
 

Abstract—Scheduling the jobs of computationally intensive 

applications efficiently is one of the most essential and difficult 

issues when aiming at high performance in heterogeneous 

computing environments. A large number of scheduling 

heuristics have been presented in literature for homogeneous 

computing systems. The complexity of the problem increases 

when job scheduling is to be carried out in heterogeneous 

computing system. In this paper, we present a simple algorithm 

Heterogeneous Task Scheduling (HTS) for a bounded number 

of heterogeneous machines. The aim of our algorithm is to 

minimize the overall completion time of jobs (makespan) 

submitted.  The methodology used is to maintain the dynamic 

queue ( Ready Queue) in which the ready jobs are available. 

From that queue the job is selected for execution on a machine 

which is capable of completing that job quickly. The analysis 

and experiments have shown that this algorithm provides 

comparable results in some cases and even better results in 

most of the cases together with low complexity when compared 

with the existing algorithms Critical-Path On a Processor 

(CPOP) and Heterogeneous Critical Parent Trees (HCPT) . 

 

Index Terms—Scheduling, computationally intensive, 

heterogeneous system, makespan. 

 

I. INTRODUCTION 

Recent developments in high-speed digital 

communication have made it possible to connect a 

distributed suite of different high performance machines in 

order to provide a powerful computing platform called a 

heterogeneous computing system. This platform is utilized 

to execute computationally intensive applications that have 

diverse computation requirements [1]. However, the 

performance of parallel applications on such systems is 

highly dependent on the scheduling of the application tasks 

onto these machines [2]. The objective of the scheduling 

algorithm is to map tasks onto machines such that it has to 

minimize the overall completion time (makespan) and order 

the tasks which should satisfy the precedence constraints 

[1,2]. When the structure of the parallel application in terms 

of its task execution times, task dependencies and size of 

communicated data is known a priori, the application is 

represented with the static model, and scheduling can be 

accomplished statically at compile time [3,4]. HTS 

scheduling is done in batch mode. In the general form of 

static task scheduling, the application is represented by the 

Directed Acyclic Graph (DAG), in which the nodes 

represent application tasks and the edges represent inter-task 

data dependencies [5]. Each node is labeled by the 

computation cost (expected computation time) of the task 
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and each edge is labeled by the communication cost 

(expected communication time).  Finding an optimal 

solution for the scheduling problem is NP-complete [6], [7]. 

Therefore, heuristics can be used to find a sub-optimal 

schedule rather than parsing all possible schedules. The task 

scheduling problem has been extensively studied, and 

various heuristics have been proposed in the literature [5],  

[8]–[11]. In static scheduling, these heuristics are classified 

into a variety of categories (such as list-based, clustering, 

and duplication-based). This paper deals with list-based 

scheduling.  

 

II. PROBLEM DEFINITION 

This section presents the model of the application used for 

static scheduling, the model of the heterogeneous computing 

environments, and the scheduling objective. 

A. Application Representation 

The application can be represented by a DAG, G(V,E)  

where: V is the set of v nodes, each node vi in V represents 

an application task, which is a sequence of instructions that 

must be executed serially on the same machine, E is the set 

of communication edges. The directed edge e i,j joins nodes vi 

and vj , where node vi is called the parent node and node vj is 

called the child node. This also implies that vj cannot start 

until vi finishes and sends its data to vj. A task without any 

parent is called an entry task and a task without any child is 

called an exit task. If there is more than one exit (entry) task, 

they may be connected to a zero-cost pseudo exit (entry) task 

with zero-cost edges, which do not affect the schedule. 

B.  Heterogeneous Environment Representation  

The heterogeneous computing environment model is a set 

P of p heterogeneous machines connected in a fully 

connected topology. It is also assumed that: Any machine 

can execute the task and communicate with other machines 

at the same time. Once a machine has started task execution, 

it continues without interruption, and after completing the 

execution it immediately sends the output data to all child 

tasks in parallel. W is a v × p computation cost matrix in 

which each wi,j gives the estimated time to execute the task vi 

on the machine pj , also known as weight matrix as shown in 

Table I. The communication costs per transferred byte 

between any two machines are stored in matrix R of size p × 

p. The communication startup costs of machines are given in 

a p-dimensional vector S. The communication cost of edge 

ci,j for transferring μ bytes data from task vi (scheduled on pm) 

to task vj (scheduled on pn), is defined as: 

 

jinmmji RSc ,,, .  
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where: Sm is pm communication startup cost (in secs),  μi,jis 

the amount of data transmitted from task vi to task vj (in 

bytes), Rm,n is the communication cost per transferred byte 

from pm to pn(in sec/byte). Before scheduling, each task is 

labeled with the average execution cost. The average 

execution cost of task vi is defined as:    
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and each edge is labeled with the average communication 

cost. The average communication cost of edge ci,j is defined 

as:    

jiji RSc ,, .
 

where S is the average communication startup cost and R is 

the average communication cost per transferred byte. 

