

Abstract—Hybrid systems are mathematical models of

control systems whose safety verification is critical for many

applications. In practice, a rigorous tool is still not available for

verifying every class of hybrid systems. HyTech was the first

attempt in this direction followed by PHaver, both restricted to

Linear Hybrid Automata (LHA). HSolver is another successful

contribution for verification of nonlinear systems. PHaver can

efficiently verify safety properties with the help of piecewise

constant bounds on derivatives. Its use is greatly motivated by

on-the-fly over approximations of piecewise affine dynamics with

various user-specified parameters. HSolver verifies safety of

nonlinear systems using constraint propagation based abstraction

refinement. We have evaluated a few examples and shown that

both tools have their strengths and weaknesses. In all the

examples, the approximation of nonlinear systems by linear

systems is performed by the rate translation.

Index Terms—HSolver, Hybrid systems, rate translation,

reachability analysis, PHAVer.

I. INTRODUCTION

Hybrid systems are combinations of discrete as well as

continuous dynamics and are analyzed using techniques from

computer science and control theory. Over the years, these

systems have proved their significance in safety critical

applications. However, the safety verification has always

been a challenge because of their complex behavior. This has

prompted researchers to seek efficient methods to verify

subclasses such as linear hybrid systems [1] and nonlinear

hybrid systems.

HyTech was the first reachability analysis tool developed

by Henzinger et al. [2] for linear hybrid systems. It was

featured with a powerful input language but limited by the

overflow errors due to the restricted number of digits. Being a

first implementation in this direction, HyTech was more of a

prototype based on which more powerful practical tools were

developed. HyTech had led the researchers to improve its

underlying algorithm by various abstraction techniques. In

recent years, the research on reachability analysis of hybrid

systems has gained a new impetus with the development of

various tools. For e.g., PHaver [3] and HSolver [4], both

exhibit altogether different methodologies for the hybrid

systems safety verification. Their applicability in numerous

real world scenerios has emphasized that a broadening of the

practical utility of these tools has been achieved.

The objective of this paper is to compare the two tools with

respect to various parameters. We have evaluated many

benchmarks with slight modifications, if required, to

understand the limits of their applicability, i.e., their strengths

Manuscript received August 28, 2012; revised September 28, 2012.

The author is with Indian Institute of Technology Guwahati, India.

(e-mail: g.manish@alumni.iitg.ernet.in).

and weaknesses. For this purpose, we have presented

experimental results based on the analysis of various

paradigmatic examples. PHAVer can only verify systems

with affine linear dynamics. Therefore, rate translation [5]

technique has been used to approximate a nonlinear system

by its linear counterpart.

The paper is structured as follows. Section II presents the

related work in this area. Sections III states few definitions

besides the tools descriptions which are essentially from the

papers [3], [4]. In Section IV, we have described the

benchmarks followed by their experimental outcomes in

Section V. These numerical results help in better assessment

of the tools. We have compared the features of the tools in

Section VI and finally, a few conclusions about the tools

behavior have been presented in Section VII.

