
 

Abstract—Hybrid systems are mathematical models of 

control systems whose safety verification is critical for many 

applications. In practice, a rigorous tool is still not available for 

verifying every class of hybrid systems. HyTech was the first 

attempt in this direction followed by PHaver, both restricted to 

Linear Hybrid Automata (LHA). HSolver is another successful 

contribution for verification of nonlinear systems. PHaver can 

efficiently verify safety properties with the help of piecewise 

constant bounds on derivatives. Its use is greatly motivated by 

on-the-fly over approximations of piecewise affine dynamics with 

various user-specified parameters. HSolver verifies safety of 

nonlinear systems using constraint propagation based abstraction 

refinement. We have evaluated a few examples and shown that 

both tools have their strengths and weaknesses. In all the 

examples, the approximation of nonlinear systems by linear 

systems is performed by the rate translation. 

 
Index Terms—HSolver, Hybrid systems, rate translation, 

reachability analysis, PHAVer. 

 

I. INTRODUCTION 

Hybrid systems are combinations of discrete as well as 

continuous dynamics and are analyzed using techniques from 

computer science and control theory. Over the years, these 

systems have proved their significance in safety critical 

applications. However, the safety verification has always 

been a challenge because of their complex behavior. This has 

prompted researchers to seek efficient methods to verify 

subclasses such as linear hybrid systems [1] and nonlinear 

hybrid systems.  

HyTech was the first reachability analysis tool developed 

by Henzinger et al. [2] for linear hybrid systems. It was 

featured with a powerful input language but limited by the 

overflow errors due to the restricted number of digits. Being a 

first implementation in this direction, HyTech was more of a 

prototype based on which more powerful practical tools were 

developed. HyTech had led the researchers to improve its 

underlying algorithm by various abstraction techniques. In 

recent years, the research on reachability analysis of hybrid 

systems has gained a new impetus with the development of 

various tools. For e.g., PHaver [3] and HSolver [4], both 

exhibit altogether different methodologies for the hybrid 

systems safety verification. Their applicability in numerous 

real world scenerios has emphasized that a broadening of the 

practical utility of these tools has been achieved. 

The objective of this paper is to compare the two tools with 

respect to various parameters. We have evaluated many 

benchmarks with slight modifications, if required, to 

understand the limits of their applicability, i.e., their strengths 
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and weaknesses. For this purpose, we have presented 

experimental results based on the analysis of various 

paradigmatic examples. PHAVer can only verify systems 

with affine linear dynamics. Therefore, rate translation [5] 

technique has been used to approximate a nonlinear system 

by its linear counterpart.  

The paper is structured as follows. Section II presents the 

related work in this area. Sections III states few definitions 

besides the tools descriptions which are essentially from the 

papers [3], [4]. In Section IV, we have described the 

benchmarks followed by their experimental outcomes in 

Section V. These numerical results help in better assessment 

of the tools. We have compared the features of the tools in 

Section VI and finally, a few conclusions about the tools 

behavior have been presented in Section VII. 

 

II. RELATED WORK 

The need for a rigorous hybrid system verification tool 

prompts the researchers to discuss the characteristics of 

existing tools which in turn renders the further growth in this 

direction. Ben Makhlouf et al [6] have evaluated the tools 

PHAVer and HSolver. They have assessed several 

benchmarks to explain the tool behaviors in terms of time and 

memory consumed. They concluded that PHAVer runs faster 

than HSolver in linear hybrid systems. On the other hand, 

HSolver is fast for the verification of nonlinear systems. But 

it was difficult to draw a single conclusion in terms of the 

memory consumption. Carloni et al [7] have worked on the 

similar line and analyzed several hybrid system tools. The 

authors compared the tools in terms of their syntax and 

semantics, design aspects, capabilities and their solution 

methodologies. For comparison, they have divided the tools 

in two broad categories, simulation centric and formal 

verification centric. The authors pointed out the need for the 

unification of the design paradigms of various hybrid systems 

tools because limited by their languages, syntax and 

assumptions, it gets difficult to share information among 

various tools. They have suggested a semantic-aware 

interchange format based on the abstract semantics which 

facilitates the import and export of the design specifications 

and thus making a formal comparison between the tools 

easier. Our work is a further step in the evaluation of the tools 

PHAVer and HSolver as we have focused on exploring more 

features. PHAVer allows the users not only to control the 

verification but also to compute the simulation relation, 

compositional reasoning, and parametric analysis, to choose 

among search strategies. Similarly, HSolver lets the user to 

specify the number of abstract states. Also, the rate 

translation helped us to compute the linearization error which 

is otherwise difficult to calculate. 
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III. PRELIMINARIES 

