
 

Abstract—We examine a simple biologically-motivated 

neural network, the version of the Chialvo-Bak “minibrain”, 

and propose an approach to decrease the negative effect of the 

active paths interferences in a process of learning new data. For 

this purpose we use randomly ordered neural network 

structure with recurrent signal propagation mode. We 

investigated the network's performance and learning capacity 

dependence on its nodes' interconnection level. Our simulation 

study shows that the proposed approach needs on average 40% 

less number of learning steps for learning the same set of 

patterns and has higher learning capacity compared to the 

existing method. 

 
Index Terms—Hebbian learning, neural network, pattern 

recognition, reinforcement learning.  

 

I. INTRODUCTION 

 In this paper we propose an approach to improve the 

performance of the “minibrain” model suggested by Chialvo 

and Bak [1] by decreasing the negative effect of the active 

paths interferences in a process of learning new data, at the 

same time resembling the changes to the biological learning 

processes of the animal's brain.  

First of all, we do not use the fixed layered structure of the 

network, but an initially unstructured set of neurons with 

randomly chosen weights. Also we use diluted connectivity 

instead of fully interconnecting every neuron in the attempt 

to avoid the negative effect of path interference. For the same 

purpose we adapt the algorithm to the recurrent signal 

propagation mode in place of the feedforward one.  

Formulated as early as 1949, Hebbian rule [2] has been an 

important milestone for both neurophysiology and computer 

science. It was the first and the only plausible learning rule 

for artificial neuron networks. The rule was successfully used 

in various applications, including the model of bee's foraging 

in an uncertain environment [3] and human decision making 

[4]. 

However upon a closer view we notice a few drawbacks 

while applying the method in its present form. Firstly, it is a 

self-destruction of a pre-learned information in an attempt to 

adjust the weights for storing new information. In the 

canonical example of [5], Edelman compares a mouse's 

behaviour with behaviour of a robot, controlled by a neural 

network in a certain environment. The result shows that after 

the environment changes, the robot seldom retrieves 

pre-learned knowledge, unlike the mouse. The reason is that 
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the field of coefficients of neural network is destroyed by the 

newly learned information. This example presents the 

importance of storing a pre-learned data while being able to 

perceive the new data without any overlap. Our paper 

presents the approach of creating the network capable of 

storing new information without loosing the old information. 

Another drawback of Hebbian learning is an 

autocorrelation term of the learning rule. During a correlation 

of presynaptic and postsynaptic neurons' activity, weight 

growth causes a higher postsynaptic potential and therefore 

even more weight growth. It causes the exponential weight 

growth and leads to destabilisation of the network [6]. 

Although in an earlier paper [7] Hebb had introduced the 

mechanism of decreasing the synaptic weight under certain 

conditions, he has excluded it in its final version [2]. 

Consequently, it is unlikely that applying only the pure 

Hebbian rule will result in an entirely adaptive system 

capable of task-oriented learning. 

To solve the described constraints without loosing the 

biological plausibility, i.e. keeping it consistent with learning 

processes of the animal's brain, Bosman et al. suggested a 

model of neural network in which both Hebbian and 

reinforcement learning occur [8]. According to the 

contemporary biological studies, reinforcement mechanism 

was observed in biological learning processes and was 

successfully used to interpret the activity of dopamine 

neurons to mediate reward-processing and reward-dependent 

learning in non-human primates [9], and modulate 

cortico-striatal synaptic efficacy in humans [10], also solving 

problems, including robot control, elevator scheduling, 

telecommunications and chess [11]. 

In the “minibrain” model of Bosman et al. [8] the extremal 

(“winner-takes-all”) dynamics is used, inspired both by 

earlier SOC models [12] and the SOM [13], which 

considerably improves learning performance and provides a 

fast and highly adaptive learning system. However the 

network's learning capacity remains the crucial issue due to 

the active paths interference that destroys the formed weight 

matrix in an attempt to adapt itself for the new patterns. In 

this paper we thoroughly investigate this phenomenon and 

suggest the way to reduce the negative effect of the active 

paths interference. 