II. RELATED WORK

The need for a rigorous hybrid system verification tool

prompts the researchers to discuss the characteristics of

existing tools which in turn renders the further growth in this

direction. Ben Makhlouf et al [6] have evaluated the tools

PHAVer and HSolver. They have assessed several

benchmarks to explain the tool behaviors in terms of time and

memory consumed. They concluded that PHAVer runs faster

than HSolver in linear hybrid systems. On the other hand,

HSolver is fast for the verification of nonlinear systems. But

it was difficult to draw a single conclusion in terms of the

memory consumption. Carloni et al [7] have worked on the

similar line and analyzed several hybrid system tools. The

authors compared the tools in terms of their syntax and

semantics, design aspects, capabilities and their solution

methodologies. For comparison, they have divided the tools

in two broad categories, simulation centric and formal

verification centric. The authors pointed out the need for the

unification of the design paradigms of various hybrid systems

tools because limited by their languages, syntax and

assumptions, it gets difficult to share information among

various tools. They have suggested a semantic-aware

interchange format based on the abstract semantics which

facilitates the import and export of the design specifications

and thus making a formal comparison between the tools

easier. Our work is a further step in the evaluation of the tools

PHAVer and HSolver as we have focused on exploring more

features. PHAVer allows the users not only to control the

verification but also to compute the simulation relation,

compositional reasoning, and parametric analysis, to choose

among search strategies. Similarly, HSolver lets the user to

specify the number of abstract states. Also, the rate

translation helped us to compute the linearization error which

is otherwise difficult to calculate.

Manish Goyal

Reachability Analysis of Hybrid Systems

an Experience Report

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

681DOI: 10.7763/IJMO.2012.V2.209

III. PRELIMINARIES

Definition (Hybrid Automaton) [8] - A hybrid automaton

is a 7 tuple H = (Loc, Var, f, Init, Inv, Jump, ∑) whose

components are:

1) A finite set Loc of discrete modes. It represents the

discrete dynamics of H.

2) A finite set Var = {x1, x2, … xn} of real valued

continuous variables xi, 1≤ i≤ n, n ≥ 0. It represents the

continuous dynamics.

3) A function f : Loc×ℝn → ℝn is called the vector field. It

defines the continuous flow in each discrete mode l

Loc through a differential equation 𝑥 = f (l, x), l Loc, x

 Var.

4) The initial condition is a set Init ⊆ Loc× ℝn that defines

the initial state of H. A state of hybrid automaton is a

pair (l, v) consisting of a discrete mode l Loc and a

point v ℝn being a valuation over Var which is a

function val: Var → ℝ .

5) The set Inv ⊆ Loc× ℝn called the invariant condition.

As long as the H is in mode l Loc, the state must

belong to Inv.

6) A set-valued function Jump: Loc× ℝn → P(Loc× ℝn)

called the jump condition.

7) A finite set ∑ of events where each jump is represented

by an event.

Definition (Hybrid I/O automaton) [9] - A hybrid I/O

automaton (HIOA) is a hybrid automaton such that

 Var is a finite and disjoint set of state and input

variables, VarS and VarI , and of output variables

VarO ⊆ VarS where Var = VarS ⋃ VarI .

Definition (Linear and Affine Hybrid Automaton) [10] – A

linear hybrid automaton (LHA) is a hybrid automaton in

which the invariants and the jumps are given by linear

formulas over Var , and the flows are given by linear

formulas over 𝑉𝑎𝑟 . A linear formula is a finite disjunction of

convex linear formulas and, a convex linear formula is a

finite conjunction of constraints ∑iaixi + b 0, with ai, b ∈

Z, xi ∈ Var and ∈ {≤, <, =} over the linear expressions

∑iaixi + b. Whereas, if the dynamics are given by linear

formulas over the derivatives and the variables, then it is

called as affine hybrid automaton (AHA).

Definition (Rate Translation) [5] - The rate translation

approximates a nonlinear hybrid automaton by a linear

hybrid automaton. It consists of two steps:

 Partitioning the state space within each location

 Replacing nonlinear dynamics within each region of

the partitioned state space by piecewise-constant

bounds on derivatives.

It is generally assumed that all invariants, initial and jump

conditions of the given nonlinear hybrid automaton are

convex linear predicates.