Definition (Hybrid Automaton)  [8] - A hybrid automaton 

is a 7 tuple H = (Loc, Var, f, Init, Inv, Jump, ∑) whose 

components are: 

1) A finite set Loc of discrete modes. It represents the 

discrete dynamics of H. 

2) A finite set Var = {x1, x2, … xn} of real valued 

continuous variables xi, 1≤ i≤ n, n ≥ 0. It represents the 

continuous dynamics.  

3) A function f : Loc×ℝn → ℝn  is called the vector field. It 

defines the continuous flow in each discrete mode l  

Loc through a differential equation 𝑥  = f (l, x), l  Loc, x 

 Var. 

4) The initial condition is a set Init  ⊆ Loc× ℝn that defines 

the initial state of H. A state of hybrid automaton is a 

pair (l, v) consisting of a discrete mode l  Loc and a 

point v  ℝn being a valuation over Var which is a 

function val: Var → ℝ . 

5) The set Inv  ⊆ Loc× ℝn called the invariant condition. 

As long as the H is in mode l  Loc, the state must 

belong to Inv. 

6) A set-valued function Jump: Loc× ℝn → P(Loc× ℝn) 

called the jump condition. 

7) A finite set ∑ of events where each jump is represented 

by an event. 

 

Definition (Hybrid I/O automaton) [9] - A hybrid I/O 

automaton (HIOA) is a hybrid automaton such that   

 

 Var is a finite and disjoint set of state and input 

variables, VarS and VarI , and of output variables 

VarO  ⊆  VarS where Var = VarS ⋃ VarI . 

 

Definition (Linear and Affine Hybrid Automaton) [10] – A 

linear hybrid automaton (LHA) is a hybrid automaton in 

which the invariants and the jumps are given by linear 

formulas over Var , and the flows are given by linear 

formulas over 𝑉𝑎𝑟 . A linear formula is a finite disjunction of 

convex linear formulas and, a convex linear formula is a 

finite conjunction of constraints ∑iaixi + b   0, with ai, b ∈ 

Z, xi ∈ Var and  ∈ {≤, <, =} over the linear expressions 

∑iaixi + b. Whereas, if the dynamics are given by linear 

formulas over the derivatives and the variables, then it is 

called as affine hybrid automaton (AHA). 

Definition (Rate Translation) [5] - The rate translation 

approximates a nonlinear hybrid automaton by a linear 

hybrid automaton. It consists of two steps: 

 

 Partitioning the state space within each location 

 Replacing nonlinear dynamics within each region of 

the partitioned state space by piecewise-constant 

bounds on derivatives. 

 

It is generally assumed that all invariants, initial and jump 

conditions of the given nonlinear hybrid automaton are 

convex linear predicates.  

 

A. PHAVer 

PHAVer (Polyhedral Hybrid Automaton Verifyer) [3] is a 

tool for safety verification of Linear Hybrid automata (LHA) 

which can be analyzed using polyhedra, i.e., finite convex 

linear formulas. It makes use of a general Hybrid I/O 

automata framework with affine dynamics. As PHAVer’s 

computations are based on LHA, it over approximates affine 

dynamics by linear dynamics. However, the 

over-approximation error depends on the location size and 

the dynamics and so the tool provides the functionality to 

partition the locations along a suitable hyperplane during 

analysis until a minimum threshold is reached. The Parma 

Polyhedra Library (PPL) achieves robust and infinite 

precision arithmetic. The algorithm computes the set of states 

reachable from an initial state. An expert user can control the 

location refinement by combining and prioritizing various 

parameters. Moreover, the tool provides the user with the 

liberty of controlling the bits, constraints and iterations. The 

abstractions like convex-hull used for simplification of 

polyhedra results in the forced termination of the algorithm in 

few cases. PHAVer also supports compositional reasoning. 

