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Abstract—In this paper, mesh-free Element-Free Galerkin 

method has been utilized for analysis of axisymmetric 

problems. To this aim, basic formulations and assumptions of 

the method for the case of axisymmetry are derived, and a 

simple problem of linearly elastic solid mechanics is taken as a 

benchmark for controlling the consistency of the proposed 

formulation as well as its accuracy in comparison to FEM. Two 

different norms for error estimation, i.e. displacement & stress 

norm, have been addressed in this study. Eventually, using these 

two norms, a parametric study has been performed on critical 

factors to demonstrate suitable parametric values. The 

numerical results show high dependency of the predicted values 

to the selection of these parameters. 

 
Index Terms—Axisymmetry, element-free galerkin method, 

error estimation, mesh-free 

 

I. INTRODUCTION 

Since the development of Element-Free Galerkin (EFG) 

method by T. Belytschko et al. [1], rather similarity of the 

method to the traditional FEM together with its higher 

accuracy, has made it the most well-known mesh-free 

method amid others. In the past, many aspects of this method 

have been addressed; and it has been used in solving many 

different problems of solid mechanics; such as crack 

propagation [2], [3], elasto plasticity [4], [5], large 

deformation [6] and lately in geomechanics [7], [8]. 

Three-dimensional problems have also been generally 

featured in the literature [2], [4]. While many problems of 3D 

nature have been analyzed by EFG method in two 

dimensions, application of the method to axisymmetry 

problems seems to have been inadequately addressed in the 

literature.  

In this paper, the EFG formulation for the axisymmetry 

case is presented. The accuracy of the proposed method is 

verified by comparing the numerical results with analytical 

solution available for a known problem of linearly elastic 

solid mechanics. 

To avoid confusion, in the following, the vectors and 

matrices are indicated by bold letters. 
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II. ELEMENT-FREE GALERKIN METHOD (EFGM) 

There is one common feature in all mesh-free methods 

which differentiates them from element-based methods. This 

dividing border is the construction of shape functions just by 

a set of nodes without any contribution from elements in 

mesh-free methods. However, this condition does not 

interdict the use of elements for means of integration [9]. 

The Element-Free Galerkin (EFG) method can be 

described by its three main features. These are a) Moving 

Least Squares (MLS) approximation for creating shape 

functions, b) Galerkin weak form for deriving discretized 

system equations and c) a set of elements solely for 

integrating the system matrices, called background or 

integration mesh. 

These features are explained in the following sections. 

A. MLS Approximants 

Let us assume that u(x) is defined over domain  . The 

Moving Least Squares (MLS) approximation of u(x) is 

indicated by 
h

u (x)  and is defined by: 
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where  
1

p 1x  and  jp x  are monomials in the space 

coordinates  T x, yx , so as to make a complete basis. In 

this paper, linear polynomial basis is used. 

 a x should be determined in a way that sum of the 

weighted square residuals of nodal values and approximate 

values at nodes in a local domain, J, reaches a minimum 

value. 
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where 1w( )x x  is a weight function and  n  is the number of 

nodes in a local domain called support domain of x, in which 

1w( ) 0 x x . 

Finding the stationary of J in (2) with respect to a(x) leads 

to the following linear relation between  a x and Iu : 
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    or                                                                                  

 1

s( ) ( ) ( ) a x A x B x U  (4) 

where sU  is the vector assembly of the nodal values in the 

support domain: 

 T

s 1 2 n[u ,u ,...,u ]U  (5) 

Analysis of Axisymmetric Problems by Element-Free 

Galerkin Method 

Ali Nemati Hayati, Mohammad Mehdi Ahmadi, and Seyyed Amirodin Sadrnejad 

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

712DOI: 10.7763/IJMO.2012.V2.217

mailto:sadrnejad@hotmail.com


 A x is the weighted moment matrix and is defined by: 
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 A x x P x P x  (6) 

and  B x  is a matrix defined by the following Equation: 