 

II. PROPOSED APPROACH 

The common problem of storing the large amount of input 

patterns into the network is the interference of new learned 

data with previously learned data. When several input 

patterns are applied to the neural network to be learned, the 

negative effect of the paths interference arises. The active 

Reducing the Active Paths Interference in the Chialvo-Bak 

“Minibrain” Model 

A. Kulakov and M. Zwoliński  

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

734DOI: 10.7763/IJMO.2012.V2.222



paths overlap when the strongest connection from the 

different input patterns point to the same intermediary 

neurons. As result, the learning of something new causes 

forgetting of an old data. 

There may be several reasons, which give rise to such a 

situation. First of all, from the active input neuron the path of 

activity runs along the strongest synaptic connections to the 

corresponding output neurons. In certain situations an 

established path can be completely “wiped out” by an attempt 

to learn new data, so that connection of the previously 

learned pattern is no longer the strongest. Also the 

competition between the activity path, formed in previous 

steps, and newly forming active path can happen. Such a 

competition often erases or partially destroys the old path and 

correspondingly leads to forgetting of old data by the 

network. 

Secondly, according to the “minibrain” algorithm, in the 

case of the incorrect output pattern, the mechanism of 

decreasing the strength of recently formed synaptic 

connections is applied. This almost certainly removes the 

previously formed synaptic connection from the active level 

of synapses and forms another one, which produces a 

different output pattern. Correspondingly, the large amount 

of the incorrect output patterns causes a large change in the 

geometry of the active level and, hence, in the weight matrix 

of the network connections. This causes a so-called 

“avalanche” in the network landscape [1]. 

Solving the problem of path interference we introduced 

several improvements to the algorithm. Firstly, we keep the 

overall network activity at low level. In this way the 

formation of the new network activity patterns has less 

influence to the already existing paths, allowing to coexist the 

both [14]. The activity of the network over a certain period of 

time can be calculated as a fraction of active neurons to the 

total number of all neurons. 

Secondly, more than one neuron is needed to excite a 

postsynaptic neuron. Although this point is mentioned in the 

Hebbian postulate [2], often it is violated. This restriction 

limits the probability of any neuron to influence several 

activity paths and thus reduce the chance of their 

overlapping. 

Thirdly, we exploit the diluted network which means that 

rather than connecting every neuron to all others we 

interconnect them based on a certain probability. This 

diminishes the chance of involving the same neurons forming 

the activity paths for different input patterns. However, the 

level of activity depends strongly on the level of dilution and 

our investigation show that the most optimal level of dilution 

would be the 80 % of the full network interconnection (see 

Fig. 4). 

Fourthly, we deliberately avoid the direct connections 

between the neurons' set dedicated for the input with the 

neurons responsible for the output. Otherwise, the direct 

connections extend the learning period or corrupt the final 

result. This happens because these connections cannot fit all 

set of learning patterns and if they do not fit the current 

learning pattern, it takes long time to reduce such 

connections' weight to zero; besides according to the learning 

mechanism, all other weights are affected by the changes. 

Finally, we do not use a structured network but employ the 

randomly interconnected set of neurons with dedicated array 

for providing an input and another array employed to receive 

an output. The mode of signal propagation is recurrent and 

the output is taken only when the network's state is settled. 

The network determines whether it has reached a fixed point 

by recording each state of the network and comparing it with 

the subsequent state. 

 

III. SIMULATION RESULTS AND DISCUSSIONS 

Our experiment proves that the proposed network 

architecture with recurrent signal propagation have higher 

performance comparing to the original method [8]. 

According to the proposed approach we created the neural 

network of 200 neurons and studied it under various 

conditions. We dedicated 10 neurons for input and another 10 

neurons for output and taught the network to 20 different 

input patterns, associating them with certain non-repeating 

output patterns chosen by the network. Every experiment was 

repeated 20 times to calculate the mean value of the learning 

efficiency. 

To measure the efficiency of the learning process we 

selected two parameters: number of learning steps and 

learning performance. The latter can be calculated as the ratio 

of the average a priori number of performed learning steps to 

the actual number of steps, which were needed to learn the set 

of applied input patterns and to associate them with the 

output patterns. 