B. HSolver 

HSolver, a safety verification tool for nonlinear hybrid 

systems, was developed by Stephan et al. [4] based on a 

package RSolver [11] that provides pruning and solving of 

quantified constraints of the real numbers. The state space is 

divided into rectangular grids and, interval arithmetic is used 

to check the trajectories on the boundary of neighboring grid 

elements. The approach is used in the abstraction refinement 

framework where piecewise splitting of abstract states is 

performed until a fixed point is reached and transitions are 

recomputed giving us a abstract discrete system. The safety 

of this abstract system implies the safety of the original 

hybrid system. However, in order to avoid an exponential 

splitting, an interval constraint propagation based refinement 

step is employed. The beauty of this method is that it allows 

jump conditions, initial states and unsafe states to be 

described by complex constraints and then pruning algorithm 

is used to remove the elements that do not satisfy these 

constraints from the boxes. 

 

IV. BENCHMARKS 

A. Damping Pendulum 

Consider a pendulum hanging from a weight-less solid rod 

and moving under gravity [12]. Let θ denotes the angle the 

pendulum makes with the vertical, l the length of the 

pendulum, m its mass, and K the damping coefficient. The 

nonlinear system can be described as 

 

 Flow: ( 𝑥 1, 𝑥 2) =  (x2,-  
𝑔 

𝑙
 sin(x1) - 

𝐾

𝑚
 x2) 

 Empty Jump relation 

 Init: x1 = 1.048     x2 = 1 

 Unsafe: x2 ≤ 0 

 State space: [−1.048, 1.048] × [0, 1.2]. 

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

682



  

 
Fig. 1. Hybrid automata for van der Pol and focus benchmarks. 

 

Linear Approximation: It is important to mention that 

sin(x1) is almost equal to x1 for very small values of x1 i.e., 

−1.048 ≤ x1 ≤ 1.048. However, to substitute sin (θ) by θ, we 

need to have a scaling factor z to compensate this 

linearization. We refine the rate over x1 into few intervals so 

that in each interval the scaling factor makes this linear 

approximation as close as possible to the original system. 

Assuming θl ≤ θ ≤ θu, we can calculate the scaling factor 

θ/sin(θ) over few values in this given interval and  take an 

average of these. This mean serves as a scaling factor z for 

this location. Now, the % linearization error (δ) is given as 

 

sin( )
100

sin( )

z 




 
   

B. Train-Gate-Controller 

The linear system consists of three components, the train, 

the gate, and the gate controller [13]. The train moves on a 

circular track of length l. A road crosses the track and it is 

guarded by a gate which is controlled by a controller. The 

variable y represents the location of the train and x states the 

height of the gate. The composed system is described with s 

being the automaton state as 

 

 Flow: ((s = 1   𝑠 = 2   𝑠 = 5) → (5 ≤ 𝑦  ≤ 10    𝑥  

= 
1−𝑥

2
 ))    ((s = 3    𝑠 = 4)→ (5 ≤ 𝑦  ≤ 10    𝑥  = 

10−𝑥

2
)) 

 Jump: ((s = 1   y = 5) → (s’ = 2))    ((s = 2   y = 

15) → (s’ = 5))    ((s = 2   y ≤ 15) → (s’ = 

3))   ((s = 3   y = 15) → (s’ = 4))    ((s = 4   y = 

5) → (s’ = 3))    ((s = 4   y ≤ 5) → (s’ = 1))    ((s 

= 5   y ≤ 5) → (s’  = 1)) 

 Init: x = 1   y = 0 

 Unsafe: x < 5   y = 0 

 State space: [0, 25] × [0, 10] 

 

C. Room Heating Benchmark 

We consider a linear, 3 dimensional example of a room 

heating problem defined by 3 rooms and 2 heaters [14]. The 

aim is to maintain a minimum specified temperature in each 

room. And, if the temperature in a room falls below a 

threshold, then either heater is turned on or moved from the 

neighboring room.  

