
 

Abstract—A dynamical model for toxin producing 

phytoplankton and zooplankton has been formulated and 

analyzed. Due to gestation of prey, a discrete time delay is 

incorporated in the predator dynamics. The stability of the 

delay model is discussed and Hopf-bifurcation to a periodic 

orbit is established. To substantiate analytical findings, 

numerical simulations are performed. The system shows rich 

dynamic behavior including chaos and limit cycles. 

 
Index Terms—Chaos, hopf bifurcation, periodic solution, 

time delay. 

 

I. INTRODUCTION 

Phytoplanktons are tiny floating plants (algae) that live 

near the surface of lakes and ocean. They are at the lowest 

trophic level of aquatic ecosystem [1]. In the process of 

photosynthesis, phytoplankton produces half of the world’s 

oxygen. The nature of rapid increase and decrease in 

phytoplankton population density is the main characteristics 

in plankton ecosystem. Although the sudden appearance and 

disappearance of blooms is not well understood but the 

adverse effects of harmful algal blooms (HAB) on human 

health, aquatic population, fisheries business, and tourism are 

well established [2]. 

The dynamical interaction of zooplankton and 

phytoplankton on the occurrence of bloom is of interests to 

many scientific investigations. Toxins are produced by 

phytoplankton to avoid predation by zooplankton. The toxin 

producing phytoplankton not only reduces the grazing 

pressure on them but can also control the occurrence of 

bloom, Sarkar and Chattopadhyay [3]-[4]. 

The ubiquity of time-delay-coupled systems is suggestive of 

its importance, applicability, and utility in a large range of 

biological systems. Models incorporating time delays in 

diverse biological models are extensively reviewed by 

Beretta and Kuang [5], Gopalsammy [6], and Cushing [7]. 

The discrete time delay has potential to change the qualitative 

behavior of the dynamical systems [8]-[9]. 

In this present paper a delay differential model is proposed 

to study the interaction of a zooplankton and toxin producing 

phytoplankton. The discrete time delay is considered in 

predators’ functional response due to gestation time. 

 

II. BASIC MATHEMATICAL MODEL 
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Consider a toxin producing phytoplankton P  and 

zooplankton Z  in marine ecosystem. The growth of 

phytoplankton is assumed to be logistic in the absence of 

predation. The predation rate is assumed to follow the law of 

mass action. The effect of toxin liberation decreases the 

growth of zooplankton according to Holling type II 

functional response. Accordingly, the following basic model 

for the dynamics of phytoplankton- zooplankton system in 

the absence of delay and seasonality is given as: 
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subject to initial conditions  0 0P   and  0 0.Z   

Here r represents the intrinsic growth rate of 

phytoplankton and K is the carrying capacity of 

phytoplankton in absence of predation. The constant   is 

the mortality rate of zooplankton,  0   is the specific 

predation rate and 0   represents the ratio of biomass 

consumed per-zooplankton for the self-production. The last 

term in the zooplankton dynamics represents the loss due to 

toxin production by phytoplankton.  The constant 0  is the 

half saturation level and 0   is the rate of release of 

toxicants per phytoplankton population.  

The local dynamics of autonomous system (1) is 

summarized below in the form of following results which 

will be used later are stated here: 

1)  All solutions of the system (1) are uniformly bounded 

within a domain 
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2) The boundary equilibrium point   0 (0,0)E  has a locally 

unstable manifold along P  axis and stable manifold along 

Z axis. Therefore, for small population sizes, the 

phytoplankton is increasing along P  axis and the 

zooplankton is decreasing along  Z  axis. 

3) Another boundary equilibrium point 1 ( ,0)E K  is 

stable when 
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4)  The interior equilibrium point * * *,( );ZE P  
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5)   It is observed that  1E  is locally asymptotically stable 

whenever 
*E  does not exist and a saddle point otherwise. 

6) The positive equilibrium point *E  is locally 

asymptotically stable provided 
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7) Further, the system (1) around *E is globally  

asymptotically stable [5]. 

For explanation of occurrence of bloom phenomenon in 

phytoplankton-zooplankton system, the time-lag and 

periodic external forces are incorporated in the system (1). 

 

III. MODEL WITH DISCRETE DELAY 

Consider the discrete time delay    in zooplankton 

dynamics due to gestation of phytoplankton, accordingly the 

system (1) is extended in delay differential equation system 

as: 
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The initial conditions for system (4) are: 

 

( ) 0, ( ) 0; [ ,0)P Z        

The system (1) and (4) has same equilibrium points. The 

stability of boundary equilibrium points are not affected due 

to delay. For stability of interior equilibrium point * * *,( ),ZE P  

introduce the perturbations as 
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Then the system (4) gets transformation to 
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The characteristic equation corresponding to (4) is given 

 By 
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        (6) 

 

IV. LOCAL HOPF BIFURCATION 

It is observed that the positive equilibrium point 
* * *,( )ZE P of the system (4) with   0   is stable for the 

parameters satisfying conditions (3). However, for *0, E   

will be locally asymptotically stable if the real part of ( , )G    

is negative. 

