

Abstract—Scheduling the jobs of computationally intensive

applications efficiently is one of the most essential and difficult

issues when aiming at high performance in heterogeneous

computing environments. A large number of scheduling

heuristics have been presented in literature for homogeneous

computing systems. The complexity of the problem increases

when job scheduling is to be carried out in heterogeneous

computing system. In this paper, we present a simple algorithm

Heterogeneous Task Scheduling (HTS) for a bounded number

of heterogeneous machines. The aim of our algorithm is to

minimize the overall completion time of jobs (makespan)

submitted. The methodology used is to maintain the dynamic

queue (Ready Queue) in which the ready jobs are available.

From that queue the job is selected for execution on a machine

which is capable of completing that job quickly. The analysis

and experiments have shown that this algorithm provides

comparable results in some cases and even better results in

most of the cases together with low complexity when compared

with the existing algorithms Critical-Path On a Processor

(CPOP) and Heterogeneous Critical Parent Trees (HCPT) .

Index Terms—Scheduling, computationally intensive,

heterogeneous system, makespan.

I. INTRODUCTION

Recent developments in high-speed digital

communication have made it possible to connect a

distributed suite of different high performance machines in

order to provide a powerful computing platform called a

heterogeneous computing system. This platform is utilized

to execute computationally intensive applications that have

diverse computation requirements [1]. However, the

performance of parallel applications on such systems is

highly dependent on the scheduling of the application tasks

onto these machines [2]. The objective of the scheduling

algorithm is to map tasks onto machines such that it has to

minimize the overall completion time (makespan) and order

the tasks which should satisfy the precedence constraints

[1,2]. When the structure of the parallel application in terms

of its task execution times, task dependencies and size of

communicated data is known a priori, the application is

represented with the static model, and scheduling can be

accomplished statically at compile time [3,4]. HTS

scheduling is done in batch mode. In the general form of

static task scheduling, the application is represented by the

Directed Acyclic Graph (DAG), in which the nodes

represent application tasks and the edges represent inter-task

data dependencies [5]. Each node is labeled by the

computation cost (expected computation time) of the task

Manuscript received August 30, 2012; revised October 10, 2012.

Ms. P. Devaki and M. L. Valarmathi are with Department of CSE,

Kumaraguru College of Technology, Coimbatore Tamil Nadu, India (e-

mail: devaki_cbe4@yahoo.com; ml_valarmathi@rediffmail.com).

and each edge is labeled by the communication cost

(expected communication time). Finding an optimal

solution for the scheduling problem is NP-complete [6], [7].

Therefore, heuristics can be used to find a sub-optimal

schedule rather than parsing all possible schedules. The task

scheduling problem has been extensively studied, and

various heuristics have been proposed in the literature [5],

[8]–[11]. In static scheduling, these heuristics are classified

into a variety of categories (such as list-based, clustering,

and duplication-based). This paper deals with list-based

scheduling.

II. PROBLEM DEFINITION

This section presents the model of the application used for

static scheduling, the model of the heterogeneous computing

environments, and the scheduling objective.

A. Application Representation

The application can be represented by a DAG, G(V,E)

where: V is the set of v nodes, each node vi in V represents

an application task, which is a sequence of instructions that

must be executed serially on the same machine, E is the set

of communication edges. The directed edge e i,j joins nodes vi

and vj , where node vi is called the parent node and node vj is

called the child node. This also implies that vj cannot start

until vi finishes and sends its data to vj. A task without any

parent is called an entry task and a task without any child is

called an exit task. If there is more than one exit (entry) task,

they may be connected to a zero-cost pseudo exit (entry) task

with zero-cost edges, which do not affect the schedule.

B. Heterogeneous Environment Representation

The heterogeneous computing environment model is a set

P of p heterogeneous machines connected in a fully

connected topology. It is also assumed that: Any machine

can execute the task and communicate with other machines

at the same time. Once a machine has started task execution,

it continues without interruption, and after completing the

execution it immediately sends the output data to all child

tasks in parallel. W is a v × p computation cost matrix in

which each wi,j gives the estimated time to execute the task vi

on the machine pj , also known as weight matrix as shown in

Table I. The communication costs per transferred byte

between any two machines are stored in matrix R of size p ×

p. The communication startup costs of machines are given in

a p-dimensional vector S. The communication cost of edge

ci,j for transferring μ bytes data from task vi (scheduled on pm)

to task vj (scheduled on pn), is defined as:

jinmmji RSc ,,, .