Fig. 1 presents the result of the experiment and shows the 

comparison of the feedforward and the recurrent propagation 

signal modes in the neural network as a function of the input 

pattern number. The difference in the performance increases 

with the higher number of applied patterns. If for one or two 

input patterns the learning performance is similar with the 

difference around 0.05, the difference grows up to 0.3 for 10 

input patterns. 

The similar behaviour is observed counting the number of 

learning steps. Fig. 2 shows the comparison of the average 

number of learning steps performed by the neural networks 

with the feedforward and the recurrent signal propagation 

modes as a function of the input patterns number. While 

using the recurrent network, it is necessary to perform much 

less learning steps to adapt the weight matrix to the larger 

number of learning patterns. For example, we need only 1230 

learning steps to learn 6 input patterns, whereas the existing 

approach needs 2120 learning steps. 

Another important observation is that the network's 

capacity is lower while learning with the feedforward signal 

propagation mode because in our experiment the network 

could not learn more than 10 input patterns, whereas it took 

around 5000 learning cycles for recurrent network to adapt its 

weight matrix for 12 learning patterns, as can be seen in Fig. 

2. 

We took a closer look at the dynamic of the synaptic 

weight changes of the network. The rate of weight change of 

two randomly taken connections is shown in Fig. 3. It 

presents how different neurons participate in various activity 

paths formation. While the connection of the feedforward 

network finds its equilibrium quite fast and from 5800th 
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learning step remains unchanged, the weight in the recurrent 

network keeps adjusting its value during the whole process of 

the experiment. 

 
Fig. 1. Comparison of feedforward and recurrent signal propagation modes 

in the neural network as a function of the input patterns number. 

 

 
Fig. 2. Comparison of the average number of learning steps performed by the 

neural networks with feedforward and recurrent signal propagation modes as 

a function of the input patterns number. 

 

The fluctuations shown in Fig. 3 are caused by path 

interferences and are also decreasing as the network 

redistributes the weights and forms the alternative paths to 

associate the input patterns with the most optimal output 

patterns. 

The phenomenon can be explained by taking into 

consideration the way the neural network stores the learned 

information. Intuitively we could presume that the learning 

efficiency of the network grows with the number of neurons. 

However, this is only valid to a certain extent. The applied 

input pattern activates the corresponding neurons and causes 

them to fire further to the post-synaptic neurons.  Those 

neurons, however, activate only if their input weights are 

strong enough to cause the accumulated signal that exceeds 

the firing threshold. 

Due to these aforementioned activation constraints, the 

activity paths are formed in the network. Corresponding to 

each input, the most probable signal propagation will follow 

the associated pattern. However, when the number of input 

patterns or the inter-connectivity level increases, the activity 

paths overlap, and thereby destructing each other and 

corrupting the output result. Fig. 4 shows, that the 

performance degrades beyond the 80 % of the full network in 

terconnection. 

 
Fig. 3. The rate of synaptic weight change in the neural networks of 

feedforward and recurrent signal propagation modes. 

 

 
Fig.  4. Performance of the recurrent network as a function of the connection 

probability (dilution). 

 

Although the low interconnection level leads to longer 

adaptation time, the trade-off must be find because the 

slow-down in the learning rate starts to predominate when the 

quantity of neurons exceeds the optimal number or the 

network is fully interconnected. 

  

IV. CONCLUSIONS AND FUTURE WORK 

This paper investigates the self-learning neural network 

and the ways to decrease the negative effect of the active 

paths interferences in a process of learning new data without 

losing the previously learned one. Although a complete 

analytical understanding of this phenomenon is still to be 

developed, the underlying mechanism behind this behaviour 

is identified and several improvements have been suggested. 

The results can be improved by changing the set of input 

patterns to ones with fewer similarities among each other. 

This makes the input patterns more distinctive for a neural 

network as a higher number of different input neurons will be 

activated. This diversifies the activity paths and reduces the 

corruption of output which would be caused by overlapping 

of new learned data with pre-learned ones.  

