in Low Light Environment 

Because the leakage is exponential to the collected signal 

[9], the leakage can be represented as  expa b Y  , where a 

and b are two parameters for the leakage model and Y is the 

output signal digital number. To include leakage inside the 

function, the leakage is subtracted after making (1) into 

differential format. Therefore, at each time we can build a 

differential equation 

  / = - expdY dt k a b Y   (2) 

where k is the linear increasing ratio due to the light. This can 

be considered as the same k in (1) because there is no leakage 

component in (1) and all the signal changing is due to the 

light shining at the sensor which is the signal. In (2), after the 

leakage is included, the k is not the general response changing 

rate anymore as in (1) but k can be interpreted as the response 

changing rate due to the light signal. If we integrate (2), we 

get 
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c is a constant coming from the integration procedure.   

Equation (3) is the pixel response model including the 

leakage, which can be used to predict the saturation level. To 

describe the leakage influence quantitatively, another 

parameter is developed named leakage percentage defined as： 

 = /b Ya e k   (4) 

This describes how big the leakage is relatively to the input 

signal and helps in deciding the actual deviation from 

linearity, i.e. are we in saturation or not. A lower value of 
refers to very small leakage, so the response is far away from 

saturation such as the pentagram data in Fig. 2 with  of 

0.12%. A higher  means the response has been saturated 

such as the triangle data in Fig. 2 with  173.5%. The ratio 

more than 1 does not mean the leakage is more than the signal 

current because the leakage will stop increasing after the 

dynamic saturation is achieved. A ratio more than 1 suggests 

the response has been saturated for quite a long time. For the 

response in Fig. 2, the response is saturated at around 600ms 

and the triangle data is measured at 700ms. That’s the reason 

why  of the triangle data is so high. For the circle data, 
is 74.63% which means it has not been fully saturated but the 

leakage has already been considerably strong, the user should 

take care if they want to use that data close to saturation.  

One more advantage of   is that it can be calculated 

easily. For a given sensor, a and b are found using a 

calibration of the sensor. The parameter k is approximately 

expressed as the Y divided by ET. Therefore, we can 

calculate  as long as we know the exposure time of the 

response, which is normally the case in practice.  

To validate the response, user can decide a threshold for 

  where all the responses with higher than threshold will 

be considered as invalid. However, the exact number of this 

threshold is not easy to decide. According to Fig. 2 and 

corresponding values, a lower threshold, which refers to 

lower leakage, will lead to a short exposure time, which is 

normally linked with a lower SNR. Therefore, lower leakage 

and higher SNR is not easy to be achieved at the same time. 

User has to make a decision about the trade-off based on 

application. This tradeoff will be discussed in detail in 

section V.D.  

C. Modeling Method and Parameters Estimation 

In Equation (3), four parameters need calibration: k, a, b 

and c. The calibration procedure is as follows:  

1) Calibrate k: For a given light condition, several 

images at different ET are taken. The saturation data 

should be avoided. For each pixel in the sensor, we 

plot the response over time such as in Fig. 2. The slope 

of the cure corresponds to k.  

2) Calibrate a and b: For several different illuminations, 

record the saturation images and the k. For each pixel, 

plot the saturated digital number and k pairs. Because 

k equals the leakage in the dynamic saturation, we 

build a relationship between digital numbers versus 

leakage as shown in Fig. 4. The a and b can be 

obtained by interpolating the measurement data based 

on an exponential function. 

3) Calibrate c: To keep (3) continuous, an image at short 

exposure time (3.2*10-6s in this experiment) is also 

recorded. This image is employed to initialize c in the 

function. 

 

IV. IMPROVED TWO POINTS FFC ALGORITHM 

The problem of applying the traditional Two-Points FFC 

(TPFFC) [10]on HSI is that there are no specified rules to 

guarantee the training set is not saturated and linear related to 

the test image. Since the leakage model has been developed 

in the last section, this can be solved by the leakage 

percentage as proposed in (4). Therefore, the improved 

TPFFC including a new training set selection method based 

on leakage percentage is as follow: 

1) Generate uniform light for training: The basic purpose 

of training images is to provide an example of the 

imager response while all the pixels are receiving the 

same amount of energy. Therefore, the illumination 

should be uniform over the sensor. This can be 

achieved by using an integration sphere for the 

training lamp.  