 Job Scheduling for Heterogeneous Computing

Environments

P. Devaki and M. L. Valarmathi

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

697DOI: 10.7763/IJMO.2012.V2.213

mailto:devaki_cbe4@yahoo.com
mailto:ml_valarmathi@rediffmail.com

where: Sm is pm communication startup cost (in secs), μi,jis

the amount of data transmitted from task vi to task vj (in

bytes), Rm,n is the communication cost per transferred byte

from pm to pn(in sec/byte). Before scheduling, each task is

labeled with the average execution cost. The average

execution cost of task vi is defined as:

p

j

ji

i
p1

,
,

and each edge is labeled with the average communication

cost. The average communication cost of edge ci,j is defined

as:

jiji RSc ,, .

where S is the average communication startup cost and R is

the average communication cost per transferred byte.

Fig. 1. Application Representation using Task Graph

TABLE I: WEIGHT MATRIX (EXPECTED TIME TO COMPUTE - ETC)

TASK P1 P2 P3

1 14 16 9

2 13 19 18

3 11 13 19

4 13 8 17

5 12 13 10

6 13 16 9

7 7 15 11

8 5 11 14

9 18 12 20

10 21 7 16

III. PROPOSED ALGORITHM (HTS)

The proposed algorithm is maintaining the ready queue

(RQ) in which there are tasks which are ready to execute. At

first the entry task (task1) is ready to execute and it is in RQ.

After task1 is completed, the RQ will be updated with

current ready tasks. Select all the tasks in RQ one by one

and check the EEFT for all the machines. The node Earliest

Execution Finish Time on a machine EEFT is defined as :

,

.)(),(
)(

max
),(

,

,

qi

innq

in

qi

w

ckvFTPRT
vpredv

pvEEFT

where RT(pq) is the time when pq is available. FT(vn) is the

completion time of the parent node vn and

k = 1 if the machine assigned to parent

node vn is not in pq and,

 = 0 otherwise.

Fig. 2. Scheduling of Task Graph in the above Fig 1.using (a) HCPT

(makespan = 76) (b) CPOP (makespan = 86) (c) HTS(makespan = 75)

where P1,P2 and P3 represent processors.

Select the minimum EEFT (vi,pq) that have been

calculated, and schedule the task vi to the machine pq .

Pseudocode of the proposed algorithm:

Initialize the Ready Queue (RQ) with entry task

While RQ is not empty do

For all tasks ni in RQ do

Compute EEFT (ni , pj)

Select the task ni which has minimum EEFT and assign it

to the corresponding machine pj.

Delete ni from RQ

Update RQ with the successors of ni ,

 if they become ready tasks

End while

The proposed algorithm is compared with the existing

algorithms Heterogeneous Critical Parent Trees (HCPT) [5]

and Critical Path on a Processor (CPOP) [9]. The proposed

algorithm (HTS) shows better results in terms of makespan

compared to the above said algorithms.

IV. IMPLEMENTATION

Proposed algorithm is implemented in Java and input

model is taken from the simulation model given in [12].

Comparison for all 12 combinations was done and the

statistics given is average case of 1000 trials with different

inputs.