 

 
Fig. 1. Application Representation using Task Graph  

 
TABLE I: WEIGHT MATRIX (EXPECTED TIME TO COMPUTE - ETC) 

TASK P1 P2 P3 

1 14 16 9 

2 13 19 18 

3 11 13 19 

4 13 8 17 

5 12 13 10 

6 13 16 9 

7 7 15 11 

8 5 11 14 

9 18 12 20 

10 21 7 16 

 

III. PROPOSED ALGORITHM (HTS) 

The proposed algorithm is maintaining the ready queue 

(RQ) in which there are tasks which are ready to execute. At 

first the entry task (task1) is ready to execute and it is in RQ. 

After task1 is completed, the RQ will be updated with 

current ready tasks. Select all the tasks in RQ one by one 

and check the EEFT for all the machines.  The node Earliest 

Execution Finish Time on a machine EEFT is defined as : 
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where RT(pq) is the time when pq is available. FT(vn) is the 

completion time of the parent node vn  and  

 

k   =    1 if the machine assigned to parent       

node vn is not in pq and, 

        =   0 otherwise. 

 

 
Fig. 2. Scheduling of Task Graph in the above Fig 1.using (a) HCPT 

(makespan = 76) (b) CPOP (makespan = 86) (c) HTS(makespan = 75) 

where P1,P2 and P3 represent processors. 

 

Select the minimum EEFT (vi,pq) that have been 

calculated, and schedule the task vi to the machine pq . 
 

Pseudocode of the proposed algorithm: 

Initialize the Ready Queue (RQ) with entry task 

While RQ is not empty do 

For all tasks ni in RQ do 

Compute EEFT (ni , pj)  

Select the task ni which has minimum EEFT and assign it 

to the corresponding machine pj. 

Delete  ni from RQ       

Update RQ with the successors of  ni ,  

     if they become ready tasks 

End while 

 

The proposed algorithm is compared with the existing 

algorithms Heterogeneous Critical Parent Trees (HCPT) [5] 

and Critical Path on a Processor (CPOP) [9].  The proposed 

algorithm (HTS) shows better results in terms of makespan 

compared to the above said algorithms. 

 

IV.  IMPLEMENTATION 

Proposed algorithm is implemented in Java and input 

model is taken from the simulation model given in [12]. 

Comparison for all 12 combinations was done and the 

statistics given is average case of 1000 trials with different 

inputs. 
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Fig. 3. Low task heterogeneity and Low machine heterogeneity 
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Fig. 4. Low task heterogeneity and Low machine heterogeneity 
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Fig. 5. Low task heterogeneity and Low machine heterogeneity 

 

INCONSISTENT

0

50

100

NO. OF TASKS

A
V

E
R

A
G

E
 M

A
K

E
S

P
A

N

HTS 50.983 56.04 61.373 67.453 70.146 76.844

HCPT 55.415 63.525 70.853 81.073 84.828 94.469

CPOP 50.519 55.725 61.765 69.274 72.175 79.65

55 65 75 85 95 105

 
Fig. 6. Low task heterogeneity and High machine heterogeneity 
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Fig. 7. Low task heterogeneity and High machine heterogeneity 
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Fig. 8. Low task heterogeneity and High machine heterogeneity 
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Fig. 9. High task heterogeneity and Low machine heterogeneity 
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Fig. 10. High task heterogeneity and Low machine heterogeneity 
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Fig. 11. High task heterogeneity and Low machine heterogeneity 
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Fig. 12. High task heterogeneity and High machine heterogeneity 
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Fig. 13. High task heterogeneity and High machine heterogeneity 
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Fig. 14. High task heterogeneity and High machine heterogeneity 

 

V. CONCLUSION AND FUTURE EXPANSION 

Experimental study shows that the HTS outperformed the 

other algorithms in terms of performance, complexity, 

speedup and average makespan. In the output, for all 

combinations of heterogeneity, HTS performs better than 

the existing algorithms except for High task heterogeneity 

and High machine heterogeneity combination (4.4). In High 

task heterogeneity and High machine heterogeneity 

combination also when the number of tasks increases, we 

get better makespan compared to the existing ones.  Among 

consistency combinations, our algorithm shows even better 

results for consistent one. HTS algorithm is a viable solution 

for the DAG scheduling problem with higher number of 

nodes on heterogeneous systems. HTS algorithm has given 

better performance and better running time results than the 

existing ones.  

This scheduling work can also be extended by considering 

QoS parameters like memory and band width needed for the 

tasks. 
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