A. PHAVer

PHAVer (Polyhedral Hybrid Automaton Verifyer) [3] is a

tool for safety verification of Linear Hybrid automata (LHA)

which can be analyzed using polyhedra, i.e., finite convex

linear formulas. It makes use of a general Hybrid I/O

automata framework with affine dynamics. As PHAVer’s

computations are based on LHA, it over approximates affine

dynamics by linear dynamics. However, the

over-approximation error depends on the location size and

the dynamics and so the tool provides the functionality to

partition the locations along a suitable hyperplane during

analysis until a minimum threshold is reached. The Parma

Polyhedra Library (PPL) achieves robust and infinite

precision arithmetic. The algorithm computes the set of states

reachable from an initial state. An expert user can control the

location refinement by combining and prioritizing various

parameters. Moreover, the tool provides the user with the

liberty of controlling the bits, constraints and iterations. The

abstractions like convex-hull used for simplification of

polyhedra results in the forced termination of the algorithm in

few cases. PHAVer also supports compositional reasoning.

B. HSolver

HSolver, a safety verification tool for nonlinear hybrid

systems, was developed by Stephan et al. [4] based on a

package RSolver [11] that provides pruning and solving of

quantified constraints of the real numbers. The state space is

divided into rectangular grids and, interval arithmetic is used

to check the trajectories on the boundary of neighboring grid

elements. The approach is used in the abstraction refinement

framework where piecewise splitting of abstract states is

performed until a fixed point is reached and transitions are

recomputed giving us a abstract discrete system. The safety

of this abstract system implies the safety of the original

hybrid system. However, in order to avoid an exponential

splitting, an interval constraint propagation based refinement

step is employed. The beauty of this method is that it allows

jump conditions, initial states and unsafe states to be

described by complex constraints and then pruning algorithm

is used to remove the elements that do not satisfy these

constraints from the boxes.

IV. BENCHMARKS

A. Damping Pendulum

Consider a pendulum hanging from a weight-less solid rod

and moving under gravity [12]. Let θ denotes the angle the

pendulum makes with the vertical, l the length of the

pendulum, m its mass, and K the damping coefficient. The

nonlinear system can be described as

 Flow: (𝑥 1, 𝑥 2) = (x2,-
𝑔

𝑙
 sin(x1) -

𝐾

𝑚
 x2)

 Empty Jump relation

 Init: x1 = 1.048 x2 = 1

 Unsafe: x2 ≤ 0

 State space: [−1.048, 1.048] × [0, 1.2].

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

682

Fig. 1. Hybrid automata for van der Pol and focus benchmarks.

Linear Approximation: It is important to mention that

sin(x1) is almost equal to x1 for very small values of x1 i.e.,

−1.048 ≤ x1 ≤ 1.048. However, to substitute sin (θ) by θ, we

need to have a scaling factor z to compensate this

linearization. We refine the rate over x1 into few intervals so

that in each interval the scaling factor makes this linear

approximation as close as possible to the original system.

Assuming θl ≤ θ ≤ θu, we can calculate the scaling factor

θ/sin(θ) over few values in this given interval and take an

average of these. This mean serves as a scaling factor z for

this location. Now, the % linearization error (δ) is given as

sin()
100

sin()

z

B. Train-Gate-Controller

The linear system consists of three components, the train,

the gate, and the gate controller [13]. The train moves on a

circular track of length l. A road crosses the track and it is

guarded by a gate which is controlled by a controller. The

variable y represents the location of the train and x states the

height of the gate. The composed system is described with s

being the automaton state as

 Flow: ((s = 1 𝑠 = 2 𝑠 = 5) → (5 ≤ 𝑦 ≤ 10 𝑥

=
1−𝑥

2
)) ((s = 3 𝑠 = 4)→ (5 ≤ 𝑦 ≤ 10 𝑥 =

10−𝑥

2
))

 Jump: ((s = 1 y = 5) → (s’ = 2)) ((s = 2 y =

15) → (s’ = 5)) ((s = 2 y ≤ 15) → (s’ =

3)) ((s = 3 y = 15) → (s’ = 4)) ((s = 4 y =

5) → (s’ = 3)) ((s = 4 y ≤ 5) → (s’ = 1)) ((s

= 5 y ≤ 5) → (s’ = 1))

 Init: x = 1 y = 0

 Unsafe: x < 5 y = 0

 State space: [0, 25] × [0, 10]

C. Room Heating Benchmark

We consider a linear, 3 dimensional example of a room

heating problem defined by 3 rooms and 2 heaters [14]. The

aim is to maintain a minimum specified temperature in each

room. And, if the temperature in a room falls below a

threshold, then either heater is turned on or moved from the

neighboring room.

