
 

Abstract—Accuracy of results from mathematical model 

describing a physical phenomenon is complicated to infer due 

toseveral parameters that affect the model. With the ever 

increasing complexity of the models, the uncertainty in model 

development and parameter values are increased.For an 

analytical model having various input variables, only a few of 

the parametric values are known and the remaining values are 

assumed as the best case values. A quantitative value for each 

parameter in the analytical model, ranking in importance, is 

required to validate the model output. In this paper, the 

accuracy of an analytical model is estimated quantitatively 

using the uncertainty and sensitivity analysis. The developed 

methodology was applied and analyzed for two cases, a fluid 

flow equation and a heat transfer model. It is shown in this 

paper that the accuracy can be quantitatively predicted for an 

analytical model and the input parameters intheir range can be 

effectively judged. 

 
Index Terms—Model accuracy, parametric importance, 

sensitivity and uncertainty analysis, weight percentage. 

 

I. INTRODUCTION 

Analytical models are used in various areas of science and 

engineering to simulate a process or assess the performance 

of a system. These models can have numerous input variables 

having complex relationship with each other.The accuracy of 

the model output depends on the accuracy of the input 

parameters and its range. The individual input parameters can 

be exact, measured, predicted or assumed.Each of these 

methods introduces some uncertainty in the values because of 

natural variation, measurement errors or lack of measurement 

techniques. Accuracy of results from mathematical and 

computer models of a system is often complicated by the 

presence of uncertainties in experimental data that are used to 

estimate parameter values [1]. It is vital to know which input 

parameters have significant impact on the output value of a 

model and these individual parameters require a closer 

examination. Model accuracy is also a critical parameter for 

robust process modeling and design calculations. It helps to 

ensure that the model works according to the specifications 

and the output is physically reasonable with a known amount 

of variation in the input parameters. The analysis can suggest 

research priorities among various uncertain parameters [2]. 

The model accuracy is highly correlated to the accuracy of 

different parameters involved in the formulation of the model 

and their effect on the output of the model. While modeling 
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real physical systems, a set of assumptions and validations 

are often made without knowing the exact quantified impact 

of the individual parameter [3].  

Numerous methodologies are available for estimating the 

parametric importance for a model qualitatively. Saltelli and 

Tarantola [4] and Saltelli et al. [5] discussed about the 

assessment of relative importance of input factors from 

probability distribution of output given the probability 

distribution of the inputs using Monte Carlo analysis. 

Benkeet. al. [6] combined differential erroranalysis and 

Monte Carlo simulation with stochastic and deterministic 

sensitivity analysis to determine the parameters having larger 

impact on model output.Principal component analysis (PCA) 

was used to qualitatively identify the main parameters from a 

multivariate data set [7]. Larsen [8] discusses some of the 

qualitative and quantitative parameters for data quality.  

To estimate the effect of input parameters, uncertainty and 

sensitivity analysis provides a good platform.Bushnell [9] 

has put forth a simplistic “one parameter at a time”: 

derivative-based approach towards uncertainty and 

sensitivity analysis for predicting the parametric importance 

with respect to each individual parameter.Sensitivity analysis 

of a model output aims toquantify the relative importance of 

each input modelparameter in determining the value of an 

assignedoutput variable.Sensitivity and uncertaintyanalyses 

methods for computer models are being applied in 

performanceassessmentmodeling in the geologic high-level 

radioactive-waste repository program [10].Homma and 

Saltelli [11] introduced the 'total effect'parameter index while 

giving a methodology for global sensitivity analysis. This 

index provides a measure of the total effect of a 

givenparameter, including all the possible synergetic terms 

between that parameterand all the others. Rank 

transformation of the data is also introduced in orderto 

increase the reproducibility of the method.Zu and Gertner 

[12] proposed a regression-based method,for models with 

correlated inputs, toquantitatively decompose the total 

uncertainty in model output into partial variances contributed 

by the correlated variations and partialvariances contributed 

by the uncorrelated variations.It was also shown that the 

sensitivity analysis is easier for linear models than for 

non-linear ones, and for monotonic than non-monotonic ones 

[13]. 

However, very little literature is available to estimate the 

impact of input parameters quantitatively and no study was 

done to describe the representation of model accuracy based 

on the quantified input parametric data. In this paper, a 

methodology was developed to estimate the accuracy based 

on the quantified input parametric estimation and brings out 

the importance of each individual parameter. The parameters 

with the highest importance or the ones that affect the output 
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of the model, the most, contribute more to model accuracy. 