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

698

INCONSISTENT

0

20

40

60

80

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 29.721 31.675 35.342 39.877 40.094 43.103

HCPT 34.466 38.884 43.998 51.481 53.086 58.565

CPOP 30.448 32.943 36.969 42.277 42.875 46.582

55 65 75 85 95 105

Fig. 3. Low task heterogeneity and Low machine heterogeneity

CONSISTENT

0

10

20

30

40

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 16.858 18.872 19.843 21.717 23.351 25.153

HCPT 18.422 21.544 23.228 26.498 29.092 31.973

CPOP 16.872 19.061 20.218 22.535 24.4 26.567

55 65 75 85 95 105

Fig. 4. Low task heterogeneity and Low machine heterogeneity

PARTIALLYCONSISTENT

0

10

20

30

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 10.74 11.477 12.727 13.529 14.193 16.032

HCPT 11.921 13.589 15.388 17.075 18.186 21.002

CPOP 10.784 11.792 13.055 14.223 14.978 17.08

55 65 75 85 95 105

Fig. 5. Low task heterogeneity and Low machine heterogeneity

INCONSISTENT

0

50

100

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 50.983 56.04 61.373 67.453 70.146 76.844

HCPT 55.415 63.525 70.853 81.073 84.828 94.469

CPOP 50.519 55.725 61.765 69.274 72.175 79.65

55 65 75 85 95 105

Fig. 6. Low task heterogeneity and High machine heterogeneity

CONSISTENT

0

50

100

150

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 69.613 75.58 82.049 91.972 102.24 109.6

HCPT 75.501 86.32 94.895 111.37 124.01 134.83

CPOP 69.07 75.92 82.997 95.071 105.39 113.93

55 65 75 85 95 105

Fig. 7. Low task heterogeneity and High machine heterogeneity

PARTIALLYCONSISTENT

0

50

100

150

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 57.352 66.706 68.607 75.406 83.178 88.988

HCPT 62.304 76.21 79.895 91.317 101.05 109.9

CPOP 56.684 67.066 69.152 77.868 85.733 92.134

55 65 75 85 95 105

Fig. 8. Low task heterogeneity and High machine heterogeneity

INCONSISTENT

0

50

100

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 50.983 56.04 61.373 67.453 70.146 76.844

HCPT 55.415 63.525 70.853 81.073 84.828 94.469

CPOP 50.519 55.725 61.765 69.274 72.175 79.65

55 65 75 85 95 105

Fig. 9. High task heterogeneity and Low machine heterogeneity

CONSISTENT

0

50

100

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 42.851 51.208 53.162 58.972 62.144 71.8

HCPT 46.549 57.999 61.57 71.268 75.514 88.035

CPOP 42.623 51.166 53.683 60.876 64.205 74.883

55 65 75 85 95 105

Fig. 10. High task heterogeneity and Low machine heterogeneity

PARTIALLYCONSISTENT

0

20

40

60

80

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

PROPOSED 38.08 42.57 46.11 51.25 54.91 60.89

HCPT 41.25 48.6 53.06 61.74 66.58 75.43

CPOP 37.81 42.65 46.43 52.71 56.66 63.28

55 65 75 85 95 105

Fig. 11. High task heterogeneity and Low machine heterogeneity

INCONSISTENT

0

200

400

600

800

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 314.78 396.61 423 469.45 486.36 550.68

HCPT 343.87 448.24 485.75 559.82 588.94 674.58

CPOP 312.75 394.86 423.6 479.95 499.76 566.19

55 65 75 85 95 105

Fig. 12. High task heterogeneity and High machine heterogeneity

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

699

CONSISTENT

0

200

400

600

800

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 285.67 358.21 386.85 422.12 459.41 498.5

HCPT 309.81 409 447.82 509.29 555 612.59

CPOP 282.04 359.96 390.23 436.67 473.28 517.47

55 65 75 85 95 105

Fig. 13. High task heterogeneity and High machine heterogeneity

PARTIALLYCONSISTENT

0

200

400

600

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 285.67 338.07 362.34 397.56 422.17 461.4

HCPT 309.81 383.18 414.97 475.85 508.95 566.79

CPOP 282.04 336.91 362.46 407.84 431.57 475.99

55 65 75 85 95 105

Fig. 14. High task heterogeneity and High machine heterogeneity

V. CONCLUSION AND FUTURE EXPANSION

Experimental study shows that the HTS outperformed the

other algorithms in terms of performance, complexity,

speedup and average makespan. In the output, for all

combinations of heterogeneity, HTS performs better than

the existing algorithms except for High task heterogeneity

and High machine heterogeneity combination (4.4). In High

task heterogeneity and High machine heterogeneity

combination also when the number of tasks increases, we

get better makespan compared to the existing ones. Among

consistency combinations, our algorithm shows even better

results for consistent one. HTS algorithm is a viable solution

for the DAG scheduling problem with higher number of

nodes on heterogeneous systems. HTS algorithm has given

better performance and better running time results than the

existing ones.