The temperature of a room depends on the difference of the

temperature with the other rooms, the difference with the

outside temperature, and on whether the heater is present and

whether it is switched on/off.

D. Van Der Pol Equation

We consider a 3-dimensional van der Pol second order

equation with a time variable and some discrete jumps [4].

The hybrid automaton, shown in Fig 1(a), is explained as

 Flow: (𝑥 1, 𝑥 2) = (- x2, x1 - 2 (1 - x1
2) x2)

 Jump: ((s = 1 −2 ≤ x1 < 0 0.01 ≤ x2 ≤ 0.02) →

(s’ = 2 | x2 | ≤ 0.01 x1’ = x1 x3’ = x3))

 Init: 0.6 ≤ x1≤ 0.9 0.6 ≤ x2 ≤ 0.9 x3 = 0

 Unsafe: (1 < x1 ≤ 2) (0.01 ≤ x2 ≤ 2)

 State space: (1, [−2, 2]×[0.01, 2]×[0, 6]) ⋃ (2, [−2,

2] × [−2,−0.01] × [0, 6])

Linear Approximation: The rate translation technique

partitions the state space to approximate nonlinear dynamics.

Here, we have divided the state space over x1. After the

partitioning, the nonlinear dynamics are over approximated

by linear flow. For example, the dynamics of the form 𝑥 2 =

x1-2(1-x1
2) x2 in a location with state space [0, 1] × [0.01, 2]

can be over approximated by the dynamics of the form x1 –

2x2 ≤ 𝑥 2 ≤ x1 using arithmetic equations. In this way, our

original van der Pol system is approximated by a linear

system keeping initial, unsafe states and jump relation in

consideration.

E. Focus

A two dimensional system description adapted from [4]

is shown in Fig. 1(b).

 Flow: (𝑥 1, 𝑥 2) = (x1 - x2, x1 + x2)

 Empty Jump relation

 Init: 2.5 ≤ x1 ≤ 3 x2 = 0

 Unsafe: x1 ≤ 2

 State space: [0, 4] × [0, 4]

F. Billiards Game

A classical example of a linear system consisting of a

billiards table with a grey and a white ball [1]. Initially, the

balls are placed at the positions pg = (xg, yg) and pw = (xw, yw)

respectively. The grey ball is kicked and moves with a

constant velocity. The ball rebounds as soon as it reaches the

table boundary. We have defined the following unsafe

condition: (1) whether this grey ball hits the white ball, and

(2) whether the ball crosses the table boundary.

 Flow: (q1 → (𝑥 = 2 𝑦 = 1)) (q2→ (𝑥 = −2

 𝑦 = 1)) (q3 → (𝑥 = 2 𝑦 = −1)) (q4 → (𝑥
= −2 𝑦 = −1))

 Jump: The transition takes place as soon as the ball

hits boundary of the table.

 Init: xg = 0 yg = 0

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

683

TABLE I: EXPERIMENTAL RESULTS ON PHAVER

PHAVer

Benchmarks Safety Time(s) Memory(KB)

Damping Pendulum
Unsafe

Safe

0.10

0.25

(Refineme

nt)

1328

2784

Train-gate-controller Safe 0.633 4256

Room Heating Unsafe

26.23

(Convex-Hu

ll)

116672

van der Pol Safe 0.15 2112

Billiards Game Unsafe 0.70 3808

Billiards Game
Unsafe

Safe

0.11

1.24

(Refinement,

Convex-Hull)

1916

5984

Focus Unsafe 0.11 1608

TABLE II: EXPERIMENTAL RESULTS ON HSOLVER

HSolver

Benchmarks
Refine

steps

Prune

func #
Safety

Time(s

)