The inputs to the model, most generally, are the input 

parameters at design condition values, and at maximum and 

minimum range values. The model accuracy prediction based 

on defined parameters can serve as a preliminary measure to 

process design and parameter control. The parametric 

importance and its quantitative contribution towards the 

model were estimated using the uncertainty and sensitivity 

model developed by Bushnell [9]. The methodology for 

estimating the model accuracy was discussed and it was 

applied to two test cases one in Taylor Couette flow model 

and the other in a heat transfer modelto analyse the model 

quantitatively.  

 

II. METHODOLOGY 

A. Model Accuracy  

In order to bring out the significance of the model 

accuracy, it is vital to estimate the weight percentage of each 

individual design parameters contribution for a mathematical 

model. The model accuracy will always be a function of the 

weight percentage and the known value of the design 

parameter, and is represented as, 

 𝐴 =  ai × wi
n
i=1                  (1) 

where A is the model accuracy, ai is a constant which would 

be 1 if the parameter value is known else would be 0 and wi is 

the weight percentage of a parameter. The significance of the 

constant attributes to the cases where the model prediction is 

based on the actual known parameter value or the assumed 

case values. In many design cases, it is required to estimate 

model calculations based on assumptions when some of the 

values are not known. The constant, ai, is used for estimating 

the model accuracy taking into account for each parameter 

whether it is assumed or known. The following sections 

describe about the weight percentage and its estimation.  

B. Weight Percentage 

The weight percentage, which is significantly important to 

the model accuracy, is basically a measure of each design 

parameters contribution to the mathematical model 

prediction. Hence, it is an essential criterion to estimate the 

parametric weight percentages for the development of any 

model. Sensitivity and uncertainty analysis methods are 

numerical methods for determining the relationships among 

the input and output variables of a mathematical model. Most 

of the mathematical models have a number of input variables 

and the governing relationship between input and output is 

complex. The uncertainty and sensitivity analysis developed 

by Bushnell [9] was used to estimate the weight percentage 

with respect to each parameter. The parameter uncertainty 

and sensitivity are discussed in the following sections. 

C. Parameter Uncertainty  

Parameter uncertainty can be defined as the range of 

possible values for an individual parameter for that 

mathematical model with valid assumptions. This uncertainty 

can come from measurement, sampling, or estimation errors. 

The relative range or the uncertainty is calculated using the 

following equation. The relative range or the uncertainty is 

calculated using the following equation: 

           𝑁𝑖 =
𝑅𝑖

𝜉𝑏 ,𝑖
                                      (2) 

where Ni is uncertainty of ith parameter, Ri is equal to the 

expected range of ith parameter which is the difference 

between the parametric range and ξbi is equal to the base case 

value of ith parameter. To compare parameters with widely 

different magnitudes, the range of each parameter was 

normalized with a determined base-case value of the 

parameter. The base-case value is the best estimate of the 

parameter value. In general the base case value happens to be 

the median of the parametric range. 

D. Parameter Sensitivity  

Another important parameter for estimating the weight 

percentage is the sensitivity. Parameter sensitivity is the 

amount of variation in the model output in response to 

changes in the parameter inputs. Minor changes in some 

input parameters may make considerable changes to the 

model results, while larger changes to other parameters may 

have insignificant effects on results. It can identify the 

parameters that have largest effect on output for model 

calibration by linearizing the analytical model and also which 

deserve the most attention, accuracy, or research during data 

collection. The equation for normalized sensitivity is: 

𝑆𝑖 =
𝜉𝑏 ,𝑖

𝐹𝑏

𝜕𝐹

𝜕𝜉𝑖
                                       (3) 

where, Si is the normalized sensitivity of ith parameter, Fb is 

the objective function at base case, F is the objective 

function/ governing equation, ∂F/∂ ξiis the partial derivative 

of the objective function for the parameter at base case value. 

The resulting magnitude of the sensitivity (Si) indicates the 

effect of the input parameter on the model prediction. 

Positive sensitivity shows that an increase in the input value 

will increase the model prediction value, while a negative 

sensitivity shows that an increase in the input value will 

decrease the model prediction value. In general, the 

sensitivity calculated using this technique is defined as the 

ratio of the change in output to the change in input. Since the 

sensitivity equation uses differential techniques, more care 

should be taken for formulating the derived form and 

evaluating the numerical value for complex models 

E. Weight Percentage Calculation 

Weight percentage assessment identifies individual 

parameter’s contribution towards variance of the output. 