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

736



ACKNOWLEDGMENT 

The authors would like to gratefully acknowledge the 

EPSRC (EP/D079594/1) for the support it has provided 

through funding our research activities. 

REFERENCES 

[1] J. Wakeling, “Order-disorder transition in the Chialvo-Bak `minibrain’ 

controlled by network geometry,” Physica A, vol. 325, pp. 561-569, 

September 2003. 

[2] D. O. Hebb, The Organization of Behavior: A Neuropsychological 

Theory, new ed. New York: Wiley, 1949. 

[3] P. R. Montague, P. Dayan, C. Person, and T. J. Sejnowski. “Bee 

foraging in uncertain environments using Hebbian learning,” Nature, 

vol. 377, no. 6551, pp. 725–728, October 1995. 

[4] P. Montague, P. Dayan, and T. Sejnowski, “A framework for mesen- 

cephalic dopamine systems based on predictive Hebbian learning,” J. 

Neurosci., vol. 16, no. 5, pp. 1936–1947, March 1996. 

[5] J. L. Krichmar, A. K. Seth, D. A. Nitz, J. G. Fleischer, and G. M. 

Edelman, “Spatial navigation and causal analysis in a brain-based 

device modeling cortical-hippocampal interactions,” 

Neuroinformatics, vol. 3, no. 3, pp. 197–222, September 2005. 

[6] B. Porrand and F. Woergoetter, “Fast heterosynaptic learning in a robot 

food retrieval task inspired by the limbic system,” Biosystems, vol. 89, 

no. 1-3, pp. 294 – 299, June 2007. 

[7] D. O. Hebb, Conditioned and unconditioned reflexes and inhibition, 

M.Sc. thesis, Dept. Psychology, McGill University, Montreal, 1932. 

[8] R. J. C. Bosman, W. A. van Leeuwen, and B. Wemmenhove, 

“Combining Hebbian and reinforcement learning in a `minibrain’ 

model,” Neural Netw., vol. 17, no. 1, pp. 29–36, October 2004. 

[9] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of 

prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599, 

March 1997. 

[10] M. Pessiglione, B. Seymour, G. Flandin, R. J. Dolan, and C. D. Frith, 

“Dopamine-dependent prediction errors underpin reward-seeking 

behaviour in humans,” Nature, vol. 442, no. 7106, pp. 1042–1045, 

August 2006. 

[11] R. S. Sutton, “Reinforcement learning: past, present and future,” SEAL, 

pp. 195–197, October 1998. 

[12] P. Bak and K. Sneppen, “Punctuated equilibrium and criticality in a 

simple model of evolution,” Phys. Rev. Lett., vol. 71, no. 24, pp. 4083– 

4086, December 1993. 

[13] J. Wakeling and P. Bak, “Intelligent systems in the context of 

surrounding environment,” Phys. Rev. E, vol. 64, pp. 051920, October 

2001. 

[14] P. Bak and D. R. Chialvo, “Adaptive learning by extremal dynamics 

and negative feedback,” Phys. Rev. E, vol. 63, no. 3, pp. 031912, 

February 2001. 

 

 

Anton Kulakov received B.Sc. and M.Sc. degree in 

electronics from Vilnius Technical University, Vilnius, 

Lithuania, in 2003 and 2006, respectively. Currently, he 

is a Ph. D. candidate in Computer Science and 

Electronics at the University of Southampton, UK. His 

research interests include artificial neural networks, 

large-scale neural network simulation, neural modeling 

algorithms, and synaptic plasticity. He is a Member of 

IET and British Computer Society. 

 

 

Mark Zwoliński received the B.Sc. and Ph.D. degree 

in electronics from the University of Southampton, 

UK, in 1982 and 1986, respectively.  

He is a Professor in the School of Electronics and 

Computer Science, University of Southampton, UK.  

His research interests include simulation and 

modeling algorithms for analogue and mixed-signal 

integrated circuits, testing techniques for mixed-signal 

integrated circuits and VHDL. He has co-authored 

over 130 research papers in technical journals and conferences. He is a 

Fellow of IET and BCS and a Senior Member of IEEE and ACM. 

 

 

 

 

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

737