For Hopf bifurcation, it is assumed that root of 

characteristic equation (6) is purely imaginary. Substituting  

in (6) and separating real and imaginary parts, the following 

is obtained: 
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Simplification thereafter, leads to the following cubic 

equation 

  2
1 2 0  Q Q                          (7) 

With  2   and  
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The equation (7) has a unique positive root when 2 0Q  . 

The critical value of delay is computed as 
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Observe that   
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By implicit function theorem, ,k ku    is a function of   in 

a neighborhood of (0, , )k k   such that      
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Differentiation of characteristic equation (6) with respect 

to   gives 
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By Rouche’s Theorem [10] 
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Thus, the transversality condition holds and the conditions 

for Hopf bifurcation are satisfied at   , 0,1,2,...k k    

The following theorem on stability and Hopf bifurcation of 

system (4) can now be stated: 

Theorem:  Let the positive equilibrium point * * *,( )ZE P  

of system (4) with 0    is stable then, 

(i) If  *
2 0,Q E  is locally asymptotically stable for all     

0  . 

(ii) If   
2 0,Q    then *E is locally asymptotically stable for  

all )[0, k   and unstable whenever 
k

  for    

0,1,2,...k   

(iii) System undergoes Hopf-bifurcation around *E  for  

       every 
k

   for  
2 0.Q   

 

V. NUMERICAL COMPUTATION 

The numerical simulations have been carried out to 

substantiate our analytical findings and investigate the global 

dynamical behavior of the nonlinear coupled system (4). The 

possibility of existence of chaotic or the quasi periodic 

solution of the system has been explored. Consider the 

following set of parameters values [3]-[4]:   
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Fig. 1. Phase plot and time series depicting stable behavior at  0.01h   

 

For this choice of parameters, the analysis suggests that the 

Hopf-bifurcation occurs at critical value of parameter, 

computed from (8), as 0.056 h . 

 

 

Fig.  2. Phase plot and time series depicting limit cycle at 0.125h   

 

The system (4) is solved numerically for the above choice 

of parameters with
00.125  h  . The phase plot and the 

two time series are drawn in Fig.1. The solution trajectory 

approaches to the equilibrium state  (68.39,18.29)  

asymptotically confirming the coexistence of species for this 

choice of parameters. 

It  is observed in the simulation experiment that the 

systemloses its stability and limit cycle is obtained as the 

delay is increased, keeping all other parameters fixed. The 

phase plot and the time series are drawn for  
0

0.125 h   

in Fig. 2. The solution trajectory tends to a stable limit cycle 

in this case. 

 

 
Fig. 3.  Bifurcation diagram w. r. t.    at (a) 

1
4.0h


  (b) 4.0   
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To obtain bifurcation diagram, the local maximum values 

of a species is plotted for a range of the key parameter for 

fixed initial conditions after removing the transient effects in 

the solution. The bifurcation diagram is drawn with respect to 

  in Fig. 3 (a). A small window of stability is observed near 

0.056h  and then limit cycle is obtained. This is in 

confirmation with the analytical results. Another window of 

stability is clearly visible after which the solution undergoes 

series of period doubling leading to chaos. 

The bifurcation diagram is also plotted for    at  0   in 

Fig. 3 (b). Comparison with Fig. 3(a) clearly shows that the 

toxin production enhances the complexity in the system. It is 

observed that stable window narrows down with increasing 

  and chaotic region widens up. 

In Fig. 4 (a), phase diagram shows a typical chaotic 

attractor for 1
4h


   at 4 h  . In the same way, another 

attractor is obtained for 0  . It is evident that the toxin 

production increases the complexity in the zooplankton 

phytoplankton system enhancing the possibility of algal 

blooms. 

The next bifurcation diagram  is  plotted for  the toxin 

parameter   at 3.5 h   in Fig. 5. This Bifurcation diagram 

clearly shows  the region of choas  for value of 3.5h  . 

In this diagram, several stable windows appeared for 

2.4   and the prominent ones are in the interval (0, 0.35)  

and (2.37, 3.33). A periodic window is observed in the 

interval (3.3,4.5). After periodic doubling solution becomes 

chaotic with further increase in .  

 

VI. CONCLUSIONS 

In this paper, a delay model for toxin producing 

phytoplankton and zooplankton has been investigated. The 

discrete time delay is incorporated due to gestation delay. 

Local asymptotic stability condition for nontrivial 

equilibrium point in the absence of delay is established. Hopf 

bifurcation analysis gives the critical time delay for which 

periodic solutions are possible. Thus, the species can coexist 

along with toxin liberation. Further increasing the delay 

beyond the critical value, the system goes periodic. The 

chaotic behavior is observed in the system which indicates 

the occurrence of algal blooms. 

 

 

Fig. 4.  Attractor at  4 h   for (a) 
1

4 h


  (b) 0      

 

Fig. 5. Bifurcation diagram w. r. t.    for 3.5 h   
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