2) Selecting the exposure time for training set: After the 

threshold of  is decided by user. The selected 

exposure time is the longest one that still make 
lower than the threshold. The fact selecting the longest 

exposure time is based on the assumption that longer 

exposure time can provide higher SNR. However, if 

SNR is not increasing with exposure time, it means 

SNR is saturated at that exposure time. In that case, 

the user should lower the threshold of to provide a 

response with less leakage since SNR is not decreased 

by reducing the exposure time. 

3) Collecting training data: At the selected exposure time, 

record two responses of the imager under no 

illumination and under training light respectively. The 

two responses are referred toR(L1) and R(L2). To 

reduce noise sources such as photon shot noise, R(L1) 

and R(L2) can be the average result of several images 

which are continuously taken at the same exposure 

time.  

4) Capture testing data: For a different light, refers to 

different spectrum and intensity with training light, 

take an image at any exposure time. This is 

represented by R(L3). Average R(L3) over the sensor, 

the result is the scale factor for the final correction.  

5) Correct test image at L3 by using the formula: 

  
   

   

3 - 1
= 3

2 - 1
new

R L R L
R Avg L

R L R L
  (5) 

Notice that the procedure 2 is the contribution of this paper. 

By doing that, the user have a way of selecting the quality of 

training set before really applying it on the training set. In the 

state-of-the-art, this TPFFC is only a basic method, not 

always the best. There are lots of other FFC algorithms where 

polynomial coefficients are used but not only the linear 

coefficient such as in [11]. However, all of them need a valid 

training set to determine the coefficients. In this paper, 

TPFFC is only used as an example to illustrate that the 
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leakage model is not limited to TPFFC and is able to provide 

guidance to all FFC algorithm training set selection. 

 

V. EXPERIMENTS RESULTS AND DISCUSSION 

In this section, the leakage model is validated. Moreover, 

results of the FFC based on the different training sets are 

shown to demonstrate how the best training set is selected. 

The tradeoff among exposure time, spectrum correctness and 

response uniformity is discussed at the end.  

A. Experiment Set Up 

The sensor tested was a multi-spectral sensor with 8 bands. 

There are two different lamps from Paulmann for training and 

testing. They have different color temperature and therefore 

can provide different spectrum. By doing that, our method is 

proved not only working in the training illumination but also 

in other illuminations. Lamp A has color temperature of 

2900Kand is used for training. Lamp B has color temperature 

of 2200K is used for testing in the experiment. The uniform 

light is provided with integration sphere. And each training 

image mentioned is the average of 10 images to reduce the 

noise sources such as shot noise. The test image is only the 

raw image without any processing if not mentioned.  

B. Leakage Model Calibration and Response Simulation 

Before the validation, the parameters are firstly estimated 

for the leakage model. By using the method stated in section 

III.C, we measured 16 saturated digital number and k pairs 

under lamp A. The parameters a and b are obtained by 

interpolation using an exponential function and the result is 

shown in red in Fig. 4.  

 
Fig. 4. Measurement and interpolation result or one pixel  

 

After all the parameters have been determined, the sensor 

response can be simulated by (3). To validate the model, the 

simulation and measurement results under lamp B are 

compared as shown in Fig. 5. 

 
Fig. 5. Sensor response simulation and measurement 

Notice the result is the average response of one entire 

band. 

The experiment results shown in Fig. 5 illustrate the 

simulation including the leakage model has greatly improved 

the simulation accuracy, especially after 430ms where the 

leakage started to have big influence on the response. Also, 

we can observe that in Fig. 5 the k is around 2 and saturation 

level is around 800. This also coincides with the red curve in 

the Fig. 4 where leakage rate is also around 2 when digital 

number is 800. 

C. Improved TPFFC 

In this part, our proposed method is demonstrated to be 

able to select the proper training set for TPFFC without 

taking extra measurements. The leakage percentages of all 

the candidate training sets are first calculated and shown in 

Table I. For the leakage percentage threshold, as discussed 

before, the user should decide it based on specified 

application. But we can take a 12% for an example to see how 

it behaves. The bold numbers represent the selected training 

set for TPFFC.  