 I I Iw( ) ( ) B x x P x  (7) 

By substituting (4) in (1), we have:                                  
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where I ( ) x  is the shape function which is governed by the 

following Equation: 
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Equation (8) can be written in the form: 
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su ( ) ( )x Φ x U  (10)                                          

                                                          

where 

 1 2 n( ) [ ( ), ( ),..., ( )]   Φ x x x x  (11)                                                                                 

In this study, the following common and effective weight 

function is used [9]: 
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where          

 I w wd /d d/d  x x  (13)                                                                                                

in which  dw  is the size of the influence domain at a node 

and is computed by: 

 w max Id D c   (14)                                                                                                            

where Ic  is the average nodal distance and maxD is a scaling 

parameter called influence factor. 

In this paper, advantage has been taken of rectangular 

influence domains for the nodes and identical influence 

factors for both directions.  

Fig. 1 shows a rectangular influence domain of different 

size in two directions. 

 

Fig. 1. Rectangular influence domain of a sample node A; Gauss points 

located inside this area are included for shape function creation and 

integration (e.g. GP1) 

B. Deriving Discretized Variational Formulation in 

Axisymmetry 

A general linearly elastic solid mechanics problem is used 

to present the procedure of the EFG method in formulating 

the discretized system equations. The partial differential 

equation and boundary conditions for such a problem can be 

written in the form:  

T     0 L bσ    in problem domain                       (15) 

 u u                  on boundary u                (16)

                                                             

Equation (16) gives constraints to the field variable of 

displacements. The natural boundary conditions (traction 

forces) are given by: 

 n tσ   on natural boundary s  (17) 

In these equations, L is the differential operator,σ  is the 

stress vector, b is the body force vector, u is the displacement 

vector, t  is the traction force vector and n is the unit normal 

vector to the natural boundary. 

The constrained variational principle with penalty factors 

in axisymmetry conditions is as follows: 
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where α  is the identity matrix of penalty factors, Lu  is the 

strain vector and De is the elastic property matrix of the 

material. For axisymmetry conditions: 

 
TT T

r z rz( )      ε Lu  
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 (19)                      

  The stress vector can be easily obtained by: 

  
TT

e r z rz( )     σ D Lu  (20)                                                 

Substituting (10) in (18) and performing some algebraic 

work, the discretized final form of system equations is 

derived as follows: 
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In these equations, xI,φ , yI,φ  denote derivations of the 
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shape function with respect to x and y, accordingly.   

 

III. NUMERICAL IMPLEMENTATION 

The benchmark problem involves a hollow circular tube of 

inner radius a and outer radius b subjected to internal 

pressure p. The tube extends indefinitely along the z axis. The 

material is isotropic with elastic modulus E and Poisson’s 

ratio  . A slice of thickness h is extracted and noded as 

shown in Fig. 2. 

The illustrated slice is vertically constrained at the top and 

bottom boundaries of the slice; thus each node can only move 

in the radial direction. In this study, the numerical procedure 

is carried out with the following input parameters: 

4 m, 10 m, 2 m, 10 kPa, 1000 kPa    a b h p E with 

the nodal discretization shown in Fig. 2 and 1 × 4 equal 

integration elements each containing 5 × 5 Gauss points. The 

alpha constant in enforcing essential boundary condition (26) 

is opted as 81  10 E . 

 

 

Fig. 2. Thick cylindrical tube under internal pressure 

 