Parametric importance is the combined effect of uncertainty 

and sensitivity. A parameter that is not sensitive will not 

cause variance in the output even with large uncertainty, and 

a parameter that is highly sensitive but known precisely also 

will not cause variance in the output. By including both 

uncertainty and sensitivity, importance assessment identifies 

the parameters that can best reduce the output variability with 

better measurements, increasing the effectiveness of 

sensitivity analysis in all its uses. To combine uncertainty and 

sensitivity into a dimensionless gauge of importance (Ii), the 

absolute value of the product of the relative range and 

normalized sensitivity is taken: 

  𝐼𝑖 =  𝑁𝑖𝑆𝑖 =  
𝑅𝑖

𝜉𝑏 ,𝑖

𝜉𝑏 ,𝑖

𝐹𝑏

𝜕𝐹

𝜕𝜉𝑖
 =  

𝑅𝑖

𝐹𝑏

𝜕𝐹

𝜕𝜉𝑖
        (4)                                                                                                                                                                           

Greater values of importance would indicate where efforts 

to better estimate parameters would have the most effect on 
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providing a more accurate model prediction and risk 

assessment and, indicate where resources should be focused. 

Finally, to ascertain the weight percentage associated with 

each parameter, the importance value was used and weight 

percentage was formulated as: 

      𝑤𝑖 =
𝐼𝑖

 𝐼𝑖
𝑛
𝑖=1

                                      (5) 

where n is equal to the number of parameters and wi is equal 

to the weight percentage associated with each parameter. 

 

III. RESULTS 

To analyze the developed model for estimating the 

accuracy, two case studies were performed. One on Taylor 

Couette flow between rotating concentric cylinders and the 

other, a rigorous heat transfer model, for estimating the 

convective heat transfer coefficient from a circular cylinder 

in a cross flow to liquid.  Details of the case studies and the 

results are discussed in the following sections.  

A. Case Study A: Taylor Couette Flow Between Rotating 

Concentric Cylinders 

The model developed by Srinivasan et.al [14] was used for 

estimating the Power Number for a Taylor Couette flow 

between two concentric cylinders. The Power Number can be 

represented a 

          𝑃o = 2π/(ρN2Di
4)                    (6)  

where Po is Power Number, Di is the internal diameter of 

cylinder in meters, ρ is the fluid density in kg/m3 and N is the 

rotational speed in revolutions per second. Water and oil are 

assumed to be fluid of interest for this case study and the 

parametric ranges are summarized in Table I. The parametric 

range (min and max) values are chosen with consideration of 

standard design conditions and properties. 

 
TABLE I: PARAMETRIC RANGES, UNCERTAINTY AND SENSITIVITY VALUES 

FOR CASE STUDY A 

Parameter Min Max Ni Si 

Cylinder Diameter, Di, 

(m) 
0.01 0.025     1.00 -4.23 

Density of fluid, ρ 

(m3/s) 
912 1050     0.13  -1.05 

Rotational Speed, N 

(rps) 
0.7 142   28.26 -2.11 

 
Based on the parametric range tabulated, the uncertainty 

and sensitivity was calculated using Equation 2 and 3 

respectively. Table I shows the uncertainty and sensitivity 

values derived for each parameter using the minimum and 

maximum range values. As discussed in the Section IIB, the 

fluid density, cylinder diameter and rotational speed have a 

negative magnitude for sensitivity and it is due to the effect of 

the differential analysis techniques. The uncertainty values 

depend on the parametric range and the base-case values 

which are chosen to be the median. The uncertainty values 

are strongly dependent on the parametric range applied to that 

specific analytical model. It is not possible to generalize the 

uncertainty for a particular model without the known range of 

minimum and maximum values.  

The estimation of weight percentage for different 

parameter is shown in Figure 1. The combined effect of the 

sensitivity and uncertainty can be seen in the weight 

percentage plot. The results show that the rotational speed 

has the maximum weightage and is the critical parameter for 

minimum and maximum range considered for this study. The 

dependence will change for different set of parametric range 

values.Figure 2shows the estimation of accuracy for each 

parameter assuming some base-case value for that parameter 

and estimating the model accuracy, which is the Power 

Number. 

The effect of a parameter becoming constant can be seen 

with the weight percentage of fluid density. It was observed 

that since the variation in density is very less, it is almost 

constant and therefore contributes very less towards model 

accuracy. On the other hand, the parameter rotational speed 

varies over a large range and therefore has high levels of 

uncertainty and contributes more to the accuracy of the 

model.  