Mem(KB

)

Damping Pendulum 4 12

2
Safe 0.14 1920

Train-gate-controlle

r
2 167

5
Safe 1.50 3588

Room Heating [4] 1

4
248724 Unsafe 854.05 19720

van der Pol [4] 1 38 Safe 0.11 1212

Billiards Game 1 2

4
164718 Unknow

n
77.06 2600

Billiards Game 2 1
22

3
Safe 0.20 2404

Focus [4] 8 94

3
Safe 0.40 1880

 UnSafe1: xw = 10 yw = 8

 Unsafe2: x ≥ 13 y ≥ 10

 State space: [0, 13] × [0, 10].

V. EXPERIMENTAL OUTCOMES

All the benchmarks have been evaluated on a system with

Intel Core 2 duo processor at 1.83 GHz and 2.0 GB of

memory. PHAVer allows us to model only linear systems.

Therefore, nonlinear systems have to be linearized to make

their analysis possible using PHAVer. We have used the rate

translation technique as in the damping pendulum and van

der Pol equation benchmarks. Of course this may not be a

perfect approximation and the reachability results based on

this transformation will be inconclusive with respect to the

safety property of our system because the linearization error

has not been taken into account in most of the cases.

Nevertheless, it helps us in comparing the functioning of two

tools. We also computed the maximum linearization error in

the damping pendulum benchmark as 0.2%. Computational

results are given in Table 1. The damping pendulum system is

declared as unsafe due to the over-approximation. However,

we can still control this approximation to an extent by means

of refinement which in turn limits the over-approximation

and gives better results. We can see that the damping

pendulum as well as billiards game are proved to be safe after

the application of refining method because it improves the

precision. PHAVer has the feature of compositional

reasoning which makes it effective and useful in a situation

where more than one automaton interact. The

train-gate-controller is one of these types of examples. But

HSolver does not provide the means to compose hybrid

automata. Therefore, the user has to manually compose the

autamata before using the tool.

In the room heating benchmark, it took almost a minute to

check the safety property with default polyhedra abstraction.

We tried to utilize PHAVer’s abstraction functionalities such

as convex-hull and bounding-box. When convex-hull

abstraction (REACH STOP USE CONVEX HULL ITER =

20) was employed, it accelerated the termination and halved

the verification time, which specifies the maximum number

of iterations during which the convex-hull over

approximation is used. Similarly, in van der pol benchmark,

bounding-box abstraction (REACH USE BBOX ITER = 5)

helped in the termination that specifies the frequency with

which the bounding-box over-approximation is used.

PHAVer also provides the choices in the search strategies

such as breadth-first and depth-first search. In van der pol

benchmark, we observed that the depth-first search took more

time for verification than the breadth-first search. We have

also noticed that limiting the number of bits and constraints

speeds up the termination. For all the examples, we can see

that memory consumption by PHAVer is huge due to its use

of polyhedral representation for the states.

On the other hand, HSolver facilitates the verification of

nonlinear hybrid systems. Operations such as ∗, sqr, cos, sin

can easily be encoded in the tool. Experimental outcomes are

tabularized in Table 2. We can see that, nonlinear dynamics

are verified quite fast testifying to the tool’s success in its use

of pruning strategy. It is clear from the results that the

pruning algorithm plays a significant role in the overall

abstraction technique. HSolver verifies by removing points

from the state space that are not on any trajectory from the

initial to an unsafe state, and hence it solves the problem of

excessive splitting because it also removes the points in the

reach set. But in case of linear dynamics, it may or may not

succeed which is clear from the billiards game benchmark. It

also takes a lot of time as in the room heating benchmark. In

the original paper [4], it was shown that verification process

for this example took > 10 hours. Therefore, we kept a limit

of 100 on the number of abstract states to improve the

termination. After every refinement step, the tool prints the

number of boxes used for representing the abstraction of

original hybrid system. For e.g., in focus benchmark

represents that after the fourth refinement step, the

abstraction

*** 4 s: 5 initvol: 1. unsafevol: 2.70499080831 ***

consists of 5 boxes. In addition, initvol and unsafevol show

the currently known upper bounds on the volume of all

starting points and endpoints, respectively, of the error

trajectories.