In order to check the validity of the results, they have been 

compared to closed form solutions obtained from [10]. For 

comparing the accuracy of the aforementioned EFG 

approach against another numerical method, the results are 

also compared to those of conventional FEM analysis with 

the same nodal positions as in Fig. 2 with 8 triangular CST 

elements. The results for radial stress and hoop stress for 

three Poisson’s ratios are depicted in Figs. 3 and 4 

respectively. The difference between the predicted radial 

displacements obtained from the two numerical methods and 

the closed-form solution is negligible and not discussed here; 

however, this is not the case for stresses. Figs. 3 and 4 show 

that the predicted hoop and radial stresses based on FEM 

diverge from closed-form solutions to some extent. It is also 

observed in Figs. 3 and 4 that for stresses, even in such sparse 

nodal positions, the predicted values of stresses based on 

EFG method satisfactorily fit the exact ones. Besides, as it is 

known, if Poisson’s ratio is increased, for a given number of 

nodes, numerical results lose accuracy; however, it is shown 

in Figs. 3 and 4 that EFGM results act much better than FEM 

in high Poisson’s ratios (i.e. .45  ) and show good 

consistency with analytical solution in these conditions. This 

is a prominent feature of this method compared to FEM. 

 

 
 

Fig. 3. Radial stress (r), (negative values denote compressive stresses); (a) 

υ=0, (b) υ=0.2 ,  (c) υ=0.45 

 

This much higher accuracy of EFGM explained here 

seems interesting; however, a probable question that may 

arise is that under what conditions best results are obtained. 

To answer this question, one may take into account three 

sources of error: MLS shape functions, way of satisfying 

essential boundary conditions, and background mesh of 

integration. Research implemented by the authors show that 

the parameters involved with these sources are 

problem-based; which means there is not a unique rule to 

apply for all problems [11]. However, there are some guides 

which may become useful in acquiring more accurate results. 
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Fig. 4. Hoop stress (); (a) υ=0  ,  (b) υ=0.2 ,  (c) υ=0.45 

 

To demonstrate the preceding allegations, two error 

indicators are defined here; one for displacements and the 

other for stresses. 

  
1

NUM EXA T NUM EXA 2Disp norm  ( ) ( ) d


    u u u u  (28)                                                

  
1

NUM EXA T NUM EXA 2Stress norm  ( ) ( ) d


    σ σ σ σ (29)                                               

where NUM and EXA superscripts stand for numerical and 

analytical values.  

A. Effect of the Penalty Factor 

In this problem, the introduced norms did not change by 

altering the penalty constant from 3 81 x 10 E  to  1 x 10 E . As 

this is usually the case for linear analysis [9], it has not been 

addressed herein. 

B. Effect of the Size of Influence Domain 

To study the MLS shape functions, the size of influence 

domain in (14) is varied by changing the influence 

factor, maxD , identically for both directions from 1.5 to 

91 x 10 . The node structure shown in Fig. 2 and 25 Gauss 

points per each cell of 1 x 4 background mesh are used in this 

study. The results are plotted in Figs. 5 and 6 for 

displacement and stress norms versus influence factor in a 

semi-logarithmic scale. 

It is important to note that by increasing maxD  to infinity, 

the weight function of (9) becomes constant and its 

derivatives get to zero. 

Two apparent trends are seen in both of these Figures; an 

ascending trend from maxD 1.5  which leads to the least 

error (maximum accuracy) for maxD 5.0 , and a descending 

trend from maxD 5.0  to infinity. 

 

 

Fig. 5. Effect of the size of influence domain on displacement error 

 

 
Fig. 6. Effect of the size of influence domain on stress error 

 

There is not a unique agreement over the optimum value of 

the size of influence domain which gives most accurate 

results. In fact, this factor can vary in different problems. 

The descending trend can be justified by taking a 

meticulous look at the MLS formulation in section II.A. By 

increasing the size of the influence domain, wd , in (13) to 

infinity, the weight function in (12) becomes constant over 

the whole domain (as in standard Least Squares 

approximants); thus when differentiating the shape function 

of (9), the term T 1 T 1

,x or y I I,x or y

 P A B P A B  limits to zero. This 

was the foundation of Diffuse Element Method by Nayroles 

et al [12]. Neglecting the above terms can cause a significant 

deviation from the accurate results; e.g. nearly %8000 and 

%4000 for displacements and stresses respectively in our 

benchmark problem. 