The temperature of a room depends on the difference of the 

temperature with the other rooms, the difference with the 

outside temperature, and on whether the heater is present and 

whether it is switched on/off.  

D. Van Der Pol Equation 

We consider a 3-dimensional van der Pol second order 

equation with a time variable and some discrete jumps [4]. 

The hybrid automaton, shown in Fig 1(a), is explained as 

 

 Flow: ( 𝑥 1, 𝑥 2) =  (- x2, x1 - 2 (1 - x1
2) x2) 

 Jump: ((s = 1   −2 ≤ x1 < 0    0.01 ≤ x2 ≤ 0.02) → 

(s’ = 2   | x2 | ≤ 0.01   x1’ = x1    x3’ = x3)) 

 Init: 0.6 ≤ x1≤ 0.9    0.6 ≤ x2 ≤ 0.9    x3 = 0 

 Unsafe: (1 < x1 ≤ 2)    (0.01 ≤ x2 ≤ 2)   

 State space: (1, [−2, 2]×[0.01, 2]×[0, 6]) ⋃  (2, [−2, 

2] × [−2,−0.01] × [0, 6]) 

 

Linear Approximation: The rate translation technique 

partitions the state space to approximate nonlinear dynamics. 

Here, we have divided the state space over x1. After the 

partitioning, the nonlinear dynamics are over approximated 

by linear flow. For example, the dynamics of the form 𝑥 2 = 

x1-2(1-x1
2) x2 in a location with state space [0, 1] × [0.01, 2] 

can be over approximated by the dynamics of the form x1 – 

2x2 ≤  𝑥 2  ≤ x1 using arithmetic equations. In this way, our 

original van der Pol system is approximated by a linear 

system keeping initial, unsafe states and jump relation in 

consideration. 

E. Focus 

A two dimensional system description adapted from [4] 

is shown in Fig. 1(b). 

  

 Flow: ( 𝑥 1, 𝑥 2) = (x1 - x2, x1 + x2) 

 Empty Jump relation 

 Init: 2.5 ≤  x1  ≤  3   x2 = 0 

 Unsafe: x1 ≤ 2 

 State space: [0, 4] × [0, 4] 
 

F. Billiards Game 

A classical example of a linear system consisting of a 

billiards table with a grey and a white ball [1]. Initially, the 

balls are placed at the positions pg = (xg, yg) and pw = (xw, yw) 

respectively. The grey ball is kicked and moves with a 

constant velocity. The ball rebounds as soon as it reaches the 

table boundary. We have defined the following unsafe 

condition: (1) whether this grey ball hits the white ball, and 

(2) whether the ball crosses the table boundary. 

 

 Flow: (q1 → (𝑥  = 2    𝑦  = 1))    (q2→ (𝑥  = −2 

   𝑦  = 1))   (q3 → (𝑥  = 2    𝑦  = −1))   (q4 → (𝑥  
= −2    𝑦  = −1)) 

 Jump: The transition takes place as soon as the ball 

hits boundary of the table. 

 Init: xg = 0     yg = 0 
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TABLE I: EXPERIMENTAL RESULTS ON PHAVER 

PHAVer 

Benchmarks Safety Time(s) Memory(KB) 

Damping Pendulum 
Unsafe 

Safe 

0.10 

0.25 

(Refineme

nt) 

1328 

2784 

Train-gate-controller Safe 0.633 4256 

Room  Heating Unsafe 

26.23 

(Convex-Hu

ll) 

116672 

van der Pol Safe 0.15 2112 

Billiards  Game Unsafe 0.70 3808 

Billiards  Game 
Unsafe 

Safe 

0.11 

1.24 

(Refinement, 

Convex-Hull) 

1916 

5984 

Focus Unsafe 0.11 1608 

 
TABLE II: EXPERIMENTAL RESULTS ON HSOLVER 

HSolver 

Benchmarks 
Refine 

steps 

Prune 

func # 
Safety 

Time(s

) 