 

 
Fig. 1. Weight percentage values for different parameters 

 

 
Fig. 2. Model accuracy for assumed base case values 

 

B. Case Study B: Heat Transfer Model 

To extend the applicability of the developed methodology 

to a more rigorous analytical model, heat transfer equation 

for predicting the convective heat transfer coefficient for 

cross flow over a cylinder for liquid, as given by Sanitjai and 

Goldstein [15], was used for the study. The heat transfer 

coefficient for a cross flow over a cylinder for liquid in a 

turbulent condition can be represented as below, 

 

ℎ = 0.037 ∗ 𝜌0.8 ∗ 𝑣0.8 ∗ 𝐷−0.2 ∗ 𝜇−0.38 ∗ 𝑘0.58 ∗ 𝐶𝑝
0.42  (7) 

 

where ρ is the density of fluid in kg/m3, v is the velocity of 

fluid in m/s, D is the diameter of cylinder in meter, Cp is the 

specific heat capacity of fluid in J/kgK, k is the thermal 

conductivity in W/mK, h is the convective heat transfer 

coefficient in W/m2K and µ is the coefficient of viscosity in 

N-s/m2.  The minimum and maximum parameter range 

values were calculated based on Reynolds number range 

(between 104 and 105) and Prandtl number range (between 

6.5 and 176) and tabulated in Table 2.  Pure component liquid 

properties of water and ethylene glycol at 23oC were used to 
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estimate the parametric range values. For the base case 

values, the liquid mixtures are considered and the pure 

component properties are not considered. When the pure 

component properties are used as base case values, the model 

resulted in strong dependence for velocity constructing all the 

other parameters to negligible contribution. Hence based on 

the test analysis, mixture properties were used for base case 

values. 

 
TABLE II: PARAMETRIC RANGES, UNCERTAINTY AND SENSITIVITY VALUES 

FOR CASE STUDY B 

Parameter Min Max Ni Si 

Specific heat capacity, 

Cp (J/kgK)  
2401.5 4181 0.51 0.43 

Coefficient of viscosity, 

µ (N.s/m2) 
9.59E-04 1.84E-02 1.74 -0.39 

Thermal Conductivity, k 

(W/mK) 
2.51E-01 6.06E-01 1.41 0.59 

Diameter of cylinder , D 

(m) 
0.028 0.029 0.04 -0.20 

Density of fluid, ρ (m3/s) 998 1113.2 0.11 0.82 

Velocity of fluid, v (m/s) 0.344 57 1.89 0.82 

 

Based on the parametric range tabulated, the uncertainty 

and sensitivity values were calculated using Equation 2 and 3 

respectively, and tabulated in Table II. It shows the 

uncertainty and sensitivity values derived for each parameter 

using the selected range of values. As discussed in the 

Section IIB, the cylinder diameter and coefficient of viscosity 

show a negative magnitude and it is due to the effect of the 

differential analysis techniques and the powers raised to 

negative magnitude. Also the fluid velocity and density show 

a similar positive magnitude compared to other parameters. 

The base-case values for this case are chosen to be the mean 

for 50% liquid mixtures. Again, it is not possible to 

generalize the uncertainty for a particular model without the 

known range of values.  

The estimation of weight percentage is shown in Figure 3. 

The combined effect of the sensitivity and uncertainty can be 

seen in the weight percentage plot. The results show that the 

fluid velocity has more weight percentage and is a key 

contributing factor for the heat transfer coefficient within the 

specified range. Also, it shows some dependence for the 

model on thermal conductivity, and viscosity quantitatively. 

The accuracy values are estimated by using the base case 

values when the parameter is considered to be unknown. It 

can be noted that the dependence will change for different set 

of range of values for that specific analytical model.  Figure4 

shows the model accuracy variation for each parameter when 

it is not considered for the evaluation. The effect of a 

parameter becoming constant can be seen with the weight 

percentage of cylinder diameter.  

 

 
Fig. 3. Weight percentage values for different parameters 

 
Fig. 4. Model accuracy for assumed base case values 

 

IV. CONCLUSIONS 

A methodology, based on uncertainty and sensitivity 

analysis, was proposed for quantitative estimation of model 

accuracy. The developed methodology was applied for two 

case studies, one for the Taylor Couette flowbetween 

rotating concentric cylindersand the other, a rigorous heat 

transfer model.  It has been shown that the developed 

technique predicts the model accuracy quantitatively and can 

be used for estimating the model output when some of the 

parameters are assumed.  
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