C. Effect of Integration Points 

Although the shape functions and their derivatives in (23) 

are not polynomials, it has been realized that by increasing 

the number of Gauss points, the integration accuracy 

generally improves. Yet, as stated before, this is not 

unconditionally true; because in [9] it is shown for elastic 

analysis of Timoshenco beam [10] that if the number of 

Gauss points exceeds some value, it can have some inverse 

effects on the accuracy. Further investigations done by the 

authors in elasto plastic analysis of an earth dam consent this 

[11]. However, in addition to the number of integration 

points, the arrangement of the background cells is also 
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decisive; in a way that in case of suitable arrangement of 

these cells, suitable results may be obtained with less number 

of Gauss points needed in each cell.  

In order to have a better view over the integration points 

and their effect on the results, let us assume the regular set of 

85 nodes illustrated in Fig. 7. 

Now, let us consider 12 identical background cells for the 

integration mesh with the following arrangements: along z, 

along r: 1x12, 2x6, 3x4, 4x3. Thus, by varying the number of 

integration points in each cell, the ratio of total integration 

points to the total number of nodes, η (Eta), remains the same 

for all of these arrangements. Displacement & stress errors 

are plotted against this value for all of the mentioned 

arrangements in Figs. 8 and 9, accordingly. 

 

 

Fig. 7. Regular set of 85 nodes 

 

 
Fig. 8. Effect of cells arrangements and number of integration points on 

displacement error, 12 integration cells 

 

 
Fig. 9. Effect of cells arrangements and number of integration points on 

stress error, 12 integration cells 

 

These Figures contain two hints; first is that by increasing 

the number of integration points, both errors decrease and the 

second is that by choosing a specific arrangement (2x6 here) 

for the background cells, the errors attenuate; e.g. the results 

obtained from 2x6 cells arrangement with 9 Gauss points per 

cell (η=1.27) are much more accurate than those obtained 

from 4x3 cells arrangement with 25 Gauss points per cell 

(η=3.53). 

This explains that the accuracy of the method not only 

depends on the number of Gauss points and the Eta value, but 

also on the cells arrangement. 

This finding is mostly disregarded in EFGM analyses. In 

other words, one can substantially reduce the computation 

time and increase the accuracy by proper arrangement of the 

same number of integration cells. In this problem, which is 

isotropic and axisymmetric with infinite length along rotation 

axis, it seems that in order to get best results, the ratio of 

integration cells in longitudinal and transverse directions 

should be proportionate to the ratio of extension of the model 

geometry in the two directions. For instance, in the above 

benchmark problem, this ratio is  b- a / h 3  and as seen 

from Figs. 8 and 9, least errors are obtained for 2x6 (z : r) 

cells arrangement. A further analysis with the same number 

and arrangement of nodes, i.e. 85 nodes, but with 48 

background cells was done; which led to the results shown in 

Figs. 10 and 11. Again, most accuracy is obtained from 4x12 

r z(n / n 3)  cells arrangement. 

 

 

Fig. 10. Effect of cells arrangements and number of integration points on 

displacement error, 48 integration cells 

 

 
Fig. 11. Effect of cells arrangements and number of integration points on 

stress error, 48 integration cells 

 

IV. SUMMARY 

In this paper, EFG formulation for analysis of 

axisymmetric problems was proposed and some aspects of 

this method were dealt with in an analysis of a benchmark 

problem. It was shown that, for the same number of nodes, 

EFGM provides significant accuracy in comparison with 

FEM. However, this accuracy depends mainly on proper 

choice of some parametric values. The effects of these values 

on the displacement and stress errors were investigated and it 

was found that there is an optimum value for the size of 

influence domain for which best results can be obtained. 

Deviation from this optimum value may result in loss of 

accuracy. Another point is that the integration precision in 

EFGM is not only dependent on the number of integration 

cells, but also on the arrangement of the background cells. 

The authors proposed that this arrangement should be 

commensurate to the geometry of the model for isotropic 

axisymmetric problems with infinite length along rotation 

axis. 
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