Mem(KB

) 

Damping Pendulum 4 12

2 
Safe 0.14 1920 

Train-gate-controlle

r 
2 167

5 
Safe 1.50 3588 

Room  Heating [4] 1

4 
248724 Unsafe 854.05 19720 

van der Pol [4] 1 38 Safe 0.11 1212 

Billiards  Game 1 2

4 
164718 Unknow

n 
77.06 2600 

Billiards  Game 2 1 
22

3 
Safe 0.20 2404 

Focus [4] 8 94

3 
Safe 0.40 1880 

 

 UnSafe1: xw = 10     yw = 8 

 Unsafe2: x ≥ 13     y ≥ 10 

 State space: [0, 13] × [0, 10]. 

 

V. EXPERIMENTAL OUTCOMES 

All the benchmarks have been evaluated on a system with 

Intel Core 2 duo processor at 1.83 GHz and 2.0 GB of 

memory. PHAVer allows us to model only linear systems. 

Therefore, nonlinear systems have to be linearized to make 

their analysis possible using PHAVer. We have used the rate 

translation technique as in the damping pendulum and van 

der Pol equation benchmarks. Of course this may not be a 

perfect approximation and the reachability results based on 

this   transformation will be inconclusive with respect to the 

safety property of our system because the linearization error 

has not been taken into account in most of the cases. 

Nevertheless, it helps us in comparing the functioning of two 

tools. We also computed the maximum linearization error in 

the damping pendulum benchmark as 0.2%. Computational 

results are given in Table 1. The damping pendulum system is 

declared as unsafe due to the over-approximation. However, 

we can still control this approximation to an extent by means 

of refinement which in turn limits the over-approximation 

and gives better results. We can see that the damping 

pendulum as well as billiards game are proved to be safe after 

the application of refining method because it improves the 

precision. PHAVer has the feature of compositional 

reasoning which makes it effective and useful in a situation 

where more than one automaton interact. The 

train-gate-controller is one of these types of examples. But 

HSolver does not provide the means to compose hybrid 

automata. Therefore, the user has to manually compose the 

autamata before using the tool.  

In the room heating benchmark, it took almost a minute to 

check the safety property with default polyhedra abstraction. 

We tried to utilize PHAVer’s abstraction functionalities such 

as convex-hull and bounding-box. When convex-hull 

abstraction (REACH STOP USE CONVEX HULL ITER = 

20) was employed, it accelerated the termination and halved 

the verification time, which specifies the maximum number 

of iterations during which the convex-hull over 

approximation is used. Similarly, in van der pol benchmark, 

bounding-box abstraction (REACH USE BBOX ITER = 5) 

helped in the termination that specifies the frequency with 

which the bounding-box over-approximation is used. 

PHAVer also provides the choices in the search strategies 

such as breadth-first and depth-first search. In van der pol 

benchmark, we observed that the depth-first search took more 

time for verification than the breadth-first search. We have 

also noticed that limiting the number of bits and constraints 

speeds up the termination. For all the examples, we can see 

that memory consumption by PHAVer is huge due to its use 

of polyhedral representation for the states. 

On the other hand, HSolver facilitates the verification of 

nonlinear hybrid systems. Operations such as ∗, sqr, cos, sin 

can easily be encoded in the tool. Experimental outcomes are 

tabularized in Table 2. We can see that, nonlinear dynamics 

are verified quite fast testifying to the tool’s success in its use 

of pruning strategy. It is clear from the results that the 

pruning algorithm plays a significant role in the overall 

abstraction technique. HSolver verifies by removing points 

from the state space that are not on any trajectory from the 

initial to an unsafe state, and hence it solves the problem of 

excessive splitting because it also removes the points in the 

reach set. But in case of linear dynamics, it may or may not 

succeed which is clear from the billiards game benchmark. It 

also takes a lot of time as in the room heating benchmark. In 

the original paper [4], it was shown that verification process 

for this example took > 10 hours. Therefore, we kept a limit 

of 100 on the number of abstract states to improve the 

termination. After every refinement step, the tool prints the 

number of boxes used for representing the abstraction of 

original hybrid system. For e.g., in focus benchmark 

represents that after the fourth refinement step, the 

abstraction 

 

*** 4 s: 5 initvol: 1. unsafevol: 2.70499080831 *** 
 

consists of 5 boxes. In addition, initvol and unsafevol show 

the currently known upper bounds on the volume of all 

starting points and endpoints, respectively, of the error 

trajectories. 