This scheduling work can also be extended by considering

QoS parameters like memory and band width needed for the

tasks.

REFERENCES

[1] J. G. Webster, ―Heterogeneous Distributed Computing,‖

Encyclopedia of Electrical and Electronics Engineering, vol. 8, pp.

679-690, 1999.

[2] D. Feitelson, L. Rudolph, U. Schwiegelshohm, K. Sevcik, and P.

Wong, ―Theory and Practice in Parallel Job Scheduling,‖ JSSPP, pp.

1-34, 1997.

[3] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan ―Performance

Effective Task Scheduling Algorithm for Heterogeneous Computing

System‖ in Proc. 4th International Symposium on Parallel and

Distributed Computing (ISPDC ’05) IEEE 2005.

[4] G. Falzon and M. Li, ―Enhancing list scheduling heuristics for

dependent job scheduling in grid computing environments,‖ J

Supercomput , March 2010.

[5] T. Hagras and J. Janecek, ―A Simple Scheduling Heuristic for

Heterogeneous Computing Environments,‖ in Proc. 2nd International

Symposium on Parallel and Distributed Computing (ISPDC ‘03),2003.

[6] A. Khan, C. McCreary, and M. Jones, ―A Comparison of

Multiprocessor Scheduling Heuristics‖, ICPP, vol.2, pp.243-250, 1994.

[7] E. U. Munir, J. Z. Li, Sheng-Fei Shi, and Q. Rasool, ―Performance

Analysis of task Scheduling Heuristics in Grid,‖ in Proc. 6th

International Conference on Machine Learning and Cybernetics,

August 2007.

[8] A. Radulescu and A. VanGemund, ‖Fast and Effective Task

Scheduling in Heterogeneous Systems,‖ in Proc. 9th Heterogeneous

Computing Workshop, pp.229-238, 2000.

[9] H. Topcuoglu, S. Hariri, and W. Min-You, ―Performance- Effective

and Low-Complexity Task Scheduling for Heterogeneous

Computing,‖ IEEE trans. on Parallel and distributed Systems, vol.13,

no.3, pp. 260-274, 2002.

[10] E. Elavarasan and P. Thambidurai, ―Low complexity performance

effective task scheduling algorithm for heterogeneous computing

environments,‖ J Comput. Sci. vol. 3, no, 2, pp. 94-103, 2007.

[11] M. I Daoud and N. Kharma, ―An efficient genetic algorithm for task

scheduling in heterogeneous distributed computing systems,‖ IEEE

Congress on Evolutionary Computation, July, 2006.

[12] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther,

J. Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund. ―A

comparison study of static mapping heuristics for a class of meta tasks

on heterogeneous computing systems,‖ in Proc. 8th IEEE

Heterogeneous Computing Workshop (HCW’99), pp. 15-29, April

1999.

Devaki P. was born in Erode, Tamil Nadu, on Oct

1, 1967. In 1989, she received the B. E. degree in

Computer Technology and Informatics from

Bharathiar University and M.E. degree in Computer

Science and Engineering from Anna University,

Chennai. Her research interests include parallel

processing and multiprocessor scheduling. She is

presently working as Associate Professor in

Kumaraguru College of Technology, Coimbatore,

Tamil Nadu

Dr. M. L. Valarmathi received her B.E. degree in

Electrical and Electronics Engineering from ACCET,

Karaikudi in 1983 and M.E. degree in Computer

Science and Engineering from Government College

of Technology, Coimbatore in 1990. She completed

her Ph.D. in Computer Science and Engineering from

Bharathiar University, Coimbatore in 2007. She is

presently working as Associate Professor in

Computer Science and Engineering Department, Government College of

Technology, Coimbatore. Her research interests include Optimization

Techniques, Image Processing and Data mining and Data Warehousing.

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

700