VI. COMPARISON

 If we compare these two tools in terms of verification

time, we can see that PHAVer outperforms HSolver in some

benchmarks. In systems where safety has been shown to be

unknown (Billiards Game), HSolver requires a lot of time.

Also, if a system consists of more than one automaton,

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

684

HSolver requires a manual composition of these automata

which is a tedious task. Whereas, PHAVer carries out the

composition of automata automatically and therefore, saves a

lot of efforts. In terms of memory consumption, it is difficult

to draw any single conclusion. In most of the cases, PHAVer

has consumed more memory which results from its usage of

polyhedra. But in cases where HSolver has exceeded PHAVer

Fig. 2. An abstraction of the Pendulum benchmark

The refinement procedure could be held responsible. In

nonlinear systems, we cannot conclude about their safety

because the linearization error has not been taken into

consideration except in the damping pendulum benchmark.

The strength of PHAVer lies in its feature of allowing the

user to manipulate various parameters. The user can compute

intersection as well as the difference of two state sets and can

also perform parametric analysis. In train-gate-controller

example [10], we performed an existential quantification

over the variables x, t and y using reg = project_to(u) where

reg is the identifier for the set of states reachable in the

automaton and u is the parameter which represents the

reaction delay of the controller. PHAVer computed the

values of u (5*u ≥ 99) for which the system is unsafe.

However, use of HSolver is not leveraged by these

functionalities. As the overall composed automaton consists

of 27+ states, therefore, computing jump relations between

these many states requires a lot of efforts.

PHAVer can also compute the simulation relation between

two automata. We computed a simulation relation rel =

get_sim(H, H’) between original pendulum example (H) and

its abstraction (H’) with fewer locations. The locations q2, q3

and q4 in the original benchmark are abstracted to q’4 with the

bound 0.3 ≤ x1 ≤ 0.8 and the dynamics (−0.7030 − 0.02x2) ≤

𝑥 2 ≤ (−0.2896 − 0.02x2) by computing union over the

bounds of locations q2, q3 and q4 (cf. Fig. 3) and so is the

another abstract location q’7. When tested, PHAVer deduced

that the abstraction is safe too. The time taken and memory

consumed are 0.20s and 2488KB as compared to the values

0.25s and 2784KB during verification of the original

example. Although, there is no much improvement in terms

of time but we can see a significant reduction in the memory

requirements. The same trend was noticed in the Focus

benchmark.

VII. CONCLUSION

As expected, both tools have their limitations and

strengths. PHAVer has proved its worth in linear hybrid

systems verification. It helps the user to control the

verification process by use of various parameters and

abstraction techniques. It also provides discrete results in the

examples where HSolver gave the results as safety unknown.

Ben Makhlouf et al. [6] and Carloni et al. [7] have also

evaluated the tools. However, we have moved a step further

by exploring the usage of more parameters provided by the

tools. Our wide selection of the benchmarks with linear and

nonlinear dynamics has helped us to better understand the

tool behaviors in the diverse scenarios by using various

features, e.g., in PHAVer simulation relation, parametric

analysis, search strategy, composition of automata. The

computation of the linearization error with the help of rate

translation is another contribution. HSolver has a advantage

over PHAVer as it can treat nonlinear dynamics better.

Although it is not as rich as PHAVer in terms of features, it

allows the user to customize the number of abstract state. The

tools have taken a leap over existing reachability analysis

methods. However, their deficiency in guaranteeing correct

and timely results for every class of hybrid systems points to

the need for future work in this direction.