 

VI. COMPARISON 

  If we compare these two tools in terms of verification 

time, we can see that PHAVer outperforms HSolver in some 

benchmarks. In systems where safety has been shown to be 

unknown (Billiards Game), HSolver requires a lot of time. 

Also, if a system consists of more than one automaton, 
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HSolver requires a manual composition of these automata 

which is a tedious task. Whereas, PHAVer carries out the 

composition of automata automatically and therefore, saves a 

lot of efforts. In terms of memory consumption, it is difficult 

to draw any single conclusion. In most of the cases, PHAVer 

has consumed more memory which results from its usage of 

polyhedra. But in cases where HSolver has exceeded PHAVer  

 

 
 

Fig. 2. An abstraction of the Pendulum benchmark 

The refinement procedure could be held responsible. In 

nonlinear systems, we cannot conclude about their safety 

because the linearization error has not been taken into 

consideration except in the damping pendulum benchmark. 

The strength of PHAVer lies in its feature of allowing the 

user to manipulate various parameters. The user can compute 

intersection as well as the difference of two state sets and can 

also perform parametric analysis. In train-gate-controller 

example [10], we performed an existential quantification 

over the variables x, t and y using reg = project_to(u) where 

reg is the identifier for the set of states reachable in the 

automaton and u is the parameter which represents the 

reaction delay of the controller. PHAVer computed the 

values of u (5*u  ≥ 99) for which the system is unsafe. 

However, use of HSolver is not leveraged by these 

functionalities. As the overall composed automaton consists 

of 27+ states, therefore, computing jump relations between 

these many states requires a lot of efforts.  

PHAVer can also compute the simulation relation between 

two automata. We computed a simulation relation rel = 

get_sim(H, H’) between original pendulum example (H) and 

its abstraction (H’) with fewer locations. The locations q2, q3 

and q4 in the original benchmark are abstracted to q’4 with the 

bound 0.3 ≤ x1 ≤ 0.8 and the dynamics (−0.7030 − 0.02x2) ≤ 

𝑥 2 ≤  (−0.2896 − 0.02x2) by computing union over the 

bounds of locations q2, q3 and q4 (cf. Fig. 3) and so is the 

another abstract location q’7.  When tested, PHAVer deduced 

that the abstraction is safe too. The time taken and memory 

consumed are 0.20s and 2488KB as compared to the values 

0.25s and 2784KB during verification of the original 

example. Although, there is no much improvement in terms 

of time but we can see a significant reduction in the memory 

requirements. The same trend was noticed in the Focus 

benchmark. 

 

VII. CONCLUSION 

As expected, both tools have their limitations and 

strengths. PHAVer has proved its worth in linear hybrid 

systems verification. It helps the user to control the 

verification process by use of various parameters and 

abstraction techniques. It also provides discrete results in the 

examples where HSolver gave the results as safety unknown. 

Ben Makhlouf et al. [6] and Carloni et al. [7] have also 

evaluated the tools. However, we have moved a step further 

by exploring the usage of more parameters provided by the 

tools. Our wide selection of the benchmarks with linear and 

nonlinear dynamics has helped us to better understand the 

tool behaviors in the diverse scenarios by using various 

features, e.g., in PHAVer simulation relation, parametric 

analysis, search strategy, composition of automata. The 

computation of the linearization error with the help of rate 

translation is another contribution. HSolver has a advantage 

over PHAVer as it can treat nonlinear dynamics better. 

Although it is not as rich as PHAVer in terms of features, it 

allows the user to customize the number of abstract state. The 

tools have taken a leap over existing reachability analysis 

methods. However, their deficiency in guaranteeing correct 

and timely results for every class of hybrid systems points to 

the need for future work in this direction. 