 
TABLE I: THE LEAKAGE PERCENTAGE OF ALL THE CANDIDATE TRAINING 

SETS 

 6.45ms 12.9ms 19.35ms 25.8ms 32.25ms 

Band 1 0.04 0.11 0.47  5.15 37.15 

Band 2 0.01 0.13 10.40 12.92 66.97 

Band 3 0.01 0.09 1.39 17.93 76.44 

 

The test image is taken at 16.125ms under lamp B. After 

applying the TPFFC using corresponding training set, the 

uniformity improvement is shown in Table II, where a higher 

number suggests a better performance of TPFFC. To get a 

fair uniformity evaluation of different responses level, the 

uniformity is scaled by the average response and defined as in 

(6)  

 (Img)
= 100%

(Img)

STD
Uniformity

mean
  (6) 

In the Table II, we can see our selected training set is able 

to provide the best result of FFC among the 5 candidate 

training sets. Take band 1 as example, for the training set at 

32.25ms, because the response is near to saturation with a 

leakage percentage of 37.15%, it provides an even noisier 

image after FFC, represented as a negative improvement -0.2% 

in Table II. For those training sets with ET shorter than 

25.8ms, they suffer from the low SNR so that the 

performance of FFC is also limited. Notice that, we select the 

training set before we get the experiment result of Table II. In 

this way, the users can know the efficiency of the training set 

before really testing it.   
 

TABLEII: THE UNIFORMITY IMPROVEMENT BY TWO POINTS FFC FOR 

DIFFERENT TRAINING IMAGES (PERCENTAGE) 

 6.45ms 12.9ms 19.35ms 25.8ms 32.25ms 

Band 1 0.03 0.14 0.16 0.17 -0.20 

Band 2 0.03 0.15 0.18 0.13 -0.90 

Band 3 0.04 0.11 0.16 0.03 -1.16 

 

D. Spectrum Correctness 

In this part, the leakage percentage is demonstrated to be 

able to avoid spectrum deformity. The principle for the 
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spectrum comparison is that the same spectral sensor should 

provide same spectrum for the same light at different 

exposure time. For those spectrums having the deformed 

shapes, the leakage percentage is able to detect their 

invalidity.  

We collect 11 spectrums of lamp B by 11 different 

exposure time sand each spectrum is normalized by 

maximum before they are plotted in Fig. 6.The threshold is 

12% as before. The invalid data is shown in dot in Fig. 6. 

 
Fig. 6. Spectrum of lamp B at different exposure time  

 

The result shows the spectrum tends to be deformed while 

the ET increasing more than 29ms because some of the bands 

are started to be saturated.  In Contrast, the valid spectrum is 

sharing more similar shape than the others, which means the 

deformed spectrums such as those with exposure time more 

than 29ms are avoided.  

  It is not difficult to explain how the spectrums are 

changing their shapes after saturation. Take band 1 and 2 as 

an example, after 32ms, the response of band 1 increase from 

0.9to 0.94 while the response of band 2 doesn’t change a lot 

due to saturation, this leads to the spectrum deformity in the 

region of band 1 and band 2. This also explains why the 

responses at the non-saturated bands tend to increase after 

one band is saturated.  

Now the question will be whether the leakage percentage 

threshold can be globally optimized. Together with the 

results of this section, a general trade off among SNR, 

Spectrum Correctness (SC) and Response Uniformity (RU) 

can be built. SC and RU are in the same side whereas the 

SNR is in the other side. While SNR is too low, both SC and 

RU are not good. In the other hand, if the SC and RU are too 

bad, no matter how high the SNR is, the result is still invalid. 

For those cases which are between these two extreme 

conditions, a case-by-case method should be appreciated. For 

each application, there should be a weight to evaluate the 

importance of SNR, SC and RU. Only after those are known, 

a local optimized threshold for leakage percentage is possible 

for the specific application.  

 

VI. CONCLUSION 

A leakage model based on the standard CMOS imaging 

pixel structure is proposed including the calibration methods. 

The model is able to provide a way for user to tag the validity 

of a response. The results have shown this model is helpful to 

improve simulation accuracy and avoid the spectrum 

deformity. Moreover, the model is also demonstrated to be 

able to provide guidance to the training set selection of 

TPFFC algorithm. However, the exact number of the leakage 

percentage threshold should be application dependent under a 

decent consideration including the trade off among SNR, 

response uniformity and spectrum correctness.  

In the future work, more time will be spent on comparing 

the object reflectance spectrum with a benchmark system to 

further validate the performance of the leakage model. 

Moreover, an improved FFC algorithm is also appreciated 

which can improve the uniformity while keeping the 

spectrum unchanged for each pixel.  
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