ACKNOWLEDGMENT

The author would like to thank his family, his supervisor,

Dr. Purandar Bhaduri, friends Vallabh and Prabhat for their

support and feedback.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X.

Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The Algorithmic

Analysis of Hybrid Systems,” Theoretical Computer Science, vol. 138,

no. 1, pp. 3–34, 6 February 1995.

[2] T. A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi. HYTECH: A model

checker for hybrid systems, in Orna Grumberg, editor, CAV, vol. 1254

of Lecture Notes in Computer Science, pp. 460–463, Springer, 1997.

[3] G. Frehse, PHAVer: Algorithmic verification of hybrid systems past

HyTech. In Manfred Morari and Lothar Thiele, editors, HSCC, vol.

3414 of Lecture Notes in Computer Science, pp. 258–273. Springer,

2005.

[4] S. Ratschan and Z. She, Safety verification of hybrid systems by

constraint propagation based abstraction refinement, In M. Morari and

L. Thiele, editors, HSCC, vol. 3414 of Lecture Notes in Computer

Science, pp. 573–589. Springer, 2005.

[5] T. A. Henzinger and H. Wong-Toi, “Linear phaseportrait

approximations for nonlinear hybrid systems. In Rajeev Alur, Thomas

A. Henzinger, and Eduardo D. Sontag, editors,” Hybrid Systems,

volume 1066 of Lecture Notes in Computer Science, pp. 377–388.

Springer, 1995.

[6] B. Makhlouf and K. Stefan, “An evaluation of two recent reachability

analysis tools for hybrid systems,” in 2nd IFAC Conference on

Analysis and Design of Hybrid Systems, 2006.

[7] L. P. Carloni, R. Passerone, A. Pinto, and A. L.

Sangiovanni-Vincentelli, “Languages and tools for hybrid systems

design,” Foundations and Trends in Electronic Design Automation,

vol. 1, no. 1/2, 2006.

[8] K. H. Johansson, Hybrid Systems Lecture Notes. UC Berkeley, Spring

2000.

[9] N. A. Lynch, R. Segala, and F. W. Vaandrager, “Hybrid I/O automata

revisited,” in Maria Domenica Di Benedetto and Alberto L.

Sangiovanni-Vincentelli, editors, HSCC, vol. 2034 of Lecture Notes in

Computer Science, pp. 403–417. Springer, 2001.

[10] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of

the Eleventh Annual IEEE Symposium On Logic In Computer Science

(LICS’96), New York, USA, 1996. IEEE Computer Society Press, pp.

278–293.

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

685

[11] S. Ratschan, “Efficient solving of quantified inequality constraints

over the real numbers,” ACM Transaction Comput. Log, vol. 7, no. 4,

pp. 723–748, 2006.

[12] J. Lygeros, Lecture Notes on Hybrid Systems, University of Patras,

Greece, 2004.

[13] P. J. Antsaklis and Xenofon D. Koutsoukos, “Hybrid systems: Review

and recent progress,” in Tariq Samad and Gary Balas, editors,

Software-Enabled Control, Institute of Electrical and Electronics

Engineer, 2004, pp. 273–298.

[14] A. Fehnker and F. Ivancic, “Benchmarks for hybrid systems

verification,” in Rajeev Alur and George J. Pappas, editors, HSCC, vol.

2993 of Lecture Notes in Computer Science, pp. 326–341. Springer,

2004.

Manish Goyal received his M. Tech in Computer

Science from Indian Institute of Technology

Guwahati, India. His research interests include formal

methods, model checking, logic and computation. Post

his masters, he was associated with IBM India Labs,

Bangalore as Associate Software Engineer. Thereafter,

he worked at Verimag Research Lab, a leading

research center in embedded systems in France.

Currently, he is working at Atrenta Inc.

International Journal of Modeling and Optimization, Vol. 2, No. 6, December 2012

686