ACKNOWLEDGMENT 

The author would like to thank his family, his supervisor, 

Dr. Purandar Bhaduri, friends Vallabh and Prabhat for their 

support and feedback. 

REFERENCES 

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. 

Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Algorithmic 

Analysis of Hybrid Systems,” Theoretical Computer Science, vol. 138, 

no. 1, pp. 3–34, 6 February 1995. 

[2] T. A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi. HYTECH: A model 

checker for hybrid systems, in Orna Grumberg, editor, CAV, vol. 1254 

of Lecture Notes in Computer Science, pp. 460–463, Springer, 1997. 

[3] G. Frehse, PHAVer: Algorithmic verification of hybrid systems past 

HyTech. In Manfred Morari and Lothar Thiele, editors, HSCC, vol. 

3414 of Lecture Notes in Computer Science, pp. 258–273. Springer, 

2005. 

[4] S. Ratschan and Z. She, Safety verification of hybrid systems by 

constraint propagation based abstraction refinement, In M. Morari and 

L. Thiele, editors, HSCC, vol. 3414 of Lecture Notes in Computer 

Science, pp. 573–589. Springer, 2005. 

[5] T. A. Henzinger and H. Wong-Toi, “Linear phaseportrait 

approximations for nonlinear hybrid systems. In Rajeev Alur, Thomas 

A. Henzinger, and Eduardo D. Sontag, editors,” Hybrid Systems, 

volume 1066 of Lecture Notes in Computer Science, pp. 377–388. 

Springer, 1995. 

[6] B. Makhlouf and K. Stefan, “An evaluation of two recent reachability 

analysis tools for hybrid systems,” in 2nd IFAC Conference on 

Analysis and Design of Hybrid Systems, 2006. 

[7] L. P. Carloni, R. Passerone, A. Pinto, and A. L. 

Sangiovanni-Vincentelli, “Languages and tools for hybrid systems 

design,” Foundations and Trends in Electronic Design Automation, 

vol. 1, no. 1/2, 2006. 

[8] K. H. Johansson, Hybrid Systems Lecture Notes. UC Berkeley, Spring 

2000. 

[9] N. A. Lynch, R. Segala, and F. W. Vaandrager, “Hybrid I/O automata 

revisited,” in Maria Domenica Di Benedetto and Alberto L. 

Sangiovanni-Vincentelli, editors, HSCC, vol. 2034 of Lecture Notes in 

Computer Science, pp. 403–417. Springer, 2001. 

[10] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of 

the Eleventh Annual IEEE Symposium On Logic In Computer Science 

(LICS’96), New York, USA, 1996. IEEE Computer Society Press, pp. 

278–293. 

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

685



[11] S. Ratschan, “Efficient solving of quantified inequality constraints 

over the real numbers,” ACM Transaction Comput. Log, vol. 7, no. 4, 

pp. 723–748, 2006. 

[12] J. Lygeros, Lecture Notes on Hybrid Systems, University of Patras, 

Greece, 2004. 

[13] P. J. Antsaklis and Xenofon D. Koutsoukos, “Hybrid systems: Review 

and recent progress,”  in Tariq Samad and Gary Balas, editors, 

Software-Enabled Control, Institute of Electrical and Electronics 

Engineer, 2004, pp. 273–298. 

[14] A. Fehnker and F. Ivancic, “Benchmarks for hybrid systems 

verification,” in Rajeev Alur and George J. Pappas, editors, HSCC, vol. 

2993 of Lecture Notes in Computer Science, pp. 326–341. Springer, 

2004. 

 

Manish Goyal received his M. Tech in Computer 

Science from Indian Institute of Technology 

Guwahati, India. His research interests include formal 

methods, model checking, logic and computation. Post 

his masters, he was associated with IBM India Labs, 

Bangalore as Associate Software Engineer. Thereafter, 

he worked at Verimag Research Lab, a leading 

research center in embedded systems in France.  

Currently, he is working at Atrenta Inc. 

 

  

 

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

686


